Channel Morphology and Sediment Transport in Steepland Streams
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measurement of Bedload Transport in Sand-Bed Rivers: a Look at Two Indirect Sampling Methods
Published online in 2010 as part of U.S. Geological Survey Scientific Investigations Report 2010-5091. Measurement of Bedload Transport in Sand-Bed Rivers: A Look at Two Indirect Sampling Methods Robert R. Holmes, Jr. U.S. Geological Survey, Rolla, Missouri, United States. Abstract Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sand- bed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. -
Overview of Landslide Hydrology
water Editorial Overview of Landslide Hydrology Roy C. Sidle 1,2,* , Roberto Greco 3 and Thom Bogaard 4 1 Mountain Societies Research Institute, University of Central Asia, Khorog GBAO 736000, Tajikistan 2 Sustainability Research Centre, University of the Sunshine Coast, 90 Sippy Downs Dr., Sippy Downs 4556, Queensland, Australia 3 Dipartimento di Ingegneria, Università degli Studi della Campania ‘L. Vanvitelli’, via Roma 9, 81031 Aversa (CE), Italy; [email protected] 4 Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +996-770-822-144 Received: 11 January 2019; Accepted: 15 January 2019; Published: 16 January 2019 Most landslides and debris flows worldwide occur during or following periods of rainfall, and many of these have been associated with major disasters causing extensive property damage and loss of life [1–9]. Given concerns about the effects of climate change on precipitation regime, in the future, some mountainous areas may likely experience more landslides with a faster response to rainfall; however, most such projections are weakly based and remain untested [10,11]. Subsurface hydrology is usually the main triggering mechanism of these landslides and associated debris flows. While the effects of hillslope hydrology on runoff generation have been thoroughly studied, much less attention has been paid to these effects on landslide and debris flow initiation. Recent syntheses demonstrate that it is no longer appropriate to view the subsurface as a static media which facilitates the transit of subsurface water, rather a variety of factors affecting the dynamics of subsurface hydrology need to be considered [12,13]. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Sediment Transport and the Genesis Flood — Case Studies Including the Hawkesbury Sandstone, Sydney
Sediment Transport and the Genesis Flood — Case Studies including the Hawkesbury Sandstone, Sydney DAVID ALLEN ABSTRACT The rates at which parts of the geological record have formed can be roughly determined using physical sedimentology independently from other dating methods if current understanding of the processes involved in sedimentology are accurate. Bedform and particle size observations are used here, along with sediment transport equations, to determine rates of transport and deposition in various geological sections. Calculations based on properties of some very extensive rock units suggest that those units have been deposited at rates faster than any observed today and orders of magnitude faster than suggested by radioisotopic dating. Settling velocity equations wrongly suggest that rapid fine particle deposition is impossible, since many experiments and observations (for example, Mt St Helens, mud- flows) demonstrate that the conditions which cause faster rates of deposition than those calculated here are not fully understood. For coarser particles the only parameters that, when varied through reasonable ranges, very significantly affect transport rates are flow velocity and grain diameter. Popular geological models that attempt to harmonize the Genesis Flood with stratigraphy require that, during the Flood, most deposition believed to have occurred during the Palaeozoic and Mesozoic eras would have actually been the result of about one year of geological activity. Flow regimes required for the Flood to have deposited various geological cross- sections have been proposed, but the most reliable estimate of water velocity required by the Flood was attained for a section through the Tasman Fold Belt of Eastern Australia and equalled very approximately 30 ms-1 (100 km h-1). -
The Upper James River
Waterproof The Upper James River The James River originates at the only class I or II rapids making it ideal will need to plan a river trip. This guide A Paddle Guide to the Upper confluence of the Jackson and Cowpasture for canoe or kayak trips at normal water includes locations of boat landings, rivers in Botetourt County and forms levels. The white water section below campsites, major rapids, and unique Virginia’s longest and most famous river. Glasgow includes a class III section for historic points of interests along the way. The upper section of the James River those interested in more technical water. This is a great resource for planning day is very scenic with stunning Blue Ridge trips as well as multi-day canoe camping mountain views. Dam releases on the This paddle guide covers the upper 64 expeditions. Jackson