WO 2010/144358 Al

Total Page:16

File Type:pdf, Size:1020Kb

WO 2010/144358 Al (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 16 December 2010 (16.12.2010) WO 2010/144358 Al (51) International Patent Classification: (74) Agent: GATTARI, Patrick, G.; McDonnell Boehnen GOlN 33/68 (2006.01) GOlN 33/52 (2006.01) Hulbert & Berghoff LLP, 300 South Wacker Drive, Suite 3100, Chicago, IL 60606 (US). (21) International Application Number: PCT/US2010/037613 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 7 June 2010 (07.06.2010) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/185,1 94 8 June 2009 (08.06.2009) US NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (71) Applicant (for all designated States except US): SIN- TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. GULEX, INC. [US/US]; 1650 Harbor Bay Parkway, Suite 200, Alameda, CA 94502-3012 (US). (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (72) Inventors; and GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (75) Inventors/Applicants (for US only): GOIX, Philippe, J. ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, [US/US]; 210 Sunnyside Avenue, Piedmont, CA 946 11 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (US). PUSKAS, Robert [US/US]; 752 Sherwick Terrace, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Manchester, MO 63021 (US). TODD, John [US/US]; LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, 1096 Orchard Road, Lafayette, CA 94549 (US). LIV¬ SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, INGSTON, Richard [US/US]; 468 Florence Avenue, GW, ML, MR, NE, SN, TD, TG). Webster Groves, MO 63 119 (US). HELD, Douglas [US/ US]; 1219 Weatherton Place, Ballwin, MO 63021 (US). Published: AGEE, Sara [US/US]; 15 17 6th Street, Berkeley, CA — with international search report (Art. 21(3)) 94710 (US). (54) Title: HIGHLY SENSITIVE BIOMARKER PANELS (57) Abstract: Cardiovascular disease, e.g., congestive heart failure, is often first diagnosed after the onset of clinical symptoms, eliminating potential for early intervention. The invention provides a multi-marker immunoassay, including cardiac pathology and vascular inflammation biomarkers, yielding a more sensitive assay for early detection of CHF in plasma. A panel consisting of car- diac pathology (cTnl, BNP) and vascular inflammation (IL-6, TNFα, IL- 17a) biomarkers provided a sensitivity of 94% for associ- ation with CHF. HIGHLY SENSITIVE BIOMARKER PANELS BACKGROUND OF THE INVENTION [0001] Cardiovascular disease is an abnormal function of the heart and/or blood vessels. Included under this designation are such diverse medical conditions as coronary artery disease, congestive heart failure, arrhythmia, atherosclerosis, hypertension, stroke, cerebrovascular disease, peripheral vascular disease and myocardial infarction. In the United States, CVD is a major cause of death. About 40 percent of all deaths in 1997, or about one million people, were attributed to cardiovascular disease. There are an estimated 62 million people with cardiovascular disease and 50 million people with hypertension in this country. [0002] Cardiovascular disease is a progressive process with etiologies in both cardiac muscle (cardio- pathology) and vascular inflammation. The disease process follows a continuum from early onset mild vascular inflammation to severe acute events such as acute myocardial infarction or chronic events such as heart failure. Patients with well recognized physical conditions such as hypertension, obesity, diabetes, metabolic syndrome, hypercholesterolemia are at varying degrees of risk for developing CVD. A challenge facing clinicians who have patients presenting with CVD risk factors is understanding their degree of risk, developing the appropriate treatment plan and then monitoring the patient for improvements in disease risk. [0003] Ample studies have provided compelling evidence that CVD is largely preventable. The causes of cardiovascular disease range from structural defects, to infection, inflammation, environment and genetics. While some risk factors cannot be modified (genetics, age, gender), there are a number of risk factors that can be addressed through lifestyle changes or medically. These controllable risk factors include cigarette smoking, high blood pressure, obesity, diabetes, physical inactivity, and high blood cholesterol level. By the time that heart problems are detected, the underlying cause (atherosclerosis) is usually quite advanced, having progressed for