Make a Radio Telescope

Total Page:16

File Type:pdf, Size:1020Kb

Make a Radio Telescope PORTADARADIO ASTRONOMY MANUAL ALMA at School Contents 1. From Jansky to ALMA 1.1 Jansky’s Observations 1.2 The First Radio Telescopes 1.3 Basic Elements of the ALMA Radio Telescope 1.4 How Images are Formed by a Radio Telescope 1.5 One Telescope, Many Antennas 2. The Physics of Radio Astronomy 2.1 Electromagnetic Radiation 2.2 Radiation in Everyday Life 2.3 The Origin of Electromagnetic Radiation 2.4 How Waves Travel Through Space 2.5 Working at High Altitudes 3. Exploring Our Cosmic Origins 3.1 The Big Bang 3.2 The Chemistry of the Universe 3.3 Formation of Stars and Planets 3.4 Studying the Sun 3.5 The Sun and its Environment 4. Activities 5. Glossary The words highlighted in the text are defined may be found in the glossary at the end of the manual. 6. Slides Cover image Composition: Colorful view of ALMA. Credit: ESO/B. Tafreshi; three-dimensional view of gas outflow from NGC 253 as seen by ALMA. Credit: ALMA (ESO/NAOJ/NRAO)/Erik Rosolowsky Editing: Valeria Foncea, ALMA Education and Public Outreach Officer Design: Alejandro Peredo, ALMA Graphic Designer Scientific Advising: José Gallardo and Ignacio Toledo, ALMA Astronomers Pedagogical Advising: Pablo Torres, Sparktalents Foundation Based on: “The Invisible Universe” from Universe Awareness (UNAWE) and “Exploring Our Cosmic Origins - Educational Material about ALMA” from the European Southern Observatory (ESO) Translation: Kora McNaughton 2 Prologue Since the beginning of time, human beings have been fascinated by the sky and stars. However, it was only with the invention of the telescope in 1609 that humans could begin to study astronomical objects in detail, transforming astronomy and taking discoveries to unprecedented levels thanks to technological progress. Today we can study the Universe by observing types of radiation, different from visible light. Radio waves –including infrared, gamma rays, ultraviolet and X-rays– provide astronomers with glimpses into a completely new world: the “invisible” Universe. It will take many more generations of astronomers to reveal all of the secrets of the Universe. That’s why it is so important for the future of astronomy, and for science in general, to spark the interest of children and assist teachers in guiding their learning. This manual is designed primarily for teachers who want to expand their knowledge about radio astronomy in general and the ALMA Observatory in particular. It also contains activities that can be used in the classroom or as part of an extracurricular workshop. Although the manual provides recommendations for using the material in courses and grade levels, teachers should use their own judgment to determine how to integrate it into their planning, based on their knowledge of their students and their schools’ curricular plans. The text is organized into four chapters. The first provides a brief history of radio astronomy and general aspects of its physical properties, in comparison to optical telescopes. The second chapter contains a deeper examination of the physical concepts underlying radio astronomy such as refraction, reflection, resolution power and others, in order to help students understand the implications for observation. The third chapter explores the areas of radio astronomy investigation that ALMA can address and some conclusions that are expected to be verified. In other words, this chapter contains a brief description of the state of the art in radio astronomy research. Finally, the fourth chapter contains a series of activities for working with students. The activities are organized by level of complexity, starting with the simplest ones and ending with more in-depth activities, all of which are related to the ideas described in the previous chapters. The manual also provides recommendations on using the activities in natural sciences courses at different grade levels. This manual assumes that teachers have a basic understanding of concepts of physics, chemistry and algebra, and therefore does not explain elementary concepts that can be found in any science book. Nevertheless, some of these concepts have been included in the glossary for quick reference. Nor is the manual aimed at covering topics in depth or providing more complex technical details or theoretical models. Rather, it is designed to introduce these subjects and contribute a set of teaching activities as a first step. At the end of each chapter there is a set of questions to help students reflect on and understand what they have read. 3 1. From Jansky to ALMA Antenna at the array’s operations site. Photograph by Dave Yoder/National Geographic Yoder/National by Dave Photograph site. operations Antenna at the array’s ALMA, the Atacama Large Millimeter/sub-millimeter Array, is located high on the Chajnantor Plateau in the Chilean Andes, at 5,000 meters above sea level. Developed more than 80 years after radio waves from outer space were first detected, ALMA is a cutting-edge observatory that studies light emitted from some of the coldest objects in the Universe. 