River flow releases ensure the miles section from the start of the James upper James River is typically run able river to the Cushaw Dam, just below all season. The first 60 miles contain Snowden. It includes everything a paddler Using This Map George Washington and Rapids (See River Safety panel for class system) Jefferson National Forrest* 30 Mile markers— numbered from start of the James Park* River counting down stream Landmark These maps have been orientated so that the river always flows from the bottom of the map to the top of the map. This allows paddlers to easily orient themselves in the river in terms of river right and left while paddling downstream. Bridge 1km Distance gauge 0 1mi North indicator Canal Boat launch Small boat launch Commercial campground River flow River Informal camping Appalachian Trail Hiking Trail *All land along river bank is private property unless noted otherwise. -
Sedimentation and Shoaling Work Unit
1 SEDIMENTARY PROCESSES lAND ENVIRONMENTS IIN THE COLUMBIA RIVER ESTUARY l_~~~~~~~~~~~~~~~7 I .a-.. .(.;,, . I _e .- :.;. .. =*I Final Report on the Sedimentation and Shoaling Work Unit of the Columbia River Estuary Data Development Program SEDIMENTARY PROCESSES AND ENVIRONMENTS IN THE COLUMBIA RIVER ESTUARY Contractor: School of Oceanography University of Washington Seattle, Washington 98195 Principal Investigator: Dr. Joe S. Creager School of Oceanography, WB-10 University of Washington Seattle, Washington 98195 (206) 543-5099 June 1984 I I I I Authors Christopher R. Sherwood I Joe S. Creager Edward H. Roy I Guy Gelfenbaum I Thomas Dempsey I I I I I I I - I I I I I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PREFACE The Columbia River Estuary Data Development Program This document is one of a set of publications and other materials produced by the Columbia River Estuary Data Development Program (CREDDP). CREDDP has two purposes: to increase understanding of the ecology of the Columbia River Estuary and to provide information useful in making land and water use decisions. The program was initiated by local governments and citizens who saw a need for a better information base for use in managing natural resources and in planning for development. In response to these concerns, the Governors of the states of Oregon and Washington requested in 1974 that the Pacific Northwest River Basins Commission (PNRBC) undertake an interdisciplinary ecological study of the estuary. At approximately the same time, local governments and port districts formed the Columbia River Estuary Study Taskforce (CREST) to develop a regional management plan for the estuary. PNRBC produced a Plan of Study for a six-year, $6.2 million program which was authorized by the U.S. -
Sediment Transport in the San Francisco Bay Coastal System: an Overview
Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants. -
Stream Restoration, a Natural Channel Design
Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state. -
Effects of Sediment Pulses on Channel Morphology in a Gravel-Bed River
Effects of sediment pulses on channel morphology in a gravel-bed river Daniel F. Hoffman† Emmanuel J. Gabet‡ Department of Geosciences, University of Montana, Missoula, Montana 59802, USA ABSTRACT available to it. The delivery of sediment to riv- channel widening, braiding, and fi ning of bed ers and streams in mountain drainage basins material, followed by coarsening, construction Sediment delivery to stream channels in often comes in large, infrequent pulses from of coarse grained terraces, and formation of mountainous basins is strongly episodic, landslides and debris fl ows (Benda and Dunne, new side channels. After the sediment wave had with large pulses of sediment typically 1997; Gabet and Dunne, 2003). This sediment passed, they observed channel incision down to delivered by infrequent landslides and debris supply regime differs from that of channels an immobile bed and bedrock. Cui et al. (2003) fl ows. Identifying the role of large but rare in lowland environments with a more regular conducted fl ume experiments to investigate sed- sediment delivery events in the evolution of sediment supply and is refl ected in the form iment pulses and found that in a channel with channel morphology and fl uvial sediment and textural composition of the channel and alternate bars, the bed relief decreased with the transport is crucial to an understanding of fl oodplain. Processing large pulses of sediment arrival of the downstream edge of the sediment the development of mountain basins. In July can be slow and leave a lasting legacy on the wave, and increased as the upstream edge of the 2001, intense rainfall triggered numerous valley fl oor. -
Logistic Analysis of Channel Pattern Thresholds: Meandering, Braiding, and Incising
