Structural Similarities Between Neuregulin 1–3 Isoforms Determine Their Subcellular Distribution and Signaling Mode in Central Neurons

Total Page:16

File Type:pdf, Size:1020Kb

Structural Similarities Between Neuregulin 1–3 Isoforms Determine Their Subcellular Distribution and Signaling Mode in Central Neurons 5232 • The Journal of Neuroscience, May 24, 2017 • 37(21):5232–5249 Cellular/Molecular Structural Similarities between Neuregulin 1–3 Isoforms Determine Their Subcellular Distribution and Signaling Mode in Central Neurons Detlef Vullhorst,* Tanveer Ahmad,* Irina Karavanova, Carolyn Keating, and Andres Buonanno Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892 The Neuregulin (NRG) family of ErbB ligands is comprised of numerous variants originating from the use of different genes, alternative promoters, and splice variants. NRGs have generally been thought to be transported to axons and presynaptic terminals where they signal via ErbB3/4 receptors in paracrine or juxtacrine mode. However, we recently demonstrated that unprocessed pro-NRG2 accumulates on cell bodies and proximal dendrites, and that NMDAR activity is required for shedding of its ectodomain by metalloproteinases. Here we systematicallyinvestigatedthesubcellulardistributionandprocessingofmajorNRGisoformsinrathippocampalneurons.Weshowthat NRG1 isotypes I and II, which like NRG2 are single-pass transmembrane proteins with an Ig-like domain, share the same subcellular distribution and ectodomain shedding properties. We furthermore show that NRG3, like CRD-NRG1, is a dual-pass transmembrane protein that harbors a second transmembrane domain near its amino terminus. Both NRG3 and CRD-NRG1 cluster on axons through juxtacrine interactions with ErbB4 present on GABAergic interneurons. Interestingly, although single-pass NRGs accumulate as unpro- cessed proforms, axonal puncta of CRD-NRG1 and NRG3 are comprised of processed protein. Mutations of CRD-NRG1 and NRG3 that render them resistant to BACE cleavage, as well as BACE inhibition, result in the loss of axonal puncta and in the accumulation of unprocessed proforms in neuronal soma. Together, these results define two groups of NRGs with distinct membrane topologies and fundamentally different targeting and processing properties in central neurons. The implications of this functional diversity for the regulation of neuronal processes by the NRG/ErbB pathway are discussed. Key words: BACE; ErbB4; metalloproteinases; Neuregulin; NMDA receptor; processing Significance Statement Numerous Neuregulins (NRGs) are generated through the use of different genes, promoters, and alternative splicing, but the functional significance of this evolutionary conserved diversity remains poorly understood. Here we show that NRGs can be categorized by their membrane topologies. Single-pass NRGs, such as NRG1 Types I/II and NRG2, accumulate as unprocessed proforms on cell bodies, and their ectodomains are shed by metalloproteinases in response to NMDA receptor activation. By contrast, dual-pass CRD-NRG1 and NRG3 are constitutively processed by BACE and accumulate on axons where they interact with ErbB4 in juxtacrine mode. These findings reveal a previously unknown functional relationship between membrane topology, protein processing, and subcellular distribution, and suggest that single- and dual-pass NRGs regulate neuronal functions in fundamentally different ways. Introduction processes (Buonanno, 2010; Mei and Nave, 2014). For example, Neuregulins (NRGs) signal via ErbB3/4 receptor tyrosine kinases NRG/ErbB4 signaling in parvalbumin-positive GABAergic in- to regulate numerous neurodevelopmental and activity-dependent terneurons regulates glutamatergic synaptic plasticity in the hip- Received Aug. 19, 2016; revised March 14, 2017; accepted April 9, 2017. The authors declare no competing financial interests. Authorcontributions:D.V.,T.A.,andA.B.designedresearch;D.V.,T.A.,I.K.,andC.K.performedresearch;D.V.and *D.V. and T.A. contributed equally to this study. T.A. contributed unpublished reagents/analytic tools; D.V., T.A., and A.B. analyzed data; D.V., T.A., and A.B. wrote Correspondence should be addressed to Dr. Andres Buonanno, Eunice Kennedy Shriver National Institute the paper. of Child Health and Human Development, 35 Lincoln Drive, Room 2C-1000, Bethesda, MD 20892. E-mail: This work was supported by Eunice Kennedy Shriver Institute of Child Health and Human Development