1.1 Jansky’s Observations It can take a long time to get to ALMA, not just because its location is almost inaccessible to human beings–at 5,000 meters above sea level and in the middle of the driest desert in the world–but also because it represents an enormous advance in this area of astronomy that observes the invisible. It is truly a milestone in radioastronomy. This journey began almost accidentally in 1931, when Karl G. Jansky, an engineer from the United States, made his first observations of extraterrestrialradio sources. During those years, Bell Labs had commissioned Jansky to study possible uses for short wave bands in communication, and needed to evaluate potential interference in the atmosphere. Using an antenna he designed and built himself, Jansky began receiving radio waves generated by natural sources such as electrical storms and lightning. The antenna was mounted on a rotating platform that could detect radio signals from any direction. Close Image 1. Jansky’s merry-go-round antenna. The wheels were used to to the antenna structure was a shed where Jansky kept a “pen and paper” recording system–similar to a rotate the structure and point it in seismograph–with which he recorded signals from nearby storms, distant electrical storms and a constant different directions. The antenna was designed to receive waves yet weak signal of unknown origin. Over the several months during which he recorded data, the unknown with a frequency of 20.5 MHz (1 MHz=106 Hz) and a wavelength of signal was always present. Jansky’s process consisted of rotating the antenna one full turn (360º) over 20 approximately 14.6 meters, located minutes. Thus, in one hour the antenna pointed in the same geographic direction three times. Image 2 in the shortwave (SW) band. In comparison, an FM radio can tune in shows one of the records of the signal over a two-hour period. waves from 88.0 to 107.0 MHz (3.4 to 2.8 meters, respectively). Credit: NRAO-Green Bank. 5 Image 2. Part of what Jansky Jansky initially believed the sun was the source of the unidentified signal, but as the days passed, he saw recorded in February 1932. The geographical direction is indicated at that the appearance of the crest was delayed by almost four minutes each day (see note on the difference the top: south (S), east (E), north (N) between a solar and a sidereal day). This time difference led Jansky to conclude that the source emitting and west (W). The time is indicated on the bottom. Each vertical division these radio waves was located in the Milky Way, whose greatest intensity was in its central zone, in the marks a period of five minutes. The arrows point to the crest or maximum Sagittarius constellation. observed every 20 minutes, as the antenna swept across the plane of our galaxy. This discovery was widely disseminated in the press, including a report in the New York Times published on May 5, 1933. Jansky intended to continue with his measurements to investigate these sources from outer space, but Bell Laboratories did not consider the signals to be a problem and he was assigned to another project, leaving this task to future astronomers. The unit of spectral flux density, in the International System, is now known as the Janksy. Note on the difference between the solar day and the sidereal day The definition of day seems simple: It is the time it takes meridian (am and pm in the 12-hour system: ante meridian a planet, satellite, or celestial body to complete a rotation and post meridian). around its axis. However, to describe the movement of a body we need a system of reference, that is, something with But the Earth’s orbit around the Sun is elliptical, at a speed respect to which we can say that a certain celestial body that varies during the year. As a result, the amount of time has completed a rotation, or more generally, that it moved. between two middays is never the same. To simplify this If we say the Earth rotates on its axis, with respect to what situation, assume that there is an imaginary Sun, with point can we say that it has completed a rotation? respect to which the Earth orbits in a circular pattern at a constant speed. That speed is its average speed in the This leads us to two definitions: the solar day and the elliptical orbit, resulting in a solar day of 24 hours. sidereal day. The former is based on the measure of time of the Earth’s rotation with respect to the Sun and the latter is The Earth’s revolution around the Sun is also the reason with respect to the stars.
Recommended publications
  • 1 Lecture 26
    PHYS 445 Lecture 26 - Black-body radiation I 26 - 1 Lecture 26 - Black-body radiation I What's Important: · number density · energy density Text: Reif In our previous discussion of photons, we established that the mean number of photons with energy i is 1 n = (26.1) i eß i - 1 Here, the questions that we want to address about photons are: · what is their number density · what is their energy density · what is their pressure? Number density n Eq. (26.1) is written in the language of discrete states. The first thing we need to do is replace the sum by an integral over photon momentum states: 3 S i ® ò d p Of course, it isn't quite this simple because the density-of-states issue that we introduced before: for every spin state there is one phase space state for every h 3, so the proper replacement more like 3 3 3 S i ® (1/h ) ò d p ò d r The units now work: the left hand side is a number, and so is the right hand side. But this expression ignores spin - it just deals with the states in phase space. For every photon momentum, there are two ways of arranging its polarization (i.e., the orientation of its electric or magnetic field vectors): where the photon momentum vector is perpendicular to the plane. Thus, we have 3 3 3 S i ® (2/h ) ò d p ò d r. (26.2) Assuming that our system is spatially uniform, the position integral can be replaced by the volume ò d 3r = V.