decades. There is therefore increased emphasis on preventing atherosclerosis by modifying risk factors, such as healthy eating, exercise and avoidance of smoking. [0004] CVD, e.g., congestive heart failure (CHF), is often first diagnosed after the onset of clinical symptoms, eliminating potential for early intervention. There is a need for highly sensitive detection of CVD. SUMMARY OF THE INVENTION [0005] In one embodiment, the present invention provides a method for detecting or monitoring a condition in a subject, comprising detecting a first marker in a first sample from the subject and detecting a second marker, wherein the first marker comprises Cardiac Troponin-I (cTnl) or Vascular Endothelial Growth Factor (VEGF), and wherein the limit of detection of the first marker is less than about 20 pg/ml. In some embodiments, the detection of at least one marker comprises contacting the sample with a label for the marker and detecting the presence or absence of the label, wherein detection of the presence of the label indicates the presence of the corresponding marker. In some embodiments, the label comprises a fluorescent moiety, and the detection comprises passing the label through a single molecule detector, wherein the single molecule detector comprises: (a) an electromagnetic radiation source for stimulating the fluorescent moiety; (b) an interrogation space for receiving electromagnetic radiation emitted from the electromagnetic source; and (c) an electromagnetic radiation detector operably connected to the interrogation space for determining an electromagnetic characteristic of the stimulated fluorescent moiety. [0006] In some embodiments, the limit of detection of the first marker ranges from about 10 pg/ml to about 0.01 pg/ml. In some embodiments, the limit of detection of the first marker is less than about 10 pg/ml. In some embodiments, the limit of detection of the first marker is less than about 5 pg/ml. In some embodiments, the limit of detection of the first marker is less than about 1 pg/ml. In some embodiments, the limit of detection of the first marker is less than about 0.5 pg/ml. In some embodiments, the limit of detection of the first marker is less than about 0.1 pg/ml. In some embodiments, the limit of detection of the first marker is less than about 0.05 pg/ml. In some embodiments, the limit of detection of the first marker is less than about 0.01 pg/ml. In some embodiments, the limit of detection of the first marker is less than about 0.005 pg/ml. In some embodiments, the limit of detection of the first marker is less than about 0.001 pg/ml. In some embodiments, the coefficient of variation (CV) of the limit of detection ranges from about 20% to about 1%. In some embodiments, the coefficient of variation (CV) of the limit of detection ranges from about 100% to about 1%. In some embodiments, the coefficient of variation (CV) of the limit of detection ranges from about 75% to about 1%. In some embodiments, the coefficient of variation (CV) of the limit of detection ranges from about 50% to about 1%. In some embodiments, the coefficient of variation (CV) of the limit of detection ranges from about 25% to about 1%. In some embodiments, the coefficient of variation (CV) of the limit of detection ranges from about 20% to about 1%. In some embodiments, the coefficient of variation (CV) of the limit of detection ranges from about 15% to about 1%. In some embodiments, the coefficient of variation (CV) of the limit of detection ranges from about 10% to about 1%. In some embodiments, the coefficient of variation (CV) of the limit of detection ranges from about 5% to about 1%. In some embodiments, the sample size ranges from about 10 µl to about 0.1 µl. In some embodiments, the sample size ranges from about 100 µl to about 0.1 µl. In some embodiments, the sample size ranges from about 75 µl to about 0.1 µl. In some embodiments, the sample size ranges from about 50 µl to about 0.1 µl. In some embodiments, the sample size ranges from about 25 µl to about 0.1 µl. In some embodiments, the sample size ranges from about 20 µl to about 0.1 µl. In some embodiments, the sample size ranges from about 5 µl to about 0.1 µl. In some embodiments, the sample size ranges from about 1 µl to about 0.1 µl. In some embodiments, the sample size is less than about 100 µl. In some embodiments, the sample size is less than about 75 µl. In some embodiments, the sample size is less than about 50 µl. In some embodiments, the sample size is less than about 25 µl.