Intramu- [email protected]. ral Research Program. We thank Drs. Vincent Schram and Carolyn Smith (Porter Neuroscience Center imaging core) C. Keating’s present address: Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104. for expert assistance with confocal microscopy; and Dr. Jung-Hwa Tao-Cheng (National Institute of Neurological DOI:10.1523/JNEUROSCI.2630-16.2017 Disorders and Stroke EM facility) for help with immunogold EM microscopy. Copyright © 2017 the authors 0270-6474/17/375232-18$15.00/0 Vullhorst, Ahmad et al. • Subcellular Neuregulin Targeting in Central Neurons J. Neurosci., May 24, 2017 • 37(21):5232–5249 • 5233 pocampus (Chen et al., 2010; Shamir et al., 2012) and critical In this study, we delineated general principles underlying the period plasticity in the visual cortex (Gu et al., 2016; Sun et al., relationship between domain structure, subcellular distribution, 2016). NRGs are encoded by four genes, of which nrg1–3 are and ectodomain shedding of major NRG isoforms in central neu- expressed in the nervous system. All NRGs share an EGF-like rons, including NRG1 Types I/II, NRG2, and NRG3. Our data domain that mediates receptor binding and initiation of down- show that single-pass NRGs share the same subcellular targeting stream signaling. NRG1 isoform diversity results from the use of and NMDAR-dependent ectodomain shedding properties, whereas multiple promoters that give rise to unique amino-terminal the dual-pass proteins CRD-NRG1 and NRG3 accumulate as sequences of NRG Types I–VI, and by alternative splicing of se- processed proteins on axons through juxtracrine interactions quences encoding both the extracellular and intracellular do- with ErbB4. Furthermore, processing of single-pass NRGs is me- mains (Falls, 2003; Steinthorsdottir et al., 2004). Proforms of diated by metalloproteinases, whereas dual-pass NRGs are pro- canonical NRGs, such as NRG1 Types I/II and NRG2, harbor a cessed by BACE. Together, these findings establish a rational single transmembrane pass (TMC) downstream of the EGF-like basis to understand NRG isoform diversity and function in cell motif that separates the amino-terminal extracellular domain biological terms. (ECD) from the carboxyl-terminal intracellular domain (ICD). They additionally contain an immunoglobulin-like (Ig) motif that mediates interactions with heparan sulfate proteoglycans in Materials and Methods the extracellular matrix (Loeb and Fischbach, 1995). Ig-NRGs Animals. Sprague Dawley rats of either sex were used for tissue culture shed their ectodomains upon proteolytic processing near the and RNA analysis. Wild-type C57BL/6J mice of either sex were used for immunohistochemistry and ISH. Animals were treated in accordance TMC, which then interact with ErbB receptors in paracrine man- with National Institutes of Health Animal Welfare guidelines. All proce- ner. By contrast, NRG1 isoforms transcribed from the Type III dures were approved by the National Institute of Child Health and promoter lack the Ig-like motif and instead contain a cysteine- Human Development Animal Care and User Committee. rich domain (CRD) near their amino terminus that serves as a Antibodies. Antibodies included the following: rabbit monoclonal second transmembrane domain (TMN). As a result, CRD-NRG1 mAB11 against NRG2 (Vullhorst et al., 2015); mouse monoclonal remains cell-attached after cleavage and signals in juxtacrine against Ankyrin G (clone N106/65; NeuroMab); rabbit polyclonal cus- fashion (Wang et al., 2001). NRG3, whose mode of signaling has tom antibody 5721 against Erbb4 (for immunization strategy, see Vull- not been reported, lacks both Ig-like and CRD motifs but in- horst et al., 2009); mouse monoclonal against Kv2.1 (clone K89/34; cludes a stretch of hydrophobic residues near its amino terminus NeuroMab); rabbit polyclonal against NRG1 (SC-348; Santa Cruz Bio- (Zhang et al., 1997). technology); mouse monoclonal against V5 tag (clone SV-Pk1; Bio- Rad); mouse monoclonal against HA tag (clone 16B12; Abcam); mouse Historically, the relationship between domain organization, monoclonal against PSD95 (clone 7E3-1B8; Thermo Fisher); rat signaling mode, and biological function has been most exten- monoclonal against GFP (clone GF090R; Nacalai Tesque); guinea pig sively explored for CRD-NRG1. In particular, juxtacrine interac- polyclonal against parvalbumin (Synaptic Systems); and guinea pig tions between CRD-NRG1 on sensory neuron or motorneuron