The Puzzling Falcomurus Mandal (Collembola, Orchesellidae, Heteromurinae): a Review

Total Page:16

File Type:pdf, Size:1020Kb

The Puzzling Falcomurus Mandal (Collembola, Orchesellidae, Heteromurinae): a Review insects Article The Puzzling Falcomurus Mandal (Collembola, Orchesellidae, Heteromurinae): A Review Bruno C. Bellini 1,* , Paolla G. C. de Souza 1 and Penelope Greenslade 2,3,* 1 Laboratório de Collembola, Departamento de Botânica e Zoologia, Centro de Biociências, Campus Universitário, Universidade Federal do Rio Grande do Norte—UFRN. BR 101, Lagoa Nova, Natal 59072-970, Brazil; [email protected] 2 School of Science, Psychology and Sports, Federation University, Ballarat, VIC 3353, Australia 3 Department of Biology, Australian National University, GPO Box, Canberra, ACT 0200, Australia * Correspondence: [email protected] (B.C.B.); [email protected] (P.G.) Simple Summary: Springtails are tiny microarthropods found mainly in soil habitats around the globe. Falcomurus is a genus of Heteromurinae (Orchesellidae), currently with a single species from India. Here, we revise the genus, transferring Dicranocentrus litoreus Mari-Mutt and D. halophilus Mari-Mutt to Falcomurus and describing two new taxa from marine littoral habitats in Australian archipelagos. We discovered the morphology of Falcomurus is quite similar among its species, but some characters of its chaetotaxy (the distribution and morphology of body chaetae) are useful to clearly separate them from each other. Abstract: Falcomurus Mandal is currently a monotypic genus of Heteromurinae described from India in 2018. Its key characters are the first antennal segment subdivided, the second undivided and the third annulated; the first abdominal segment lacking macrochaetae; and the presence of a sinuous modified macrochaeta on the proximal dens. Some details of its morphology were recently put in doubt, and so its genus status and affinities remain uncertain. Here, we revise Citation: Bellini, B.C.; Souza, P.G.C.d.; Greenslade, P. The Puzzling the genus based on the type material of Dicranocentrus litoreus Mari-Mutt, as well as provide the Falcomurus Mandal (Collembola, description of two new species from Australian archipelagos and a reinterpretation of the chaetotaxy Orchesellidae, Heteromurinae): A of Falcomurus chilikaensis Mandal and D. halophilus Mari-Mutt. After our revision, Falcomurus shows a Review. Insects 2021, 12, 650. https:// well-conserved chaetotaxy and overall morphology, which allowed us to provide an updated generic doi.org/10.3390/insects12070650 diagnosis. While the antennae morphology of Falcomurus resembles that of Dicranocentrus Schött, its dorsal sensillar and macrochaetotaxy suggest it is closely related to Heteromurus Wankel, as originally Academic Editor: Stewart B. Peck stated by Mandal. The main features useful to separate Falcomurus species are the head, mesothorax and fourth abdominal segment chaetotaxy. We also provide a key to its five species, a comparative Received: 1 June 2021 table and notes on the affinities and distribution of Falcomurus. Accepted: 24 June 2021 Published: 16 July 2021 Keywords: chaetotaxy; Entomobryoidea; Entomobryomorpha; Heteromurini; taxonomy Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- 1. Introduction iations. Recent studies reviewing the systematics within the Entomobryoidea have improved the understanding of the relationships between the families, subfamilies, tribes and genera, plus identified new more reliable diagnostic characters [1–3]. In particular, the affinities and internal organisation of the Orchesellinae sensu Soto-Adames et al. [4] were revised, Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. and this taxon was reinstated as a full family, as earlier proposed [3,5]. Other studies This article is an open access article have provided more evidence to support the validity and possible relationships within distributed under the terms and the Orchesellidae and suggested the sensillar pattern of the trunk segments may better conditions of the Creative Commons distinguish its lineages [3,6–8]. Attribution (CC BY) license (https:// Among the Orchesellidae, the Heteromurinae are defined by the presence of coarsely creativecommons.org/licenses/by/ ciliate scales on the body and a sensillar formula from the dorsal mesothorax to the 4.0/). third abdominal segment of 2,2|1,3,3 [3]. The most recent revisions dealing with the Insects 2021, 12, 650. https://doi.org/10.3390/insects12070650 https://www.mdpi.com/journal/insects