Recommended publications
  • Signalling Between Microvascular Endothelium and Cardiomyocytes Through Neuregulin Downloaded From
    Cardiovascular Research (2014) 102, 194–204 SPOTLIGHT REVIEW doi:10.1093/cvr/cvu021 Signalling between microvascular endothelium and cardiomyocytes through neuregulin Downloaded from Emily M. Parodi and Bernhard Kuhn* Harvard Medical School, Boston Children’s Hospital, 300 Longwood Avenue, Enders Building, Room 1212, Brookline, MA 02115, USA Received 21 October 2013; revised 23 December 2013; accepted 10 January 2014; online publish-ahead-of-print 29 January 2014 http://cardiovascres.oxfordjournals.org/ Heterocellular communication in the heart is an important mechanism for matching circulatory demands with cardiac structure and function, and neuregulins (Nrgs) play an important role in transducing this signal between the hearts’ vasculature and musculature. Here, we review the current knowledge regarding Nrgs, explaining their roles in transducing signals between the heart’s microvasculature and cardiomyocytes. We highlight intriguing areas being investigated for developing new, Nrg-mediated strategies to heal the heart in acquired and congenital heart diseases, and note avenues for future research. ----------------------------------------------------------------------------------------------------------------------------------------------------------- Keywords Neuregulin Heart Heterocellular communication ErbB -----------------------------------------------------------------------------------------------------------------------------------------------------------† † † This article is part of the Spotlight Issue on: Heterocellular signalling
    [Show full text]
  • The Epidermal Growth Factor Receptor Family As a Central Element for Cellular Signal Transduction and Diversification
    Endocrine-Related Cancer (2001) 8 11–31 The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification N Prenzel, O M Fischer, S Streit, S Hart and A Ullrich Max-Planck Institut fu¨r Biochemie, Department of Molecular Biology, Am Klopferspitz 18A, 82152 Martinsried, Germany (Requests for offprints should be addressed to A Ullrich; Email: [email protected]) Abstract Homeostasis of multicellular organisms is critically dependent on the correct interpretation of the plethora of signals which cells are exposed to during their lifespan. Various soluble factors regulate the activation state of cellular receptors which are coupled to a complex signal transduction network that ultimately generates signals defining the required biological response. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases represents both key regulators of normal cellular development as well as critical players in a variety of pathophysiological phenomena. The aim of this review is to give a broad overview of signal transduction networks that are controlled by the EGFR superfamily of receptors in health and disease and its application for target-selective therapeutic intervention. Since the EGFR and HER2 were recently identified as critical players in the transduction of signals by a variety of cell surface receptors, such as G-protein-coupled receptors and integrins, our special focus is the mechanisms and significance of the interconnectivity between heterologous signalling systems. Endocrine-Related Cancer (2001) 8 11–31 Introduction autophosphorylation of cytoplasmic tyrosine residues (reviewed in Ullrich & Schlessinger 1990, Heldin 1995, Cell surface receptors integrate a multitude of extracellular Alroy & Yarden 1997).
    [Show full text]
  • Mechanism of Satellite Cell Regulation by Myokines
    J Phys Fitness Sports Med, 6 (5): 311-316 (2017) DOI: 10.7600/jpfsm.6.311 JPFSM: Review Article Mechanism of satellite cell regulation by myokines Yasuro Furuichi* and Nobuharu L. Fujii Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 193-0397, Japan Received: July 19, 2017 / Accepted: August 7, 2017 Abstract Skeletal muscle stem cells, known as satellite cells, participate in postnatal skeletal muscle growth, regeneration, and hypertrophy. They are quiescent in the resting state, but are activated after muscle injury, and subsequently replicate and fuse into existing myofibers. The behavior of satellite cells during muscle regeneration is regulated by extrinsic factors, such as the extracellular matrix, mechanical stimuli, and soluble factors. Myokines, muscle-derived secretory factors, are important regulators of satellite cell activation, proliferation, and differen- tiation. It is well known that muscle injury induces the release of various growth factors from myofibers, and these growth factors affect satellite cells. It has recently been shown that myo- kines secreted from myofibers without cell damage also regulate satellite cell functions. Here, we summarize myokines with known roles in the regulation of satellite cells and the mecha- nism underlying this regulatory process. Keywords : secretion, myogenesis, muscle regeneration regulation, but there are also molecules related to muscle Introduction regeneration or plasticity. In this review, we introduce the Skeletal muscle is a unique tissue that has a remarkable reported myokines involved in the regulation of satellite ability to regenerate after injury. In response to tissue cell behavior and its molecular mechanism.