polyclonal against vesicular acetylcholine transporter (vAChT; Syn- axons and ErbB2/3 receptors on glial cells are essential for Schwann aptic Systems). cell development and functional maturation (Garratt et al., 2000; Generation of an attenuated CMV promoter to drive low-level NRG Nave and Salzer, 2006), and mice lacking this isoform exhibit expression in transfected hippocampal neurons. To attain low to moderate deficient myelination of peripheral nerves resulting in neonatal NRG expression levels in transfected cultured neurons, the 586 bp wild- lethality (Wolpowitz et al., 2000). Axonal accumulation of CRD- type CMV promoter was “gutted” to lower its transcriptional output, NRG1 has therefore served as a general paradigm for subcellular following a previously described strategy (Watanabe and Mitchison, 2002). Briefly, a 434 bp internal fragment was removed from the
Recommended publications
  • Signalling Between Microvascular Endothelium and Cardiomyocytes Through Neuregulin Downloaded From
    Cardiovascular Research (2014) 102, 194–204 SPOTLIGHT REVIEW doi:10.1093/cvr/cvu021 Signalling between microvascular endothelium and cardiomyocytes through neuregulin Downloaded from Emily M. Parodi and Bernhard Kuhn* Harvard Medical School, Boston Children’s Hospital, 300 Longwood Avenue, Enders Building, Room 1212, Brookline, MA 02115, USA Received 21 October 2013; revised 23 December 2013; accepted 10 January 2014; online publish-ahead-of-print 29 January 2014 http://cardiovascres.oxfordjournals.org/ Heterocellular communication in the heart is an important mechanism for matching circulatory demands with cardiac structure and function, and neuregulins (Nrgs) play an important role in transducing this signal between the hearts’ vasculature and musculature. Here, we review the current knowledge regarding Nrgs, explaining their roles in transducing signals between the heart’s microvasculature and cardiomyocytes. We highlight intriguing areas being investigated for developing new, Nrg-mediated strategies to heal the heart in acquired and congenital heart diseases, and note avenues for future research. ----------------------------------------------------------------------------------------------------------------------------------------------------------- Keywords Neuregulin Heart Heterocellular communication ErbB -----------------------------------------------------------------------------------------------------------------------------------------------------------† † † This article is part of the Spotlight Issue on: Heterocellular signalling
    [Show full text]
  • The Epidermal Growth Factor Receptor Family As a Central Element for Cellular Signal Transduction and Diversification
    Endocrine-Related Cancer (2001) 8 11–31 The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification N Prenzel, O M Fischer, S Streit, S Hart and A Ullrich Max-Planck Institut fu¨r Biochemie, Department of Molecular Biology, Am Klopferspitz 18A, 82152 Martinsried, Germany (Requests for offprints should be addressed to A Ullrich; Email: [email protected]) Abstract Homeostasis of multicellular organisms is critically dependent on the correct interpretation of the plethora of signals which cells are exposed to during their lifespan. Various soluble factors regulate the activation state of cellular receptors which are coupled to a complex signal transduction network that ultimately generates signals defining the required biological response. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases represents both key regulators of normal cellular development as well as critical players in a variety of pathophysiological phenomena. The aim of this review is to give a broad overview of signal transduction networks that are controlled by the EGFR superfamily of receptors in health and disease and its application for target-selective therapeutic intervention. Since the EGFR and HER2 were recently identified as critical players in the transduction of signals by a variety of cell surface receptors, such as G-protein-coupled receptors and integrins, our special focus is the mechanisms and significance of the interconnectivity between heterologous signalling systems. Endocrine-Related Cancer (2001) 8 11–31 Introduction autophosphorylation of cytoplasmic tyrosine residues (reviewed in Ullrich & Schlessinger 1990, Heldin 1995, Cell surface receptors integrate a multitude of extracellular Alroy & Yarden 1997).
