Journal of Advances in Information Technology Vol. 10, No. 4, November 2019 Numerically Simulating the Solar System in Mathematica Charles Chen Northwood High School, Irvine, USA Email:
[email protected] Abstract—The planetary motion within our solar system is a variables is global across all notebooks. This works by topic that has been studied for hundreds of years and has assigning a serial number $푠푛푛푛 to the end of all variable given rise to the science of astronomy. It is very important names, making them unique. to know the positions of the planets in our solar system, as Due to its user-friendly notebook format, Mathematica many of our current scientific research depends on it. Space is commonly used as an elaborate graphing calculator and exploration, for example, is a perfect example of when we need to know the exact positions of the planets in our solar sometimes overlooked as a programming language for system. Since it takes many years to send a rover or satellite numerical simulations. Furthermore, Mathematica’s to a planet, we will need to be able to predict the position of selection of helpful built-in functions such as “Animate”, that planet many years into the future. Therefore, I present “Manipulate”, and “Dynamic”, which allow the user to a second order Runge-Kutta simulation to predict the control input parameters (via a slide bar) for graphical future position and velocity of the planets in our solar plots of analytic functions, often cause users to overlook system based on Newtonian laws of motion. The equations Mathematica’s ability to animate numerical solutions in of motion are implemented into a Mathematia script which real time.