    [Show full text]
  • Regulation of Adipose Tissue Function and Metabolic Homeostasis
    REGULATION OF ADIPOSE TISSUE FUNCTION AND METABOLIC HOMEOSTASIS by Guoxiao Wang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in the University of Michigan 2014 Doctoral committee: Associate Professor Jiandie D. Lin, Chair Associate Professor Peter Dempsey Professor Ormond MacDougald Professor Liangyou Rui Professor Alan R. Saltiel © Guoxiao Wang 2014 DEDICATION To my parents and my husband, for their unconditional love ii ACKNOWLEDGEMENTS I would like to give special thanks to my mentor Jiandie Lin, who inspires confidence, enhances criticism and drives me forward. He bears all the virtues of a good mentor, always available to students despite the tremendous demands on his time. By actively doing research himself, he led us from the front and served as a role model. He has created a lab that is scientifically intense yet nurturing. He celebrates everybody’s success and respects individual difference, allowing us to “smell the rose”. I also would like to thank Siming Li, senior research staff in our lab, who has provided tremendous help from the start of my rotation and throughout my thesis research. I want to thank all my labmates, for the help I receive and friendship I enjoy. Thank you Xuyun Zhao and Zhuoxian Meng for help on our collaborative projects. Thank you Zhimin Chen and Yuanyuan Xiao for sharing resources and ideas that moves my project forward. Thank you Zoharit Cozacov for being such a terrific technician. And thank you Qi Yu and Lin Wang for providing common reagents to allow the lab to run smoothly.
    [Show full text]
  • Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications
    International Journal of Molecular Sciences Review Physical Exercise and Myokines: Relationships with Sarcopenia and Cardiovascular Complications Sandra Maria Barbalho 1,2,3,* , Uri Adrian Prync Flato 1,2 , Ricardo José Tofano 1,2, Ricardo de Alvares Goulart 1, Elen Landgraf Guiguer 1,2,3 , Cláudia Rucco P. Detregiachi 1 , Daniela Vieira Buchaim 1,4, Adriano Cressoni Araújo 1,2 , Rogério Leone Buchaim 1,5, Fábio Tadeu Rodrigues Reina 1, Piero Biteli 1, Daniela O. B. Rodrigues Reina 1 and Marcelo Dib Bechara 2 1 Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenue Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; urifl[email protected] (U.A.P.F.); [email protected] (R.J.T.); [email protected] (R.d.A.G.); [email protected] (E.L.G.); [email protected] (C.R.P.D.); [email protected] (D.V.B.); [email protected] (A.C.A.); [email protected] (R.L.B.); [email protected] (F.T.R.R.); [email protected] (P.B.); [email protected] (D.O.B.R.R.) 2 School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17506-000, São Paulo, Brazil; [email protected] 3 Department of Biochemistry and Nutrition, Food Technology School, Marília 17525-902, São Paulo, Brazil 4 Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, São Paulo, Brazil 5 Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB–USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012901, São Paulo, Brazil * Correspondence: [email protected]; Tel.: +55-14-99655-3190 Received: 6 May 2020; Accepted: 19 May 2020; Published: 20 May 2020 Abstract: Skeletal muscle is capable of secreting different factors in order to communicate with other tissues.