    [Show full text]
  • Regulation of Adipose Tissue Function and Metabolic Homeostasis
    REGULATION OF ADIPOSE TISSUE FUNCTION AND METABOLIC HOMEOSTASIS by Guoxiao Wang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in the University of Michigan 2014 Doctoral committee: Associate Professor Jiandie D. Lin, Chair Associate Professor Peter Dempsey Professor Ormond MacDougald Professor Liangyou Rui Professor Alan R. Saltiel © Guoxiao Wang 2014 DEDICATION To my parents and my husband, for their unconditional love ii ACKNOWLEDGEMENTS I would like to give special thanks to my mentor Jiandie Lin, who inspires confidence, enhances criticism and drives me forward. He bears all the virtues of a good mentor, always available to students despite the tremendous demands on his time. By actively doing research himself, he led us from the front and served as a role model. He has created a lab that is scientifically intense yet nurturing. He celebrates everybody’s success and respects individual difference, allowing us to “smell the rose”. I also would like to thank Siming Li, senior research staff in our lab, who has provided tremendous help from the start of my rotation and throughout my thesis research. I want to thank all my labmates, for the help I receive and friendship I enjoy. Thank you Xuyun Zhao and Zhuoxian Meng for help on our collaborative projects. Thank you Zhimin Chen and Yuanyuan Xiao for sharing resources and ideas that moves my project forward. Thank you Zoharit Cozacov for being such a terrific technician. And thank you Qi Yu and Lin Wang for providing common reagents to allow the lab to run smoothly.
    [Show full text]
  • Effects of Neuregulin 3 Genotype on Human Prefrontal Cortex Physiology
    The Journal of Neuroscience, January 15, 2014 • 34(3):1051–1056 • 1051 Brief Communications Effects of Neuregulin 3 Genotype on Human Prefrontal Cortex Physiology Heike Tost,1,2 Joseph H. Callicott,1 Roberta Rasetti,1 Radhakrishna Vakkalanka,1,3 Venkata S. Mattay,1,3 Daniel R. Weinberger,1,3,4* and Amanda J. Law1,5* 1Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, 2Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 61859 Mannheim, Germany, 3Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland 21205, 4Departments of Psychiatry, Neurology, and Neuroscience and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, and 5Departments of Psychiatry and Cell and Developmental Biology, University of Colorado, School of Medicine, Aurora, Colorado 80045 The neuregulin 3 gene (NRG3) plays pleiotropic roles in neurodevelopment and is a putative susceptibility locus for schizophrenia. Specifically, the T allele of NRG3 rs10748842 has been associated with illness risk, altered cognitive function, and the expression of a novel splice isoform in prefrontal cortex (PFC), but the neural system effects are unexplored. Here, we report an association between rs10748842 and PFC physiology as measured by functional magnetic resonance imaging of human working memory performance, where a convincing link between increased genetic risk for schizophrenia and increased activation in some PFC areas has been established. In 410controlindividuals(195males,215females),wedetectedahighlysignificanteffectofNRG3genotypemanifestingasanunanticipated increase in ventrolateral PFC activation in nonrisk-associated C allele carriers.
    [Show full text]
  • The Erbb Receptor Tyrosine Family As Signal Integrators
    Endocrine-Related Cancer (2001) 8 151–159 The ErbB receptor tyrosine family as signal integrators N E Hynes, K Horsch, M A Olayioye and A Badache Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland (Requests for offprints should be addressed to N E Hynes, Friedrich Miescher Institute, R-1066.206, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. Email: [email protected]) (M A Olayioye is now at The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria 3050, Australia) Abstract ErbB receptor tyrosine kinases (RTKs) and their ligands have important roles in normal development and in human cancer. Among the ErbB receptors only ErbB2 has no direct ligand; however, ErbB2 acts as a co-receptor for the other family members, promoting high affinity ligand binding and enhancement of ligand-induced biological responses. These characteristics demonstrate the central role of ErbB2 in the receptor family, which likely explains why it is involved in the development of many human malignancies, including breast cancer. ErbB RTKs also function as signal integrators, cross-regulating different classes of membrane receptors including receptors of the cytokine family. Cross-regulation of ErbB RTKs and cytokines receptors represents another mechanism for controlling and enhancing tumor cell proliferation. Endocrine-Related Cancer (2001) 8 151–159 Introduction The EGF-related peptide growth factors The epidermal growth factor (EGF) or ErbB family of type ErbB receptors are activated by ligands, known as the I receptor tyrosine kinases (RTKs) has four members:EGF EGF-related peptide growth factors (reviewed in Peles & receptor, also termed ErbB1/HER1, ErbB2/Neu/HER2, Yarden 1993, Riese & Stern 1998).
