Lab Equipment Lab Equipment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laboratory Glassware N Edition No
Laboratory Glassware n Edition No. 2 n Index Introduction 3 Ground joint glassware 13 Volumetric glassware 53 General laboratory glassware 65 Alphabetical index 76 Índice alfabético 77 Index Reference index 78 [email protected] Scharlau has been in the scientific glassware business for over 15 years Until now Scharlab S.L. had limited its sales to the Spanish market. However, now, coinciding with the inauguration of the new workshop next to our warehouse in Sentmenat, we are ready to export our scientific glassware to other countries. Standard and made to order Products for which there is regular demand are produced in larger Scharlau glassware quantities and then stocked for almost immediate supply. Other products are either manufactured directly from glass tubing or are constructed from a number of semi-finished products. Quality Even today, scientific glassblowing remains a highly skilled hand craft and the quality of glassware depends on the skill of each blower. Careful selection of the raw glass ensures that our final products are free from imperfections such as air lines, scratches and stones. You will be able to judge for yourself the workmanship of our glassware products. Safety All our glassware is annealed and made stress free to avoid breakage. Fax: +34 93 715 67 25 Scharlab The Lab Sourcing Group 3 www.scharlab.com Glassware Scharlau glassware is made from borosilicate glass that meets the specifications of the following standards: BS ISO 3585, DIN 12217 Type 3.3 Borosilicate glass ASTM E-438 Type 1 Class A Borosilicate glass US Pharmacopoeia Type 1 Borosilicate glass European Pharmacopoeia Type 1 Glass The typical chemical composition of our borosilicate glass is as follows: O Si 2 81% B2O3 13% Na2O 4% Al2O3 2% Glass is an inorganic substance that on cooling becomes rigid without crystallising and therefore it has no melting point as such. -
Gravimetric Analysis of Chloride
Chemistry 321L Manual Page 16 Gravimetric Analysis of Chloride I. Introduction The amount of chloride ion in a substance can be determined by precipitating the soluble chloride ion present with silver ion. The amount of chloride ion present will be related to the mass of silver chloride formed. + - Ag (aq) + Cl (aq) 6 AgCl (s) II. Procedure A. Preparation of Filter Crucibles (Sintered-Glass) 1. Use four filter crucibles of medium (M) porosity. Do not use crucibles marked C for coarse porosity. 2. Previously, the crucibles have been used to filter silver chloride (purple or gray, ammonia soluble). First, remove any bulk precipitate with a rubber policeman and dispose of it in a "Silver Collection" jar. Follow this with chemical cleaning. To remove silver chloride, invert the crucibles in a large beaker in a fume hood and add one or two mL of concentrated ammonia to each. Allow to soak until clean. Carefully remove the crucibles from the beaker and soak in water before removing from the fume hood. Set up a suction filtration apparatus and wash the crucible several times with water and finally with deionized water. Empty the suction flask before proceeding. Stains that are not removed by this cleaning process should not interfere with your measurements. Number, in pencil, each crucible on the frosted glass area. 3. Dry the crucibles in an oven at 120EC for about 1 hour, using a beaker, glass hooks, and watch glass (see figure). A ribbed watch glass can be used in place of the glass hooks. 4. Remove the dried crucibles from the oven and let them cool for about one minute on the counter top. -
Determination of the Identity of an Unknown Liquid Group # My Name the Date My Period Partner #1 Name Partner #2 Name
Determination of the Identity of an unknown liquid Group # My Name The date My period Partner #1 name Partner #2 name Purpose: The purpose of this lab is to determine the identity of an unknown liquid by measuring its density, melting point, boiling point, and solubility in both water and alcohol, and then comparing the results to the values for known substances. Procedure: 1) Density determination Obtain a 10mL sample of the unknown liquid using a graduated cylinder Determine the mass of the 10mL sample Save the sample for further use 2) Melting point determination Set up an ice bath using a 600mL beaker Obtain a ~5mL sample of the unknown liquid in a clean dry test tube Place a thermometer in the test tube with the sample Place the test tube in the ice water bath Watch for signs of crystallization, noting the temperature of the sample when it occurs Save the sample for further use 3) Boiling point determination Set up a hot water bath using a 250mL beaker Begin heating the water in the beaker Obtain a ~10mL sample of the unknown in a clean, dry test tube Add a boiling stone to the test tube with the unknown Open the computer interface software, using a graph and digit display Place the temperature sensor in the test tube so it is in the unknown liquid Record the temperature of the sample in the test tube using the computer interface Watch for signs of boiling, noting the temperature of the unknown Dispose of the sample in the assigned waste container 4) Solubility determination Obtain two small (~1mL) samples of the unknown in two small test tubes Add an equal amount of deionized into one of the samples Add an equal amount of ethanol into the other Mix both samples thoroughly Compare the samples for solubility Dispose of the samples in the assigned waste container Observations: The unknown is a clear, colorless liquid. -