Insects 2021, 12, 650 2 of 31 Heteromurinae subdivided it into two tribes and seven genera: Mastigoceras Handschin, 1924 [9] (the sole genus in Mastigocerini); and Alloscopus Börner, 1906 [10], Dicranocentrus Schött, 1893 [11], Heteromurtrella Mari-Mutt, 1979 [12], Heteromurus Wankel, 1860 [13], Pseudodicranocentrus Mari-Mutt, 1981 [14] and Sinodicranocentrus Zhang, 2020 [8] (all from Heteromurini) [1,3,8]. In [8], the status of the recently described Falcomurus Mandal, 2018 [15] in the Heteromurini was disregarded, because of mistakes in its description and similarities with other taxa. Falcomurus is currently a monotypic genus of Heteromurini from India, with many similarities to Heteromurus. Its most striking character is the presence of a sinuous ciliate macrochaeta on the proximal dens [15]. The original description of its dorsal chaetotaxy does not have a clear match among the Heteromurini, with the exception of an absence of macrochaetae on the first abdominal segment, recorded only for Heteromurus, including its subgenus Verhoeffiela Absolon, 1900 [16], and two species of Dicranocentrus, D. litoreus Mari-Mutt, 1985 and D. halophilus Mari-Mutt, 1985 [8,15,17]. These Dicranocentrus species actually show more similarities with Heteromurus concerning their dorsal chaetotaxy and also present the same sinuous dental macrochaeta described in Falcomurus [17] (p. 313, Figure 69 and pp. 318–320). Unlike the Northern Hemisphere collembolan faunas, the Orchesellidae fauna of Australia is represented by few species in few genera, all with limited distributions. There is only one species of Heteromurus, H. major (Moniez, 1889) [18], introduced and only found in very disturbed habitats, such as home gardens or public parks. The common, abundant and widespread genus Orchesella Templeton, 1836 [19] of the Northern Hemisphere, is not present. The genera that are present are Alloscopus, Australotomurus Stach, 1947 [20] and Isotobrya Womersley, 1934 [21], with one, seven and two species, respectively [22]. The species in each of the genera live in different habitats, such as soil, coastal and montane heathland and termite nests, respectively. Both Australotomurus and Isotobrya are endemic to Australia and it appears they are representatives of a more ancient, now relict, fauna than the present dominant genus of Entomobryoidea, Entomobrya Rondani, 1861 [23]. Here, we provide a review of Falcomurus based on the literature, a revision of the Dicranocentrus litoreus type material and the description of two new Australian species from tropical marine littoral habitats. Using a comparative morphological analysis, we reinterpreted the dorsal chaetotaxy and other morphological features of its type species. A revised generic diagnosis, discussion on the generic affinities, key to its species and a comparative table of their main features are also presented. 2. Materials and Methods Specimens of the new species were mounted on glass slides in Berlese’s medium. Morphological studies and raw drawings were made with a Leica DM750 microscope with an attached drawing tube. Photographs were taken with a Leica MC170 HD camera attached to the microscope, using LAS 4.12 software. The final figures were digitized and organized in plates using CorelDraw X8 software. The type series is deposited at the Museum of Victoria, Melbourne, Australia, under the acronym of MVMA. The chaetotaxy terminology used in this study mainly follows Fjellberg [24] for labial palp papillae; Gisin [25] for labial chaetotaxy, with additions of Zhang and Pan [26] and using Bellini et al. [27] as a model; Cipola et al. [28] for labral chaetotaxy; Mari-Mutt [29] for dorsal head chaetotaxy, with additions of Soto-Adames [30] and Zhang et al. [8]; Szeptycki [31] and Zhang and Deharveng [1] for S-chaetotaxy; and Szeptycki [32] for dorsal chaetotaxy, with additions and modifications provided by Soto-Adames [30], Cipola et al. [33] and Zhang et al. [3,8,34], using also Bellini et al. [27] as a model. The abbreviations used in the descriptions are Abd.—abdominal segment(s); Ant.— antennal segment(s); mac—macrochaeta(e); mes—mesochaeta(e); mic—microchaeta(e); ms—S-microchaeta(e); sens—ordinary S-chaeta(e); and Th.—thoracic segment(s). Antennal segments I and II’s subdivisions are ‘a’ for the proximal subarticle and ‘b’ for the distal one. Insects 2021, 12, 650 3 of 31 The symbols used in the drawings to represent the dorsal chaetotaxy patterns are large blank circles for mac; large black circles for mes; small black circles for mic; blank circles with a small black circle inside for mac or mic; black chaetae-like drawings for sens or ms; black circles crossed by a line for pseudopores; ciliate chaetae-like symbols for bothriotricha; and a dash above or under any symbol for chaetae presence or absence. Taxonomic descriptions and comparisons were based on a half body. Chaetae labels (including rows/series) and labial papillae are marked in bold throughout the text. 3. Results 3.1. Taxonomic Summary and Genus Diagnosis • Order Entomobryomorpha Börner, 1913 [35] • Superfamily Entomobryoidea Womersley, 1934 [21] • Family Orchesellidae Börner, 1906 [10], sensu