    [Show full text]
  • ( 12 ) United States Patent
    US010428349B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 428 ,349 B2 DeRosa et al . (45 ) Date of Patent: Oct . 1 , 2019 ( 54 ) MULTIMERIC CODING NUCLEIC ACID C12N 2830 / 50 ; C12N 9 / 1018 ; A61K AND USES THEREOF 38 / 1816 ; A61K 38 /45 ; A61K 38/ 44 ; ( 71 ) Applicant: Translate Bio , Inc ., Lexington , MA A61K 38 / 177 ; A61K 48 /005 (US ) See application file for complete search history . (72 ) Inventors : Frank DeRosa , Lexington , MA (US ) ; Michael Heartlein , Lexington , MA (56 ) References Cited (US ) ; Daniel Crawford , Lexington , U . S . PATENT DOCUMENTS MA (US ) ; Shrirang Karve , Lexington , 5 , 705 , 385 A 1 / 1998 Bally et al. MA (US ) 5 ,976 , 567 A 11/ 1999 Wheeler ( 73 ) Assignee : Translate Bio , Inc ., Lexington , MA 5 , 981, 501 A 11/ 1999 Wheeler et al. 6 ,489 ,464 B1 12 /2002 Agrawal et al. (US ) 6 ,534 ,484 B13 / 2003 Wheeler et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 , 815 ,432 B2 11/ 2004 Wheeler et al. patent is extended or adjusted under 35 7 , 422 , 902 B1 9 /2008 Wheeler et al . 7 , 745 ,651 B2 6 / 2010 Heyes et al . U . S . C . 154 ( b ) by 0 days. 7 , 799 , 565 B2 9 / 2010 MacLachlan et al. (21 ) Appl. No. : 16 / 280, 772 7 , 803 , 397 B2 9 / 2010 Heyes et al . 7 , 901, 708 B2 3 / 2011 MacLachlan et al. ( 22 ) Filed : Feb . 20 , 2019 8 , 101 ,741 B2 1 / 2012 MacLachlan et al . 8 , 188 , 263 B2 5 /2012 MacLachlan et al . (65 ) Prior Publication Data 8 , 236 , 943 B2 8 /2012 Lee et al .
    [Show full text]
  • A Bioinformatics Model of Human Diseases on the Basis Of
    SUPPLEMENTARY MATERIALS A Bioinformatics Model of Human Diseases on the basis of Differentially Expressed Genes (of Domestic versus Wild Animals) That Are Orthologs of Human Genes Associated with Reproductive-Potential Changes Vasiliev1,2 G, Chadaeva2 I, Rasskazov2 D, Ponomarenko2 P, Sharypova2 E, Drachkova2 I, Bogomolov2 A, Savinkova2 L, Ponomarenko2,* M, Kolchanov2 N, Osadchuk2 A, Oshchepkov2 D, Osadchuk2 L 1 Novosibirsk State University, Novosibirsk 630090, Russia; 2 Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; * Correspondence: [email protected]. Tel.: +7 (383) 363-4963 ext. 1311 (M.P.) Supplementary data on effects of the human gene underexpression or overexpression under this study on the reproductive potential Table S1. Effects of underexpression or overexpression of the human genes under this study on the reproductive potential according to our estimates [1-5]. ↓ ↑ Human Deficit ( ) Excess ( ) # Gene NSNP Effect on reproductive potential [Reference] ♂♀ NSNP Effect on reproductive potential [Reference] ♂♀ 1 increased risks of preeclampsia as one of the most challenging 1 ACKR1 ← increased risk of atherosclerosis and other coronary artery disease [9] ← [3] problems of modern obstetrics [8] 1 within a model of human diseases using Adcyap1-knockout mice, 3 in a model of human health using transgenic mice overexpressing 2 ADCYAP1 ← → [4] decreased fertility [10] [4] Adcyap1 within only pancreatic β-cells, ameliorated diabetes [11] 2 within a model of human diseases
    [Show full text]
  • Roles of Neuregulin1 in Neuromuscular Junction Development Jiajing Wang Wayne State University