    [Show full text]
  • Effects of Neuregulin 3 Genotype on Human Prefrontal Cortex Physiology
    The Journal of Neuroscience, January 15, 2014 • 34(3):1051–1056 • 1051 Brief Communications Effects of Neuregulin 3 Genotype on Human Prefrontal Cortex Physiology Heike Tost,1,2 Joseph H. Callicott,1 Roberta Rasetti,1 Radhakrishna Vakkalanka,1,3 Venkata S. Mattay,1,3 Daniel R. Weinberger,1,3,4* and Amanda J. Law1,5* 1Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, 2Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 61859 Mannheim, Germany, 3Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, Maryland 21205, 4Departments of Psychiatry, Neurology, and Neuroscience and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, and 5Departments of Psychiatry and Cell and Developmental Biology, University of Colorado, School of Medicine, Aurora, Colorado 80045 The neuregulin 3 gene (NRG3) plays pleiotropic roles in neurodevelopment and is a putative susceptibility locus for schizophrenia. Specifically, the T allele of NRG3 rs10748842 has been associated with illness risk, altered cognitive function, and the expression of a novel splice isoform in prefrontal cortex (PFC), but the neural system effects are unexplored. Here, we report an association between rs10748842 and PFC physiology as measured by functional magnetic resonance imaging of human working memory performance, where a convincing link between increased genetic risk for schizophrenia and increased activation in some PFC areas has been established. In 410controlindividuals(195males,215females),wedetectedahighlysignificanteffectofNRG3genotypemanifestingasanunanticipated increase in ventrolateral PFC activation in nonrisk-associated C allele carriers.
    [Show full text]
  • The Erbb Receptor Tyrosine Family As Signal Integrators
    Endocrine-Related Cancer (2001) 8 151–159 The ErbB receptor tyrosine family as signal integrators N E Hynes, K Horsch, M A Olayioye and A Badache Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland (Requests for offprints should be addressed to N E Hynes, Friedrich Miescher Institute, R-1066.206, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. Email: [email protected]) (M A Olayioye is now at The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria 3050, Australia) Abstract ErbB receptor tyrosine kinases (RTKs) and their ligands have important roles in normal development and in human cancer. Among the ErbB receptors only ErbB2 has no direct ligand; however, ErbB2 acts as a co-receptor for the other family members, promoting high affinity ligand binding and enhancement of ligand-induced biological responses. These characteristics demonstrate the central role of ErbB2 in the receptor family, which likely explains why it is involved in the development of many human malignancies, including breast cancer. ErbB RTKs also function as signal integrators, cross-regulating different classes of membrane receptors including receptors of the cytokine family. Cross-regulation of ErbB RTKs and cytokines receptors represents another mechanism for controlling and enhancing tumor cell proliferation. Endocrine-Related Cancer (2001) 8 151–159 Introduction The EGF-related peptide growth factors The epidermal growth factor (EGF) or ErbB family of type ErbB receptors are activated by ligands, known as the I receptor tyrosine kinases (RTKs) has four members:EGF EGF-related peptide growth factors (reviewed in Peles & receptor, also termed ErbB1/HER1, ErbB2/Neu/HER2, Yarden 1993, Riese & Stern 1998).