Recommended publications
  • Diversity of Commensals Within Nests of Ants of the Genus Neoponera (Hymenoptera: Formicidae: Ponerinae) in Bahia, Brazil Erica S
    Annales de la Société entomologique de France (N.S.), 2019 https://doi.org/10.1080/00379271.2019.1629837 Diversity of commensals within nests of ants of the genus Neoponera (Hymenoptera: Formicidae: Ponerinae) in Bahia, Brazil Erica S. Araujoa,b, Elmo B.A. Kochb,c, Jacques H.C. Delabie*b,d, Douglas Zeppelinie, Wesley D. DaRochab, Gabriela Castaño-Menesesf,g & Cléa S.F. Marianoa,b aLaboratório de Zoologia de Invertebrados, Universidade Estadual de Santa Cruz – UESC, Ilhéus, BA 45662-900, Brazil; bLaboratório de Mirmecologia, CEPEC/CEPLAC, Itabuna, BA 45-600-900, Brazil; cPrograma de Pós-Graduação em Ecologia e Biomonitoramento, Instituto de Biologia, Universidade Federal da Bahia - UFBA, Salvador, BA 40170-290, Brazil; dDepartamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, – UESC, Ilhéus, BA 45662-900, Brazil; eDepartamento de Biologia, Universidade Estadual da Paraíba, Campus V, João Pessoa, PB 58070-450, Brazil; fEcología de Artrópodos en Ambientes Extremos, Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México - UNAM, Campus Juriquilla, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico; gEcología y Sistemática de Microartrópodos, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México - UNAM, Distrito Federal, México 04510, Mexico (Accepté le 5 juin 2019) Summary. Nests of ants in the Ponerinae subfamily harbor a rich diversity of invertebrate commensals that maintain a range of interactions which are still poorly known in the Neotropical Region. This study aims to investigate the diversity of these invertebrates in nests of several species of the genus Neoponera and search for possible differences in their commensal fauna composition in two distinct habitats: the understory and the ground level of cocoa tree plantations.
    [Show full text]
  • Unexpected Diversity in Neelipleona Revealed by Molecular Phylogeny Approach (Hexapoda, Collembola)
    S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 383–398 ISSN: 1864-6417 Unexpected diversity in Neelipleona revealed by molecular phylogeny approach (Hexapoda, Collembola) Clément Schneider1, 3, Corinne Cruaud2 and Cyrille A. D’Haese1 1 UMR7205 CNRS, Département Systématique et Évolution, Muséum National d’Histoire Naturelle, CP50 Entomology, 45 rue Buffon, 75231 Paris cedex 05, France 2 Genoscope, Centre National de Sequençage, 2 rue G. Crémieux, CP5706, 91057 Evry cedex, France 3 Corresponding author: Clément Schneider (email: [email protected]) Abstract Neelipleona are the smallest of the four Collembola orders in term of species number with 35 species described worldwide (out of around 8000 known Collembola). Despite this apparent poor diversity, Neelipleona have a worldwide repartition. The fact that the most commonly observed species, Neelus murinus Folsom, 1896 and Megalothorax minimus Willem, 1900, display cosmopolitan repartition is striking. A cladistic analysis based on 16S rDNA, COX1 and 28S rDNA D1 and D2 regions, for a broad collembolan sampling was performed. This analysis included 24 representatives of the Neelipleona genera Neelus Folsom, 1896 and Megalothorax Willem, 1900 from various regions. The interpretation of the phylogenetic pattern and number of transformations (branch length) indicates that Neelipleona are more diverse than previously thought, with probably many species yet to be discovered. These results buttress the rank of Neelipleona as a whole order instead of a Symphypleona family. Keywords: Collembola, Neelidae, Megalothorax, Neelus, COX1, 16S, 28S 1. Introduction 1.1. Brief history of Neelipleona classification The Neelidae family was established by Folsom (1896), who described Neelus murinus from Cambridge (USA).