    Wayne State University Wayne State University Dissertations 1-2-2013 Roles Of Neuregulin1 In Neuromuscular Junction Development Jiajing Wang Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Wang, Jiajing, "Roles Of Neuregulin1 In Neuromuscular Junction Development" (2013). Wayne State University Dissertations. Paper 807. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. ROLES OF NEUREGULIN1 IN NEUROMUSCULAR JUNCTION DEVELOPMENT by JIAJING WANG DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2013 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved by: ___________________________________ Advisor Date ___________________________________ ___________________________________ ___________________________________ © COPYRIGHT BY JIAJING WANG 2013 All Rights Reserved DEDICATION This work is dedicated to my parents, Bofang Wang and Liping Jin. It is their unconditional love, understanding, trust, and encouragement during all these years of study that motivates me to achieve my dream. Without their support, I would not be where I am. I owe my profound gratitude and deepest appreciation to them. ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Jeffrey Loeb, for giving me the opportunity to work on the spectrum of projects. Without his mentorship, guidance, and both optimism and criticism, the thesis would not have been completed. I would also like to thank my committee members, Dr. Gregory Kapatos, Dr. Alexander Gow, and Dr. Rodrigo Andrade for their invaluable comments and inputs.
    [Show full text]
  • Neuregulin 3 (NRG3) As a Susceptibility Gene in a Schizophrenia Subtype with Florid Delusions and Relatively Spared Cognition
    Molecular Psychiatry (2011) 16, 860–866 & 2011 Macmillan Publishers Limited All rights reserved 1359-4184/11 www.nature.com/mp ORIGINAL ARTICLE Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition B Morar1, M Dragovic´2, FAV Waters2, D Chandler1, L Kalaydjieva1,3 and A Jablensky2,3 1Centre for Medical Research/Western Australian Institute for Medical Research, The University of Western Australia, Perth, WA, Australia and 2Centre for Clinical Research in Neuropsychiatry and School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, WA, Australia Linkage of 10q22-q23 to schizophrenia and the recently reported association of Neuregulin 3 (NRG3) polymorphisms with high ‘delusion factor’ scores led us to attempt replication and further refinement of these findings in a sample of 411 schizophrenic patients and 223 nonpsychiatric control subjects. Using quantitative cognitive traits, patients were grouped into a cluster with pervasive cognitive deficit (CD) and a cluster with relatively spared cognition (CS). We found a significant association between rs6584400 and schizophrenia, with a trend for rs10883866. Post hoc analysis revealed that this result was mainly due to the CS cluster, characterized by elevated scores on Schneiderian first-rank symptoms, salience of complex delusions and positive thought disorder—thus closely related to the ‘delusion factor’. In addition, both rs6584400 and rs10883866 were associated with the degraded-stimulus continuous performance task in which ‘risk’ alleles were associated with better than average performance in patients and worse performance in controls. This suggests that NRG3 may be modulating early attentional processes for perceptual sensitivity and vigilance, with opposite effects in affected individuals and healthy controls.