    [Show full text]
  • Lecture 17 : the Cosmic Microwave Background
    Let’s think about the early Universe… Lecture 17 : The Cosmic ! From Hubble’s observations, we know the Universe is Microwave Background expanding ! This can be understood theoretically in terms of solutions of GR equations !Discovery of the Cosmic Microwave ! Earlier in time, all the matter must have been Background (ch 14) squeezed more tightly together ! If crushed together at high enough density, the galaxies, stars, etc could not exist as we see them now -- everything must have been different! !The Hot Big Bang This week: read Chapter 12/14 in textbook 4/15/14 1 4/15/14 3 Let’s think about the early Universe… Let’s think about the early Universe… ! From Hubble’s observations, we know the Universe is ! From Hubble’s observations, we know the Universe is expanding expanding ! This can be understood theoretically in terms of solutions of ! This can be understood theoretically in terms of solutions of GR equations GR equations ! Earlier in time, all the matter must have been squeezed more tightly together ! If crushed together at high enough density, the galaxies, stars, etc could not exist as we see them now -- everything must have been different! ! What was the Universe like long, long ago? ! What were the original contents? ! What were the early conditions like? ! What physical processes occurred under those conditions? ! How did changes over time result in the contents and structure we see today? 4/15/14 2 4/15/14 4 The Poetic Version ! In a brilliant flash about fourteen billion years ago, time and matter were born in a single instant of creation.
    [Show full text]
  • Measurement of the Cosmic Microwave Background Radiation at 19 Ghz
    Measurement of the Cosmic Microwave Background Radiation at 19 GHz 1 Introduction Measurements of the Cosmic Microwave Background (CMB) radiation dominate modern experimental cosmology: there is no greater source of information about the early universe, and no other single discovery has had a greater impact on the theories of the formation of the cosmos. Observation of the CMB confirmed the Big Bang model of the origin of our universe and gave us a look into the distant past, long before the formation of the very first stars and galaxies. In this lab, we seek to recreate this founding pillar of modern physics. The experiment consists of a temperature measurement of the CMB, which is actually “light” left over from the Big Bang. A radiometer is used to measure the intensity of the sky signal at 19 GHz from the roof of the physics building. A specially designed horn antenna allows you to observe microwave noise from isolated patches of sky, without interference from the relatively hot (and high noise) ground. The radiometer amplifies the power from the horn by a factor of a billion. You will calibrate the radiometer to reduce systematic effects: a cryogenically cooled reference load is periodically measured to catch changes in the gain of the amplifier circuit over time. 2 Overview 2.1 History The first observation of the CMB occurred at the Crawford Hill NJ location of Bell Labs in 1965. Arno Penzias and Robert Wilson, intending to do research in radio astronomy at 21 cm wavelength using a special horn antenna designed for satellite communications, noticed a background noise signal in all of their radiometric measurements.
    [Show full text]
  • Black Body Radiation
    BLACK BODY RADIATION hemispherical Stefan-Boltzmann law This law states that the energy radiated from a black body is proportional to the fourth power of the absolute temperature. Wien Displacement Law FormulaThe Wien's Displacement Law provides the wavelength where the spectral radiance has maximum value. This law states that the black body radiation curve for different temperatures peaks at a wavelength inversely proportional to the temperature. Maximum wavelength = Wien's displacement constant / Temperature The equation is: λmax= b/T Where: λmax: The peak of the wavelength b: Wien's displacement constant. (2.9*10(−3) m K) T: Absolute Temperature in Kelvin. Emissive power The value of the Stefan-Boltzmann constant is approximately 5.67 x 10 -8 watt per meter squared per kelvin to the fourth (W · m -2 · K -4 ). If the radiation emitted normal to the surface and the energy density of radiation is u, then emissive power of the surface E=c u If the radiation is diffuse Emitted uniformly in all directions 1 E= 푐푢 4 Thermal radiation exerts pressure on the surface on which they are Incident. If the intensity of directed beam of radiations incident normally to The surface is I 퐼 Then Pressure P=u= 푐 If the radiation is diffused 1 P= 푢 3 The value of the constant is approximately 1.366 kilowatts per square metre. When the emissivity of non-black surface is constant at all temperatures and throughout the entire range of wavelength, the surface is called Gray Body. PROBLEMS 1. The temperature of a person’s skin is 350 C.