    [Show full text]
  • Why Are There So Many Exotic Springtails in Australia? a Review
    90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007).
    [Show full text]
  • Collembola of Canada 187 Doi: 10.3897/Zookeys.819.23653 REVIEW ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 819: 187–195 (2019) Collembola of Canada 187 doi: 10.3897/zookeys.819.23653 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Collembola of Canada Matthew S. Turnbull1, Sophya Stebaeva2 1 Unaffiliated, Kingston, Ontario, Canada2 The Severtsov Institute of Ecology and Evolution, Russian Aca- demy of Sciences, Leninskii pr. 33, Moscow 119071, Russia Corresponding author: Matthew S. Turnbull ([email protected]) Academic editor: D. Langor | Received 16 January 2018 | Accepted 8 May 2018 | Published 24 January 2019 http://zoobank.org/3A331779-19A1-41DA-AFCF-81AAD4CB049F Citation: Turnbull MS, Stebaeva S (2019) Collembola of Canada. In: Langor DW, Sheffield CS (Eds) The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 187–195.https://doi. org/10.3897/zookeys.819.23653 Abstract The state of knowledge of diversity of Collembola in Canada was assessed by examination of literature and DNA barcode data. There are 474 described extant Collembola species known from Canada, a significant change compared to the 520 species estimated to occur in Canada in 1979 (Richards 1979) and the 341 reported in the most recent national checklist (Skidmore 1993). Given the number of indeterminate or cryptic species records, the dearth of sampling in many regions, and the growing use of genetic biodiversity assessment methods such as Barcode Index Numbers, we estimate the total diversity of Collembola in Canada to be approximately 675 species. Advances in Collembola systematics and Canadian research are discussed. Keywords biodiversity assessment, Biota of Canada, Collembola, springtails Collembola, commonly known as springtails, is a class of small, entognathous, wing- less hexapods that is a sister group to Insecta.
    [Show full text]
  • (Collembola) in Meadows, Pastures and Road Verges in Central Finland
    © Entomologica Fennica. 29 August 2017 Springtails (Collembola) in meadows, pastures and road verges in Central Finland Atte Komonen* & Saana Kataja-aho Komonen, A. & Kataja-aho, S. 2017: Springtails (Collembola) in meadows, pas- tures and road verges in Central Finland. — Entomol. Fennica 28: 157–163. Understanding of species distribution, abundance and habitat affinities is crucial for red-list assessment, conservation and habitat management. In Central Fin- land, we studied Collembola in three habitat types, namely non-grazed meadows, pastures and road verges using pitfall traps. Altogether, 9,630 Collembola indi- viduals were recorded. These belonged to 12 families, 34 genera and 60 species. The number of specimens was clearly higher in meadows than in pastures or road verges. The number of species, however, was higher in meadows and road verges (40 and 39 species, respectively) than in pastures (33 species). The overall spe- cies number is comparable to other large-scale sampling schemes in similar habi- tats. We recorded a few abundant species (Spatulosminthurus flaviceps, Smin- thurus viridis and Sminthurus nigromaculatus) that have been previously re- corded from very different biotopes. In conclusion, biodiversity inventories of soil fauna, as well as other biota, should also include marginal habitats, which of- ten host peculiar communities. A. Komonen, University of Jyväskylä, Department of Biological and Environ- mental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; *Cor- responding author’s e-mail: [email protected] S. Kataja-aho, University of Jyväskylä, Natural History Museum, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; E-mail: [email protected] Received 15 November 2016, accepted 22 December 2016 1.