Uv and Visible Spectroscopy1
Page 1 of 4 I. INTRODUCTION TO UV AND VISIBLE SPECTROSCOPY1 When white light passes through or is reflected by a colored substance, a characteristic portion of the mixed wavelengths is absorbed. The remaining light will then assume the complementary color to the wavelength(s) absorbed. Thus, absorption of 420-430 nm light renders a substance yellow, and absorption of 500-520 nm light makes it red. Green is unique in that it can be created by absorption close to 400 nm as well as absorption near 800 nm. When sample molecules are exposed to light having an energy that matches a possible electronic transition within the molecule, some of the light energy will be absorbed as the electron is promoted to a higher energy orbital. An optical spectrometer records the wavelengths at which absorption occurs, together with the degree of absorption at each wavelength. The resulting spectrum is presented as a graph of absorbance (A) versus wavelength. Absorbance usually ranges from 0 (no absorption) to 2 (99% absorption), and is precisely defined in context with spectrometer operation. Because the absorbance of a sample will be proportional to the number of absorbing molecules in the spectrometer light beam (e.g. their molar concentration in the sample tube), it is necessary to correct the absorbance value for this and other operational factors if the spectra of different compounds are to be compared in a meaningful way. The corrected absorption value is called "molar absorptivity", and is particularly useful when comparing the spectra of different compounds and determining the relative strength of light absorbing functions (chromophores). -
EXPERIMENT 15 TF Notes
EXPERIMENT 15 TF Notes 1. Have students log onto LoggerPro3 and start heating water as soon as they arrive 2. This reaction is easily contaminated so students must never insert the thermometer directly into the cuvette containing the reaction. Instead they should rather measure the temperature of the water and equate that to the temperature of the solution in the cuvette. 3. We will be using hot gloves in this experiment. 4. Make sure you are familiar with the calculations necessary to fill out the chart. All the necessary equations are given at the top fo the page. Note that the temperature must be converted from °C to K. EXPERIMENT 15 Thermodynamics of Complex-Ion Equilibria Introduction Thermodynamic data for a reaction system provides researchers with information that is important from both theoretical and practical points of view. There are several thermodynamic properties that chemists pay close attention to when designing or carrying out experiments such as thermodynamic stability, the change in free energy of a reaction, and temperature dependence. For example, if a chemist wants to create a new type of solar cell that combines a semiconductor material with a novel conductive oxide and wants to make sure that the two materials will not react with each other, thermodynamics provide the answer. By finding the free energy change associated with the reaction, s/he can determine how stable the layers are in contact with each other and to what temperature. In this experiment, you will learn how to determine those parameters from a controlled experiment by using spectrometry to find concentration data at various temperatures. -
General Chemistry Laboratory I Manual
GENERAL CHEMISTRY LABORATORY I MANUAL Fall Semester Contents Laboratory Equipments .............................................................................................................................. i Experiment 1 Measurements and Density .............................................................................................. 10 Experiment 2 The Stoichiometry of a Reaction ..................................................................................... 31 Experiment 3 Titration of Acids and Bases ............................................................................................ 10 Experiment 4 Oxidation – Reduction Titration ..................................................................................... 49 Experiment 5 Quantitative Analysis Based on Gas Properties ............................................................ 57 Experiment 6 Thermochemistry: The Heat of Reaction ....................................................................... 67 Experiment 7 Group I: The Soluble Group ........................................................................................... 79 Experiment 8 Gravimetric Analysis ........................................................................................................ 84 Scores of the General Chemistry Laboratory I Experiments ............................................................... 93 LABORATORY EQUIPMENTS BEAKER (BEHER) Beakers are containers which can be used for carrying out reactions, heating solutions, and for water baths. They are for -