    [Show full text]
  • Class 12 I : Blackbody Spectra
    Class 12 Spectra and the structure of atoms Blackbody spectra and Wien’s law Emission and absorption lines Structure of atoms and the Bohr model I : Blackbody spectra Definition : The spectrum of an object is the distribution of its observed electromagnetic radiation as a function of wavelength or frequency Particularly important example… A blackbody spectrum is that emitted from an idealized dense object in “thermal equilibrium” You don’t have to memorize this! h=6.626x10-34 J/s -23 kB=1.38x10 J/K c=speed of light T=temperature 1 2 Actual spectrum of the Sun compared to a black body 3 Properties of blackbody radiation… The spectrum peaks at Wien’s law The total power emitted per unit surface area of the emitting body is given by finding the area under the blackbody curve… answer is Stephan-Boltzmann Law σ =5.67X10-8 W/m2/K4 (Stephan-Boltzmann constant) II : Emission and absorption line spectra A blackbody spectrum is an example of a continuum spectrum… it is smooth as a function of wavelength Line spectra: An absorption line is a sharp dip in a (continuum) spectrum An emission line is a sharp spike in a spectrum Both phenomena are caused by the interaction of photons with atoms… each atoms imprints a distinct set of lines in a spectrum The precise pattern of emission/absorption lines tells you about the mix of elements as well as temperature and density 4 Solar spectrum… lots of absorption lines 5 Kirchhoffs laws: A solid, liquid or dense gas produces a continuous (blackbody) spectrum A tenuous gas seen against a hot
    [Show full text]
  • Peter Scicluna – Systematic Effects in Dust-Mass Determinations
    The other side of the equation Systematic effects in the determination of dust masses Peter Scicluna ASIAA JCMT Users’ Meeting, Nanjing, 13th February 2017 Peter Scicluna JCMT Users’ Meeting, Nanjing, 13th February 2017 1 / 9 Done for LMC (Reibel+ 2012), SMC (Srinivasan+2016) Total dust mass ∼ integrated dust production over Hubble time What about dust destruction? Dust growth in the ISM? Are the masses really correct? The dust budget crisis: locally Measure dust masses in FIR/sub-mm Measure dust production in MIR Gordon et al., 2014 Peter Scicluna JCMT Users’ Meeting, Nanjing, 13th February 2017 2 / 9 What about dust destruction? Dust growth in the ISM? Are the masses really correct? The dust budget crisis: locally Measure dust masses in FIR/sub-mm Measure dust production in MIR Done for LMC (Reibel+ 2012), SMC (Srinivasan+2016) Total dust mass ∼ integrated dust production over Hubble time Gordon et al., 2014 Peter Scicluna JCMT Users’ Meeting, Nanjing, 13th February 2017 2 / 9 Dust growth in the ISM? Are the masses really correct? The dust budget crisis: locally Measure dust masses in FIR/sub-mm Measure dust production in MIR Done for LMC (Reibel+ 2012), SMC (Srinivasan+2016) Total dust mass ∼ integrated dust production over Hubble time What about dust destruction? Gordon et al., 2014 Peter Scicluna JCMT Users’ Meeting, Nanjing, 13th February 2017 2 / 9 How important are supernovae? Are there even enough metals yet? Dust growth in the ISM? Are the masses really correct? The dust budget crisis: at high redshift Rowlands et al., 2014 Measure
    [Show full text]
  • Blackbody Radiation
    Blackbody Radiation PHY293, PHY324 - TWO WEIGHTS PHY294 - ONE WEIGHT RECOMENDED READINGS 1) R. Harris: Modern Physics, Ch.3, pp. 74-75; Ch.9, pp.384-85. Addison Wesley, 2008. 2) Daniel V. Schroeder: Introduction to Thermal Physics, Ch.7. Addison Wesley Longman Publishing, 2000. 3) PASCO Instruction Manual and Experiment Guide for the Blackbody Radiation at https://www.pasco.com/file_downloads/Downloads_Manuals/Black-Body-Light-Source- Basic-Optics-Manual-OS-8542.pdf 4) Marcello Carla: “Stefan–Boltzmann law for the tungsten filament of a light bulb: Revisiting the experiment”. Am. J. Phys. V. 81 (7), 2013. http://studenti.fisica.unifi.it/~carla/varie/Stefan-Boltzmann_law_in_a_light_bulb.pdf INTRODUCTION All material objects emit electromagnetic radiation at a temperature above absolute zero. The radiation represents a conversion of a body's thermal energy into electromagnetic energy, and is therefore called thermal radiation. Conversely all matter absorbs electromagnetic radiation to some degree. An object that absorbs all radiation falling on it at all wavelengths is called a blackbody. It is well known that when an object, such as a lump of metal, is heated, it glows; first a dull red, then as it becomes hotter, a brighter red, then bright orange, then a brilliant white. Although the brightness varies from one material to another, the color (strictly spectral distribution) of the glow is essentially universal for all materials, and depends only on the temperature. In the idealized case, this is known as blackbody, or cavity, radiation. At low temperatures, the wavelengths of thermal radiation are mainly in infrared. As temperature increases, objects begin to glow red.