    [Show full text]
  • De Springstaarten Van Nederland: Het Genus ORCHESELLA (Hexapoda: Entognatha: Collembola) Matty Berg
    de springstaarten van nederland: het genus ORCHESELLA (hexapoda: entognatha: collembola) Matty Berg Springstaarten kruipen al minstens 450 miljoen jaar op aarde rond en komen in bijna elk ecosysteem voor. Ze zijn vaak in grote aantallen aanwezig en hebben dan een zeer belangrijke functie. Enerzijds zijn ze betrokken bij de afbraak van organisch materiaal en anderzijds als voedsel voor allerlei predatoren. Uit Nederland zijn ruim 200 soorten springstaarten bekend en nog tientallen soorten zijn te verwachten. Een samenvatting van de kennis is zeer tijdrovend. Daarom is besloten tot een reeks artikelen, waarbij steeds een of meerdere genera worden behandeld, met een tabel tot de soorten, ver- spreidingskaarten en een ecologisch profiel. In dit eerste artikel wordt het genus Orchesella behandeld, met vier bekende soorten in ons land. inleiding nieuwe soorten gevonden voor onze fauna. De Al sinds 1887 wordt gepubliceerd over het voorko- nieuwe soorten worden genoemd in de hand- men van springstaarten in ons land. In dat jaar leiding voor het karteren van springstaarten publiceerde Oudemans in zijn proefschrift een (Berg 2002), maar de vondsten worden hier naamlijst van de Nederlandse Collembola, met niet onderbouwd met bewijsmateriaal en nadere 36 soorten. Pas in 1930 verschijnt een nieuwe gegevens. Het is dus hoog tijd voor een kritische lijst met 54 soorten en 17 variëteiten (Buitendijk naamlijst van de Nederlandse springstaarten. 1930). Een aanvulling komt elf jaar later (Buiten- dijk 1941), met 62 soorten en 16 variëteiten. Dit Een volledige revisie van de Nederlandse naam- is de laatste officiële naamlijst van springstaarten lijst is zeer tijdrovend, zeker als elke nieuwe die voor ons land is verschenen.
    [Show full text]
  • Collembola) in Kermanshah Province
    Kahrarian et al : New records of Isotomidae and Paronellidae for the Iranian fauna … Journal of Entomological Research Islamic Azad University, Arak Branch ISSN 2008-4668 Volume 7, Issue 4, pages: 55-68 http://jer.iau-arak.ac.ir New records of Isotomidae and Paronellidae for the Iranian fauna with an update Checklist of Entomobryomorpha fauna (Collembola) in Kermanshah province M. Kahrarian 1, R. Vafaei-Shoushtari 1*, E. Soleyman-Nejadian 1, M. Shayanmehr 2, B. Shams Esfandabad 3 1-Respectively Lecturer, Assistant Professor, Associate Professor, Department of Entomology, Faculty of Agriculture, Islamic Azad University, Arak Branch, Arak, Iran 2- Assistant Professor, Department of Plant Protection, Faculty of Crop Sciences, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran 3- Assistant Professor, Department of Environmental Sciences, Faculty of Agriculture, Islamic Azad University, Arak Branch, Arak, Iran Abstract In this study, the fauna of order Entomobryomorpha was investigated in different regions of Kermanshah province during 2012-2014. Totally 20 species of Entomobryomorpha belonging to 4 families, 8 subfamilies and 13 genera were collected and identified from Kermanshah. The genus Subisotoam (Stach, 1947) with two species Subisotoma variabilis Gisin, 1949 and Cyphoderus bidenticulatus Parona, 1888 are newly recorded for fauna of Iran. Families Paronellidae and Tomoceridae, two genera Cyphoderus Nicolet, 1842 and Tomocerus Nicolet, 1842 and two species Tomocerus vulgaris (Tullberg, 1871) and Cyphoderus albinus Nicolet, 1842 are also new for Kermanshah province. We also provided the checklist of the Entomobryomorpha fauna which have been reported in different reign of Kermanshah province until now. The present list contains 36 species belonging to 15 genera and 4 families.