Geomorphology 38Ž. 2001 281–300 www.elsevier.nlrlocatergeomorph Logistic analysis of channel pattern thresholds: meandering, braiding, and incising Brian P. Bledsoe), Chester C. Watson 1 Department of CiÕil Engineering, Colorado State UniÕersity, Fort Collins, CO 80523, USA Received 22 April 2000; received in revised form 10 October 2000; accepted 8 November 2000 Abstract A large and geographically diverse data set consisting of meandering, braiding, incising, and post-incision equilibrium streams was used in conjunction with logistic regression analysis to develop a probabilistic approach to predicting thresholds of channel pattern and instability. An energy-based index was developed for estimating the risk of channel instability associated with specific stream power relative to sedimentary characteristics. The strong significance of the 74 statistical models examined suggests that logistic regression analysis is an appropriate and effective technique for associating basic hydraulic data with various channel forms. The probabilistic diagrams resulting from these analyses depict a more realistic assessment of the uncertainty associated with previously identified thresholds of channel form and instability and provide a means of gauging channel sensitivity to changes in controlling variables. q 2001 Elsevier Science B.V. All rights reserved. Keywords: Channel stability; Braiding; Incision; Stream power; Logistic regression 1. Introduction loads, loss of riparian habitat because of stream bank erosion, and changes in the predictability and vari- Excess stream power may result in a transition ability of flow and sediment transport characteristics from a meandering channel to a braiding or incising relative to aquatic life cyclesŽ. Waters, 1995 . In channel that is characteristically unstableŽ Schumm, addition, braiding and incising channels frequently 1977; Werritty, 1997. -
The Role of Geology in Sediment Supply and Bedload Transport Patterns in Coarse Grained Streams
The Role of Geology in Sediment Supply and Bedload Transport Patterns in Coarse Grained Streams Sandra E. Ryan USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado This paper compares gross differences in rates of bedload sediment moved at bankfull discharges in 19 channels on national forests in the Middle and Southern Rocky Mountains. Each stream has its own “bedload signal,” in that the rate and size of materials transported at bankfull discharge largely reflect the nature of flow and sediment particular to that system. However, when rates of bedload transport were normalized by dividing by the watershed area, the results were similar for many sites. Typically, streams exhibited normalized rates of bedload transport between 0.001 and 0.003 kg s-1 km-2 at bankfull discharges. Given the inherent difficulty of obtaining a reliable estimate of mean rates of bedload transport, the relatively narrow range of values observed for these systems is notable. While many of these sites are underlain by different geologic terrane, they appear to have comparable patterns of mass wasting contributing to sediment supply under current climatic conditions. There were, however, some sites where there was considerable departure from the normalized range of values. These sites typically had different patterns and qualitative rates of mass wasting, either higher or lower, than observed for other watersheds. The gross differences in sediment supply to the stream network have been used to account for departures in the normalized rates of bedload transport observed for these sites. The next phase of this work is to better quantify the contributions from hillslopes to help explain variability in the normalized rate of bedload transport. -
Bedload Transport and Large Organic Debris in Steep Mountain Streams in Forested Watersheds on the Olympic Penisula, Washington
77 TFW-SH7-94-001 Bedload Transport and Large Organic Debris in Steep Mountain Streams in Forested Watersheds on the Olympic Penisula, Washington Final Report By Matthew O’Connor and R. Dennis Harr October 1994 BEDLOAD TRANSPORT AND LARGE ORGANIC DEBRIS IN STEEP MOUNTAIN STREAMS IN FORESTED WATERSHEDS ON THE OLYMPIC PENINSULA, WASHINGTON FINAL REPORT Submitted by Matthew O’Connor College of Forest Resources, AR-10 University of Washington Seattle, WA 98195 and R. Dennis Harr Research Hydrologist USDA Forest Service Pacific Northwest Research Station and Professor, College of Forest Resources University of Washington Seattle, WA 98195 to Timber/Fish/Wildlife Sediment, Hydrology and Mass Wasting Steering Committee and State of Washington Department of Natural Resources October 31, 1994 TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGEMENTS vii OVERVIEW 1 INTRODUCTION 2 BACKGROUND 3 Sediment Routing in Low-Order Channels 3 Timber/Fish/Wildlife Literature Review of Sediment Dynamics in Low-order Streams 5 Conceptual Model of Bedload Routing 6 Effects of Timber Harvest on LOD Accumulation Rates 8 MONITORING SEDIMENT TRANSPORT IN LOW-ORDER CHANNELS 11 Monitoring Objectives 11 Field Sites for Monitoring Program 12 BEDLOAD TRANSPORT MODEL 16 Model Overview 16 Stochastic Model Outputs from Predictive Relationships 17 24-Hour Precipitation 17 Synthesis of Frequency of Threshold 24-Hour Precipitation 18 Peak Discharge as a Function of 24-Hour Precipitation 21 Excess Unit Stream Power as a Function of Peak Discharge 28 Mean Scour