    [Show full text]
  • Akt-Mediated Survival of Oligodendrocytes Induced by Neuregulins
    The Journal of Neuroscience, October 15, 2000, 20(20):7622–7630 Akt-Mediated Survival of Oligodendrocytes Induced by Neuregulins Ana I. Flores,1 Barbara S. Mallon,1 Takashi Matsui,2 Wataru Ogawa,3 Anthony Rosenzweig,2 Takashi Okamoto,1 and Wendy B. Macklin1 1Department of Neurosciences, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, 2Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02139, and 3Second Department of Internal Medicine, Kobe University School of Medicine, Chuo-ku, Kobe 650–0017, Japan Neuregulins have been implicated in a number of events in cells heregulin in glial cells, BAD was overexpressed in C6 glioma in the oligodendrocyte lineage, including enhanced survival, mi- cells. In these cells, heregulin induced phosphorylation of BAD at tosis, migration, and differentiation. At least two signaling path- Ser 136. Apoptosis of oligodendrocyte progenitor cells induced by ways have been shown to be involved in neuregulin signaling: the growth factor deprivation was effectively blocked by heregulin in phosphatidylinositol (PI)-3 kinase and the mitogen-activated pro- a wortmannin-sensitive manner. Overexpression of dominant tein kinase pathways. In the present studies, we examined the negative Akt but not of wild-type Akt by adenoviral gene transfer signaling pathway involved in the survival function of heregulin, in primary cultures of both oligodendrocytes and their progeni- focusing on heregulin-induced changes in Akt activity
    [Show full text]
  • Growth Factors in Multiple Myeloma
    Mahtouk et al. BMC Cancer 2010, 10:198 http://www.biomedcentral.com/1471-2407/10/198 RESEARCH ARTICLE Open Access GrowthResearch article factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays Karène Mahtouk1, Jérôme Moreaux1,2, Dirk Hose3,4, Thierry Rème1,2, Tobias Meißner3, Michel Jourdan1, Jean François Rossi1,2,5, Steven T Pals6, Hartmut Goldschmidt3,4 and Bernard Klein*1,2,5 Abstract Background: Multiple myeloma (MM) is characterized by a strong dependence of the tumor cells on their microenvironment, which produces growth factors supporting survival and proliferation of myeloma cells (MMC). In the past few years, many myeloma growth factors (MGF) have been described in the literature. However, their relative importance and the nature of the cells producing MGF remain unidentified for many of them. Methods: We have analysed the expression of 51 MGF and 36 MGF receptors (MGFR) using Affymetrix microarrays throughout normal plasma cell differentiation, in MMC and in cells from the bone marrow (BM) microenvironment (CD14, CD3, polymorphonuclear neutrophils, stromal cells and osteoclasts). Results: 4/51 MGF and 9/36 MGF-receptors genes were significantly overexpressed in plasmablasts (PPC) and BM plasma cell (BMPC) compared to B cells whereas 11 MGF and 11 MGFR genes were overexpressed in BMPC compared to PPC. 3 MGF genes (AREG, NRG3, Wnt5A) and none of the receptors were significantly overexpressed in MMC versus BMPC. Furthermore, 3/51 MGF genes were overexpressed in MMC compared to the the BM microenvironment whereas 22/51 MGF genes were overexpressed in one environment subpopulation compared to MMC.
    [Show full text]
  • Gene Regulatory Networks Controlling Differentiation, Survival, and Diversification of Hypothalamic Lhx6-Expressing Gabaergic Neurons
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.21.106963; this version posted August 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons. Authors: Dong Won Kim1, Kai Liu1,10, Zoe Qianyi Wang1, Yi Stephanie Zhang1, Abhijith Bathini1, Matthew P Brown1, Sonia Hao Lin1, Parris Whitney Washington1, Changyu Sun1, Susan Lindtner7, Bora Lee8, Hong Wang1, Tomomi Shimogori9, John L.R. Rubenstein7, Seth Blackshaw1-6 Affiliations: 1Solomon H. Snyder Department of Neuroscience, 2Department of Ophthalmology, 3Department of Neurology, 4Center for Human Systems Biology, 5Institute for Cell Engineering, 6Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA, 7Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA, 8Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea, 9RIKEN Center for Brain Science, Laboratory for Molecular Mechanisms of Brain Development, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. 10Present address: Genentech, South San Francisco, CA 94080. Address all correspondence to [email protected] (S.B.) Abstract: GABAergic neurons of the hypothalamus regulate many innate behaviors, but little is known about the mechanisms that control their development. We previously identified hypothalamic neurons that express the LIM homeodomain transcription factor Lhx6, a master regulator of cortical interneuron development, as sleep- promoting. In contrast to telencephalic interneurons, hypothalamic Lhx6 neurons do not undergo long-distance tangential migration and do not express cortical interneuronal markers such as Pvalb.
    [Show full text]