    [Show full text]
  • Data Providers
    Using Biodiversity Data from the NBN Database for Research y Paula Lightfoot, NBN Trust Data Access Officer Introduction to the NBN Database 1. Overview of available data 2. Finding and accessing data 3. Evaluating data quality 4. Using and referencing data http://data.nbn.org.uk Summary of Available Data • 91 million georeferenced taxon occurrence records. • 27 habitat datasets and 44 site boundary datasets to provide context and act as filters. • 856 datasets from 150 data providers. • Standard data format. • Standard taxonomy from UK Species Inventory. http://data.nbn.org.uk Data Providers Records in the NBN Database by data provider type. January 2014 (n = 91,206,588) • A large proportion of data comes from skilled amateur naturalists. • Data collated taxonomically and/or geographically. • Some structured surveys, much ad hoc recording. Geographic Coverage and Sampling Effort: • Recorder effort and data mobilisation are not evenly spread across the British Isles. • New NBN Gateway (v.5) extends coverage to include the Channel Islands and offshore data. • National Biodiversity Data Centre is the repository for ROI data. Sampling Effort Collembola Recording Scheme BTO Second Atlas of Breeding Birds 10,633 records of 336 species in Britain and Ireland: 1988-1991 over 200 years 1,465,400 records of 272 species over 4 years Sampling Effort Orchesella villosa (a springtail) http://tombio.myspecies.info/ Taxonomic Coverage Taxonomic breakdown of records in the NBN Database at January 2014 n = 91,269,685 Currency of Data Number of records in the NBN Database by year of record (January 2014) n = 89,091,428 (98% of total) Data Attributes Standard attributes in NBN Exchange Format: Required: Unique record key, taxon, date, date type, coordinates/grid reference/polygon, projection, precision (what? where? when?) Optional: Survey key, sample key, absent, sensitive, site key, site name, recorder, determiner Other attributes are not (yet) standardised across datasets: e.g.
    [Show full text]
  • Five New Species of Orchesella (Collembola: Entomobryidae)
    Proceedings of the Iowa Academy of Science Volume 84 Number Article 3 1977 Five New Species of Orchesella (Collembola: Entomobryidae) K. A. Christiansen Grinnell College B. E. Tucker Grinnell College Let us know how access to this document benefits ouy Copyright ©1977 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Christiansen, K. A. and Tucker, B. E. (1977) "Five New Species of Orchesella (Collembola: Entomobryidae)," Proceedings of the Iowa Academy of Science, 84(1), 1-13. Available at: https://scholarworks.uni.edu/pias/vol84/iss1/3 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Q Christiansen and Tucker: Five New Species of Orchesella (Collembola: Entomobryidae) \ \ (-:f-6 v,tff rlD' l Five New Species of Orchesella (Collembola: Entomobryidae) C ·if K. A. CHR1STIANSEN 1 and B. E. TUCKER2 CHRISTIANSEN, K. A. and BRUCE E. TUCKER (Dept. of Biology, bryidae) new to science . The chaetotaxy of the abdomen as well as the antenna! Grinnell College, Grinnell IA 50112). Five New Species of Orchesella (Col­ pin seta are used systematically for the first time in the taxonomy of the genus. lembola: Entomobryidae). Proc. Iowa Acad. Sci. 84(1): 1-13, 1977 . INDEX DESCRIPTORS: Collembola Taxonomy, North American Insect This paper describes 5 species of the genus Orchese/la (Collembola: Entomo- Taxonomy.
    [Show full text]
  • Diversity Patterns in Neotropical Collembola: Elevational Gradients
    Dec 2015 Vol.6, Issue 4 Diversity Patterns in Neotropical Collembola: Investigating the Significance of Elevational Gradients News Applications Updates from Estimating Symposia Held Coextinction Around the Rates through World DNA Barcoding News Briefs The Slovak National Museum- Natural History Museum obtained financial support of 1.7 M € from the EU European Regional Development Fund for Welcome to our December 2015 issue. building a DNA lab and other infrastructure to barcode the Another eventful year has passed with the 6th International Barcode flora and fauna of Slovakia in of Life conference as a fantastic highlight. 600 researchers from 50 2016 – 2023. With the added nations, over 200 talks, more than 100 posters - far more than our little capacity, the museum plans newsletter can ever convey even in a year with 4 jam-packed issues. to barcode 1000 species in the coming years. Nevertheless, we are looking back at another successful year, and we will try to keep the momentum going that the conference started. The German Barcode of Life Network (GBOL) was awarded This issue contains more prize winners from the conference and a lot a further 6.3 M € by the German of good news with respect to funding and national initiatives. Federal Ministry of Education and Research to extend the German We wish you a happy holiday season and a healthy and prosperous barcode reference library to New Year. contain all common and frequent species, as well as important agricultural pests, invasive, Dirk Steinke health-relevant, Red List, FFH Editor-in-chief (Flora Fauna Habitat Directive), indicator and specific application- relevant species, and to develop Table of Contents DNA barcoding applications.