    [Show full text]
  • ( 12 ) United States Patent
    US010428349B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 428 ,349 B2 DeRosa et al . (45 ) Date of Patent: Oct . 1 , 2019 ( 54 ) MULTIMERIC CODING NUCLEIC ACID C12N 2830 / 50 ; C12N 9 / 1018 ; A61K AND USES THEREOF 38 / 1816 ; A61K 38 /45 ; A61K 38/ 44 ; ( 71 ) Applicant: Translate Bio , Inc ., Lexington , MA A61K 38 / 177 ; A61K 48 /005 (US ) See application file for complete search history . (72 ) Inventors : Frank DeRosa , Lexington , MA (US ) ; Michael Heartlein , Lexington , MA (56 ) References Cited (US ) ; Daniel Crawford , Lexington , U . S . PATENT DOCUMENTS MA (US ) ; Shrirang Karve , Lexington , 5 , 705 , 385 A 1 / 1998 Bally et al. MA (US ) 5 ,976 , 567 A 11/ 1999 Wheeler ( 73 ) Assignee : Translate Bio , Inc ., Lexington , MA 5 , 981, 501 A 11/ 1999 Wheeler et al. 6 ,489 ,464 B1 12 /2002 Agrawal et al. (US ) 6 ,534 ,484 B13 / 2003 Wheeler et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 , 815 ,432 B2 11/ 2004 Wheeler et al. patent is extended or adjusted under 35 7 , 422 , 902 B1 9 /2008 Wheeler et al . 7 , 745 ,651 B2 6 / 2010 Heyes et al . U . S . C . 154 ( b ) by 0 days. 7 , 799 , 565 B2 9 / 2010 MacLachlan et al. (21 ) Appl. No. : 16 / 280, 772 7 , 803 , 397 B2 9 / 2010 Heyes et al . 7 , 901, 708 B2 3 / 2011 MacLachlan et al. ( 22 ) Filed : Feb . 20 , 2019 8 , 101 ,741 B2 1 / 2012 MacLachlan et al . 8 , 188 , 263 B2 5 /2012 MacLachlan et al . (65 ) Prior Publication Data 8 , 236 , 943 B2 8 /2012 Lee et al .
    [Show full text]
  • A Bioinformatics Model of Human Diseases on the Basis Of
    SUPPLEMENTARY MATERIALS A Bioinformatics Model of Human Diseases on the basis of Differentially Expressed Genes (of Domestic versus Wild Animals) That Are Orthologs of Human Genes Associated with Reproductive-Potential Changes Vasiliev1,2 G, Chadaeva2 I, Rasskazov2 D, Ponomarenko2 P, Sharypova2 E, Drachkova2 I, Bogomolov2 A, Savinkova2 L, Ponomarenko2,* M, Kolchanov2 N, Osadchuk2 A, Oshchepkov2 D, Osadchuk2 L 1 Novosibirsk State University, Novosibirsk 630090, Russia; 2 Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; * Correspondence: [email protected]. Tel.: +7 (383) 363-4963 ext. 1311 (M.P.) Supplementary data on effects of the human gene underexpression or overexpression under this study on the reproductive potential Table S1. Effects of underexpression or overexpression of the human genes under this study on the reproductive potential according to our estimates [1-5]. ↓ ↑ Human Deficit ( ) Excess ( ) # Gene NSNP Effect on reproductive potential [Reference] ♂♀ NSNP Effect on reproductive potential [Reference] ♂♀ 1 increased risks of preeclampsia as one of the most challenging 1 ACKR1 ← increased risk of atherosclerosis and other coronary artery disease [9] ← [3] problems of modern obstetrics [8] 1 within a model of human diseases using Adcyap1-knockout mice, 3 in a model of human health using transgenic mice overexpressing 2 ADCYAP1 ← → [4] decreased fertility [10] [4] Adcyap1 within only pancreatic β-cells, ameliorated diabetes [11] 2 within a model of human diseases
    [Show full text]
  • Gut Microbiota and Regulation of Myokine-Adipokine Function
    Available online at www.sciencedirect.com ScienceDirect Gut microbiota and regulation of myokine-adipokine function 1 1 Francesco Suriano , Matthias Van Hul and Patrice D Cani Both skeletal muscle and adipose tissue are considered as particular interest on how they affect metabolic homeosta- endocrine organs due to their ability to produce and secrete sis of the whole body. several bioactive peptides (e.g. myokines and adipokines). Those bioactive molecules are well known for their capacity to Myokines influence whole-body homeostasis and alterations in their In the body, there are different type of muscles (skeletal, production/secretion are contributing to the development of cardiac,smooth),whichperform different functions based on various metabolic disorders. While it is well accepted that their location. They are mainly responsible for maintaining changes in the composition and functionality of the gut and changing body posture, producing force and motion, microbiota are associated with the onset of several generating heat (both through shivering and non-shivering), pathological disorders (e.g. obesity, diabetes, and cancer), its as well as facilitating movement of internal organs, such as contribution to the regulation of the myokine-adipokine profile the heart, digestive organs, and blood vessels [2,3]. Skeletal and function remains largely unknown. This review will focus on muscle is the largest organ in the human body, accounting for myokines and adipokines with a special interest on their about 30% of body mass in women and 40% in men, though interaction with the gut microbiota. muscle mass is affected by several conditions such as fasting, physical inactivity, cancer, obesity, untreated diabetes, hor- Address monal changes, heart failure, AIDS, chronic obstructive UCLouvain, Universite´ catholique de Louvain, WELBIO - Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research pulmonary disease (COPD), or aging [4].