    [Show full text]
  • Lecture Notes 6 BLACK-BODY RADIATION and the EARLY HISTORY of the UNIVERSE
    MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 25, 2018 Prof. Alan Guth Lecture Notes 6 BLACK-BODY RADIATION AND THE EARLY HISTORY OF THE UNIVERSE INTRODUCTION: In Lecture Notes 3 and 4 we discussed the dynamics of Newtonian cosmology under the assumption that mass is conserved as the universe expands. In that case, since the physical volume is proportional to a3(t), the mass density ρ(t) is proportional to 1=a3(t). In these lecture notes we will extend our understanding to include the dynamical effects of electromagnetic and other forms of radiation. Electromagnetic radiation is intrinsically relativistic (v ≡ c!), so we need to begin by discussing the concepts of mass and energy in the context of relativity. According to special relativity, mass and energy are equivalent, with the conversion of units given by the famous formula, E = mc2 : (6.1) When one says that mass and energy are equivalent, one is saying that they are just two different ways of expressing precisely the same thing. The total energy of any system is equal to the total mass of the system | sometimes called the relativistic mass | times c2, the square of the speed of light. Although c2 is a large number in conventional units, one can still think of it concep- tually as being merely a unit conversion factor. For example, one can imagine measuring the mass/energy of an object in either grams or ergs, with 1 gram = 8:9876 × 1020 erg ; (6.2) where c2 = 8:9876 × 1020 cm2/s2. So one gram is a huge number of ergs.
    [Show full text]
  • Blackbody Radiation
    5. Light-matter interactions: Blackbody radiation The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation The cosmic microwave background The electromagnetic spectrum All of these are electromagnetic waves. The amazing diversity is a result of the fact that the interaction of radiation with matter depends on the frequency of the wave. The boundaries between regions are a bit arbitrary… Sources of light Accelerating charges emit light Linearly accelerating charge http://www.cco.caltech.edu/~phys1/java/phys1/MovingCharge/MovingCharge.html Vibrating electrons or nuclei of an atom or molecule Synchrotron radiation—light emitted by charged particles whose motion is deflected by a DC magnetic field Bremsstrahlung ("Braking radiation")—light emitted when charged particles collide with other charged particles The vast majority of light in the universe comes from molecular motions. Core (tightly bound) electrons vibrate in their motion around nuclei ~ 1018 -1020 cycles per second. Valence (not so tightly bound) electrons vibrate in their motion around nuclei ~ 1014 -1017 cycles per second. Nuclei in molecules vibrate with respect to each other ~ 1011 -1013 cycles per second. Molecules rotate ~ 109 -1010 cycles per second. One interesting source of x-rays Sticky tape emits x-rays when you unpeel it. Scotch tape generates enough x-rays to take an image of the bones in your finger. This phenomenon, known as ‘mechanoluminescence,’ was discovered in 2008. For more information and a video describing this: http://www.nature.com/nature/videoarchive/x-rays/
    [Show full text]
  • “The Constancy, Or Otherwise, of the Speed of Light”
    “Theconstancy,orotherwise,ofthespeedoflight” DanielJ.Farrell&J.Dunning-Davies, DepartmentofPhysics, UniversityofHull, HullHU67RX, England. [email protected] Abstract. Newvaryingspeedoflight(VSL)theoriesasalternativestotheinflationary model of the universe are discussed and evidence for a varying speed of light reviewed.WorklinkedwithVSLbutprimarilyconcernedwithderivingPlanck’s black body energy distribution for a gas-like aether using Maxwell statistics is consideredalso.DoublySpecialRelativity,amodificationofspecialrelativityto accountforobserverdependentquantumeffectsatthePlanckscale,isintroduced and it is found that a varying speed of light above a threshold frequency is a necessityforthistheory. 