    [Show full text]
  • Do Arthropod Assemblages Fit the Grassland and Savanna Biomes Of
    Research Article Arthropod assemblages of grassland and savanna in South Africa Page 1 of 10 Do arthropod assemblages fit the grassland and AUTHORS: savanna biomes of South Africa? Monique Botha1 Stefan J. Siebert1 Johnnie van den Berg1 The long-standing tradition of classifying South Africa’s biogeographical area into biomes is commonly linked to vegetation structure and climate. Because arthropod communities are often governed by both AFFILIATION: these factors, it can be expected that arthropod communities would fit the biomes. To test this hypothesis, 1Unit for Environmental Sciences we considered how well arthropod species assemblages fit South Africa’s grassy biomes. Arthropod and Management, North-West assemblages were sampled from six localities across the grassland and savanna biomes by means University, Potchefstroom, South Africa of suction sampling, to determine whether the two biomes have distinctive arthropod assemblages. Arthropod samples of these biomes clustered separately in multidimensional scaling analyses. Within CORRESPONDENCE TO: biomes, arthropod assemblages were more distinctive for savanna localities than grassland. Arthropod Monique Botha samples of the two biomes clustered together when trophic groups were considered separately, suggesting some similarity in functional assemblages. Dissimilarity was greatest between biomes for EMAIL: phytophagous and predacious trophic groups, with most pronounced differentiation between biomes [email protected] at sub-escarpment localities. Our results indicate that different arthropod assemblages do fit the grassy DATES: biomes to some extent, but the pattern is not as clear as it is for plant species. Received: 12 Nov. 2015 Significance: Revised: 26 Mar. 2016 • Provides the first comparison of arthropod composition between grassland and savanna biomes of Accepted: 06 Apr.
    [Show full text]
  • Mesofauna – Collembola
    Mesofauna – Collembola Morphology Microhabitat Diversity, abundance and biomass Collembola are small (0.12 - 17 mm) wingless hexapods (with six Collembola vary in their habitat preferences. Entomobryomorpha There are around 8 500 described species, which are found in a legs – see page 31) commonly known as ‘springtails’. The scientific and Symphypleona are mainly epiedaphic, living in surface litter great variety of habitats, from Antarctica and the Subantarctic name, Collembola, derives from the Greek words kolla (meaning and emergent vegetation, and are fast movers and good jumpers, Islands to rainforests, warm beaches and deserts. As well as being ‘glue’) and embolon (meaning ‘piston’) and was initially proposed in whereas the slow-moving Poduromorpha and Neelipleona are widespread, they are the most abundant hexapods in the world, reference to the ventral tube (collophore), which plays an important mainly within-soil dwellers (euedaphic). Most Collembola feed and an average square metre of soil in a temperate grassland or role in their fluid and electrolyte balance and may also serve as on fungal hyphae and spores (see box, page 39), bacteria (see a woodland can yield as many as 40 000 individuals. a ‘glue piston’ for adhering to smooth surfaces or for grooming. pages 33-35) and decaying plant material. However, ssome Another characteristic, albeit not always present, gives them their species are predators, feeding on nematodes (see pages 46- Generally, habitats may support anything from two to 30 common name: the forked springing organ or ‘furca’. This is held 47) or on other Collembola and their eggs. Ecologically, they are different collembolan species. However, in the tropics, up to 150 by a special catch mechanism on the ventral side of their abdomen not as important as earthworms in decomposition processes, species can be found, if species present in epiphytes (plants living which, when released, acts as a spring that can propel them, within but are still responsible for up to 30 % of total soil invertebrate in trees) are taken into account.
    [Show full text]