    [Show full text]
  • Roles of Neuregulin1 in Neuromuscular Junction Development Jiajing Wang Wayne State University
    Wayne State University Wayne State University Dissertations 1-2-2013 Roles Of Neuregulin1 In Neuromuscular Junction Development Jiajing Wang Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Wang, Jiajing, "Roles Of Neuregulin1 In Neuromuscular Junction Development" (2013). Wayne State University Dissertations. Paper 807. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. ROLES OF NEUREGULIN1 IN NEUROMUSCULAR JUNCTION DEVELOPMENT by JIAJING WANG DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2013 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved by: ___________________________________ Advisor Date ___________________________________ ___________________________________ ___________________________________ © COPYRIGHT BY JIAJING WANG 2013 All Rights Reserved DEDICATION This work is dedicated to my parents, Bofang Wang and Liping Jin. It is their unconditional love, understanding, trust, and encouragement during all these years of study that motivates me to achieve my dream. Without their support, I would not be where I am. I owe my profound gratitude and deepest appreciation to them. ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Jeffrey Loeb, for giving me the opportunity to work on the spectrum of projects. Without his mentorship, guidance, and both optimism and criticism, the thesis would not have been completed. I would also like to thank my committee members, Dr. Gregory Kapatos, Dr. Alexander Gow, and Dr. Rodrigo Andrade for their invaluable comments and inputs.
    [Show full text]
  • Neuregulin 3 (NRG3) As a Susceptibility Gene in a Schizophrenia Subtype with Florid Delusions and Relatively Spared Cognition
    Molecular Psychiatry (2011) 16, 860–866 & 2011 Macmillan Publishers Limited All rights reserved 1359-4184/11 www.nature.com/mp ORIGINAL ARTICLE Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition B Morar1, M Dragovic´2, FAV Waters2, D Chandler1, L Kalaydjieva1,3 and A Jablensky2,3 1Centre for Medical Research/Western Australian Institute for Medical Research, The University of Western Australia, Perth, WA, Australia and 2Centre for Clinical Research in Neuropsychiatry and School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, WA, Australia Linkage of 10q22-q23 to schizophrenia and the recently reported association of Neuregulin 3 (NRG3) polymorphisms with high ‘delusion factor’ scores led us to attempt replication and further refinement of these findings in a sample of 411 schizophrenic patients and 223 nonpsychiatric control subjects. Using quantitative cognitive traits, patients were grouped into a cluster with pervasive cognitive deficit (CD) and a cluster with relatively spared cognition (CS). We found a significant association between rs6584400 and schizophrenia, with a trend for rs10883866. Post hoc analysis revealed that this result was mainly due to the CS cluster, characterized by elevated scores on Schneiderian first-rank symptoms, salience of complex delusions and positive thought disorder—thus closely related to the ‘delusion factor’. In addition, both rs6584400 and rs10883866 were associated with the degraded-stimulus continuous performance task in which ‘risk’ alleles were associated with better than average performance in patients and worse performance in controls. This suggests that NRG3 may be modulating early attentional processes for perceptual sensitivity and vigilance, with opposite effects in affected individuals and healthy controls.
    [Show full text]