Rebecca Has Samples of Different Types of Metal, and She Wants to Find the Density of Each
Rebecca has samples of different types of metal, and she wants to find the density of each. First, she measures the volume of each sample. Now she needs to measure the samples' masses. Which of the following tools should Rebecca use to measure the mass of each sample? A. measuring tape B. calipers C. graduated cylinder D. balance Question 2 Add Ken needs to measure out 50 mL of water. Which of the following is the best tool for Ken to use? A. balance B. ruler C. spring scale D. graduated cylinder Question 3 Add Emily sees the following tool in her science lab. What is this tool used to measure? A. an object's volume B. an object's density C. an object's mass D. an object's length Question 4 Add Tamora is heating a liquid to find the temperature at which the liquid boils. Which piece of laboratory equipment should Tamora use to measure the temperature of the liquid once the boiling has begun? A. timer B. balance C. microscope D. thermometer Question 5 Add Which of the following laboratory tools would be most appropriate for measuring the approximate volume of a liquid? A. thermometer B. beaker C. balance D. tweezers Question 6 Add Directions: Select the correct answer from each drop-down menu. Mass can be measured using a volume can be measured using a and length can be measured using a Question 7 Add Betty is studying vein patterns in leaves. Which of the following tools could help Betty examine the leaves' veins in greater detail? A. -
Laboratory Equipment Reference Sheet
Laboratory Equipment Stirring Rod: Reference Sheet: Iron Ring: Description: Glass rod. Uses: To stir combinations; To use in pouring liquids. Evaporating Dish: Description: Iron ring with a screw fastener; Several Sizes Uses: To fasten to the ring stand as a support for an apparatus Description: Porcelain dish. Buret Clamp/Test Tube Clamp: Uses: As a container for small amounts of liquids being evaporated. Glass Plate: Description: Metal clamp with a screw fastener, swivel and lock nut, adjusting screw, and a curved clamp. Uses: To hold an apparatus; May be fastened to a ring stand. Mortar and Pestle: Description: Thick glass. Uses: Many uses; Should not be heated Description: Heavy porcelain dish with a grinder. Watch Glass: Uses: To grind chemicals to a powder. Spatula: Description: Curved glass. Uses: May be used as a beaker cover; May be used in evaporating very small amounts of Description: Made of metal or porcelain. liquid. Uses: To transfer solid chemicals in weighing. Funnel: Triangular File: Description: Metal file with three cutting edges. Uses: To scratch glass or file. Rubber Connector: Description: Glass or plastic. Uses: To hold filter paper; May be used in pouring Description: Short length of tubing. Medicine Dropper: Uses: To connect parts of an apparatus. Pinch Clamp: Description: Glass tip with a rubber bulb. Uses: To transfer small amounts of liquid. Forceps: Description: Metal clamp with finger grips. Uses: To clamp a rubber connector. Test Tube Rack: Description: Metal Uses: To pick up or hold small objects. Beaker: Description: Rack; May be wood, metal, or plastic. Uses: To hold test tubes in an upright position. -
2019 Beverage Industry Supplies Catalog Table of Contents
2019 Beverage Industry Supplies Catalog Table of Contents Barrels, Racks & Wood Products……………………………………………………………...4 Chemicals Cleaners and Sanitizers…………………………………………………………..10 Processing Chemicals……………………………………………………………..13 Clamps, Fittings & Valves……………………………………………………………………….14 Fermentation Bins…………………………………………………………………………………18 Filtration Equipment and Supplies……...…………………………………………………..19 Fining Agents………………………………………………………………………………………..22 Hoses…………………………………………………………………………………………………..23 Laboratory Assemblies & Kits…………………………………………………………………..25 Chemicals……………………………………………………………………………..28 Supplies………………………………………………………………………………..29 Testers………………………………………………………………………………… 37 Malo-Lactic Bacteria & Nutrients…………………………………………………………….43 Munton’s Malts……………………………………………………………………………………..44 Packaging Products Bottles, Bottle Wax, Capsules………………………………………………….45 Natural Corks………………………………………………………………………..46 Synthetic Corks……………………………………………………………………..47 Packaging Equipment…………………………………………………………………………….48 Pumps………………………………………………………………………………………………….50 Sulfiting Agents…………………………………………………………………………………….51 Supplies……………………………………………………………………………………………….52 Tanks…………………………………………………………………………………………………..57 Tank Accessories…………………………………………………………………………………..58 Tannins………………………………………………………………………………………………..59 Yeast, Nutrient & Enzymes……………………………………………………………………..61 Barrels, Racks & Wood Products Barrels Description Size Price LeRoi, New French Oak 59 gl Call for Pricing Charlois, New American Oak 59 gl Call for Pricing Charlois, New Hungarian Oak 59 gl Call for Pricing Used -
Thermal Activity of Base Course Material Related to Pavement Cracking