1 1. Introduction. SincetheSpecialTheoryofRelativitywasexpoundedandaccepted,ithasseemedalmost tantamount to sacrilege to even suggest that the speed of light be anything other than a constant.ThisissomewhatsurprisingsinceevenEinsteinhimselfsuggestedinapaperof1911 [1] that the speed of light might vary with the gravitational potential. Interestingly, this suggestion that gravity might affect the motion of light also surfaced in Michell’s paper of 1784[2],wherehefirstderivedtheexpressionfortheratioofthemasstotheradiusofastar whose escape speed equalled the speed of light. However, in the face of sometimes fierce opposition, the suggestion has been made and, in recent years, appears to have become an accepted topic for discussion and research. Much of this stems from problems faced by the ‘standardbigbang’modelforthebeginningoftheuniverse.Problemswiththismodelhave
    [Show full text]
  • Homework 1. Black Body Radiation. (A) the Sun May Be Considered As a Black Body with a (Surface) Temperature of 5500Ok. Determin
    Homework 1. Black Body Radiation. (a) The sun may be considered as a black body with a (surface) temperature of 5500oK. Determine the total power that the sun emits per unit time. Give your answer in watts. (b) Estimate the energy that arrives on the upper atmosphere of the earth per area per time. (c) Explain in your own words what we mean when we talk about the energy emitted per frequency interval ∆f. (d) By googleling visual light, determine the range of photon energies (in electron volts) that can be seen. (e) The following two curves show the intensity per frequency interval at a tempera- ture of 3000o; K and 6000o K respectively. The vertical lines for each temperature curve indicate a frequency region (or band) which carries 20% of the total energy at their respective temperatures. Each region also constitutes 20% of the total area under the curve. Thus, the shaded region for the 6000o K case carries 20% of the energy (per area per time) and constitutes 20% of the total area under the blue curve. (For the 6000oK case the % labels are shown, while in the 3000o the % labels are not shown.) Note that the total area under the curve is the total intensity (i.e. energy per area per time). Based on the figure estimate the fraction of the energy that is emitted into the visual band (i.e. as light that you can see). (f) How much does the area under the curve change when going from the 3000o K case (the red lines) to the 6000o K case (the blue lines).
    [Show full text]
  • Exam 3 Answers
    Astronomy 101.003 Hour Exam 3 April 12, 2011 QUESTION 1: Some recent measurements of the expansion rate of the universe suggest a problem with our old ideas about how the universe should be expanding. What is the problem? a. The measurements suggest that the universe may be shrinking rather than expanding. b. The measurements indicate that the universe is at least 30 billion years old, meaning that more than 10 billion years passed between the Big Bang and the formation of the first stars and galaxies. c. The measurements suggest that the universe may not be expanding at all. d. The data suggest that the expansion rate varies widely in different parts of the universe. e. The measurements suggest that the expansion may actually be accelerating, rather than slowing under the influence of gravity. QUESTION 2: The cosmic microwave radiation has a spectrum most like that of: a) Thermal radiation from a hot body. b) Thermal radiation from a cold body. c) An emission nebula. d) The Sun. e) A quasar. QUESTION 3: What is the origin of the Cosmic Microwave Background: a) Light remaining from the Big Bang. b) Dirt in microwave antennae. c) Quasars. d) Pulsars. e) Blackbody radiation from distant galaxy superclusters. QUESTION 4: If the average matter density of the universe were less than the critical density, the universe: a) Would expand forever. b) Would eventually collapse. c) Would expand faster and faster. d) Would be of constant size. e) Would violate the law of energy conservation. QUESTION 5: What two conditions must be present for an object to emit a black body spectrum? a) It must be hot and dense.
    [Show full text]