THERMAL ACTIVITY OF BASE COURSE MATERIAL RELATED TO PAVEMENT CRACKING by Samuel H. Carpenter Robert L. Lytton Research Report Number 18-2 Environmental Deterioration of Pavement Research Project 2-8-73-18 Conducted for the State Department of Highways and Public Transportation in cooperation with the U.S. Department of Transportation Federal Highway Administration by the Texas Transportation Institute Texas A&M Univeristy College station, Texas December, 197 5 TECHNICAL REPORT STANDARD TITLE PACf 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. ~4.-;Ti~tl-e-an~d~Su~b~ti~tle------------~------------------------~S~.~R~e-pa-rt~D~at_e _________________ _ Thermal Activity of Base Course Material Related to December. 1975 Pavement Cracking 6. Performing Organi •ation Code 7. Authorl s) 8. Performing Organi •ation Report No. Samuel H. Carpenter and Robert L. Lytton Research Report No. 18-2 9. Performing Organi !at ion Name and Address 10. Work Unit Na. Texas Transportation Institute Texas A&M University 11. Contract or Grant No. College Station, Texas 77843 Study No. 2-8-73-18 13. Type of Report and Period Covered ~~----------------~--------------------------~12. Sponsoring 'Agency Name and Address Texas State Department of Highways and Public Trans Inter'm1 _ September, 1972 portation; Transportation Planning Division December, 1975 P. 0. Box 5051 14. Sponsoring Agency Code Austin, Texas 78763 15. Supplementary Notes Research performed in cooperation with DOT, FHWA. Study Title: 11 Environmental Deterioration of Pavement 11 16. Abstract Preliminary studies into environmental deterioration of pavements indicated that low-temperature cracking of the asphalt concrete surface was not likely for the west Texas area. -
A Revised Calibration of the Clumped Isotope Thermometer ∗ Shikma Zaarur , Hagit P
Supplementary Materials included at end of pdf. Earth and Planetary Science Letters 382 (2013) 47–57 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl A revised calibration of the clumped isotope thermometer ∗ Shikma Zaarur , Hagit P. Affek, Mark T. Brandon Department of Geology and Geophysics, Yale University, New Haven, CT, United States article info abstract Article history: A growing number of materials and environmental settings are studied using the carbonate clumped Received 5 December 2012 isotope (47) thermometer. The method has been applied in both biogenic and non-biogenic carbonate Received in revised form 3 July 2013 systems, in marine and terrestrial settings, over a wide range of geological timescales. The current Accepted 16 July 2013 temperature calibration gives good temperature estimates for most biogenic materials, however, Available online xxxx 47 systematic biases are commonly observed at low temperatures. Editor: G. Henderson In this study we report additional calibration data, that covers a wider temperature range, at more evenly Keywords: distributed temperatures, and are measured at higher analytical precision than the original calibration. clumped isotopes Combining these data with the original calibration yields a 47–T relationship that is similar to the 6 2 carbonates original calibration, though slightly less steep: 47 = (0.0526 ± 0.0025) × 10 /T + (0.0520 ± 0.0284). thermometer calibration This revised calibration is in better agreement with biogenic carbonates, including those grown at low temperatures. The difference between the original and revised calibrations is significant for carbonates ◦ ◦ forming below 16 C or above 49 C(47 values of 0.68h and 0.56h). -
Manual: Zetasizer Nano Accessories Guide
! www.malvern.com Zetasizer nano series Malvern Instruments Limited Printed in England MRK1378-01 Enigma Business Park Q & Grovewood Road, Malvern Worcs, WR14 1XZ, U.K. SelAccessories Guide Tel: +44 (0) 1684 892456 Fax: +44 (0) 1684 892789 Malvern Zetasizer Nano accessories guide MAN0487 Issue 1.1 April 2013 Copyright © 2007 - 2013 Malvern Instruments Ltd. Malvern Instruments pursues a policy of continual improvement due to technical development. We therefore reserve the right to deviate from information, descriptions, and specifications in this publication without notice. Malvern Instruments shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. No reproduction or transmission of any part of this publication is allowed without the express written permission of Malvern Instruments Ltd. Head office: Malvern Instruments Ltd. Enigma Business Park, Grovewood Road, Malvern, Worcestershire WR14 1XZ United Kingdom. Tel + [44] (0)1684-892456 Fax + [44] (0)1684-892789 Zetasizer, Malvern and the 'hills' logo are registered trademarks in the UK and/or other countries, and are owned by Malvern Instruments Ltd. NIBS and M3-PALS are trademarks of Malvern Instruments. M3 is granted Euro Pat No: 1 154 266 DE FR. Windows is a registered trademark of Microsoft Corporation. Tygon is a registered trademark of Saint-Gobain Corporation. Hellmanex is a registered trademark of Hellma GmbH & Co. KG. Table of contents Introduction and accessory range Introduction . 1-1 Accessory range. 1-1 General cells and cuvettes Introduction . 2-1 Cuvette holder . 2-2 Cell and cuvettes . 2-3 Size and molecular weight cuvettes .