December 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scienza E Cultura Universitalia
SCIENZA E CULTURA UNIVERSITALIA Costantino Sigismondi (ed.) ORBE NOVUS Astronomia e Studi Gerbertiani 1 Universitalia SIGISMONDI, Costantino (a cura di) Orbe Novus / Costantino Sigismondi Roma : Universitalia, 2010 158 p. ; 24 cm. – ( Scienza e Cultura ) ISBN … 1. Storia della Scienza. Storia della Chiesa. I. Sigismondi, Costantino. 509 – SCIENZE PURE, TRATTAMENTO STORICO 270 – STORIA DELLA CHIESA In copertina: Imago Gerberti dal medagliere capitolino e scritta ORBE NOVVS nell'epitaffio tombale di Silvestro II a S. Giovanni in Laterano (entrambe le foto sono di Daniela Velestino). Collana diretta da Rosalma Salina Borello e Luca Nicotra Prima edizione: maggio 2010 Universitalia INTRODUZIONE Introduzione Costantino Sigismondi L’edizione del convegno gerbertiano del 2009, in pieno anno internazionale dell’astronomia, si è tenuta nella Basilica di S. Maria degli Angeli e dei Martiri il 12 maggio, e a Seoul presso l’università Sejong l’11 giugno 2009. La scelta della Basilica è dovuta alla presenza della grande meridiana voluta dal papa Clemente XI Albani nel 1700, che ancora funziona e consente di fare misure di valore astrometrico. Il titolo di questi atti, ORBE NOVUS, è preso, come i precedenti, dall’epitaffio tombale di Silvestro II in Laterano, e vuole suggerire il legame con il “De Revolutionibus Orbium Coelestium” di Copernico, sebbene il contesto in cui queste parole sono tratte vuole inquadrare Gerberto nel suo ministero petrino come il nuovo pastore per tutto il mondo: UT FIERET PASTOR TOTO ORBE NOVVS. Elizabeth Cavicchi del Massachussets Institute of Technology, ha riflettuto sulle esperienze di ottica geometrica fatte da Gerberto con i tubi, nel contesto contemporaneo dello sviluppo dell’ottica nel mondo arabo con cui Gerberto era stato in contatto. -
Abd Al-Rahman Al-Sufi and His Book of the Fixed Stars: a Journey of Re-Discovery
ResearchOnline@JCU This file is part of the following reference: Hafez, Ihsan (2010) Abd al-Rahman al-Sufi and his book of the fixed stars: a journey of re-discovery. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/28854/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/28854/ 5.1 Extant Manuscripts of al-Ṣūfī’s Book Al-Ṣūfī’s ‘Book of the Fixed Stars’ dating from around A.D. 964, is one of the most important medieval Arabic treatises on astronomy. This major work contains an extensive star catalogue, which lists star co-ordinates and magnitude estimates, as well as detailed star charts. Other topics include descriptions of nebulae and Arabic folk astronomy. As I mentioned before, al-Ṣūfī’s work was first translated into Persian by al-Ṭūsī. It was also translated into Spanish in the 13th century during the reign of King Alfonso X. The introductory chapter of al-Ṣūfī’s work was first translated into French by J.J.A. Caussin de Parceval in 1831. However in 1874 it was entirely translated into French again by Hans Karl Frederik Schjellerup, whose work became the main reference used by most modern astronomical historians. In 1956 al-Ṣūfī’s Book of the fixed stars was printed in its original Arabic language in Hyderabad (India) by Dārat al-Ma‘aref al-‘Uthmānīa. -
The Longitude of the Mediterranean Throughout History: Facts, Myths and Surprises Luis Robles Macías
The longitude of the Mediterranean throughout history: facts, myths and surprises Luis Robles Macías To cite this version: Luis Robles Macías. The longitude of the Mediterranean throughout history: facts, myths and sur- prises. E-Perimetron, National Centre for Maps and Cartographic Heritage, 2014, 9 (1), pp.1-29. hal-01528114 HAL Id: hal-01528114 https://hal.archives-ouvertes.fr/hal-01528114 Submitted on 27 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. e-Perimetron, Vol. 9, No. 1, 2014 [1-29] www.e-perimetron.org | ISSN 1790-3769 Luis A. Robles Macías* The longitude of the Mediterranean throughout history: facts, myths and surprises Keywords: History of longitude; cartographic errors; comparative studies of maps; tables of geographical coordinates; old maps of the Mediterranean Summary: Our survey of pre-1750 cartographic works reveals a rich and complex evolution of the longitude of the Mediterranean (LongMed). While confirming several previously docu- mented trends − e.g. the adoption of erroneous Ptolemaic longitudes by 15th and 16th-century European cartographers, or the striking accuracy of Arabic-language tables of coordinates−, we have observed accurate LongMed values largely unnoticed by historians in 16th-century maps and noted that widely diverging LongMed values coexisted up to 1750, sometimes even within the works of one same author. -
The Magic of the Atwood Sphere
The magic of the Atwood Sphere Exactly a century ago, on June Dr. Jean-Michel Faidit 5, 1913, a “celestial sphere demon- Astronomical Society of France stration” by Professor Wallace W. Montpellier, France Atwood thrilled the populace of [email protected] Chicago. This machine, built to ac- commodate a dozen spectators, took up a concept popular in the eigh- teenth century: that of turning stel- lariums. The impact was consider- able. It sparked the genesis of modern planetariums, leading 10 years lat- er to an invention by Bauersfeld, engineer of the Zeiss Company, the Deutsche Museum in Munich. Since ancient times, mankind has sought to represent the sky and the stars. Two trends emerged. First, stars and constellations were easy, especially drawn on maps or globes. This was the case, for example, in Egypt with the Zodiac of Dendera or in the Greco-Ro- man world with the statue of Atlas support- ing the sky, like that of the Farnese Atlas at the National Archaeological Museum of Na- ples. But things were more complicated when it came to include the sun, moon, planets, and their apparent motions. Ingenious mecha- nisms were developed early as the Antiky- thera mechanism, found at the bottom of the Aegean Sea in 1900 and currently an exhibi- tion until July at the Conservatoire National des Arts et Métiers in Paris. During two millennia, the human mind and ingenuity worked constantly develop- ing and combining these two approaches us- ing a variety of media: astrolabes, quadrants, armillary spheres, astronomical clocks, co- pernican orreries and celestial globes, cul- minating with the famous Coronelli globes offered to Louis XIV. -
Lecture 25.Key
Astronomy 330: Extraterrestrial Life This class (Lecture 25): Evolution of Worldview Sean Sarcu Saloni Sheth ! ! Next Class: Lifetime Vincent Abejuela Cassandra Jensen Music: Astronomy – Metallica 2 x 2 page pdf articles due next Tues Drake Equation Frank That’s 2.7 intelligent systems/year Drake N = R* × fp × ne × fl × fi × fc × L # of # of Star Fraction of Fraction advanced Earthlike Fraction on Fraction that Lifetime of formation stars with that civilizations planets per which life evolve advanced rate planets commun- we can system arises intelligence civilizations icate contact in our Galaxy today 30 0.8 4 x 0.47 0.2 0.3 comm./ yrs/ stars/ systems/ = 1.88 life/ intel./ intel. comm. yr star planets/ planet life system • Requires civilization to undergo three steps: 1. A correct appreciation of the size and nature of the Worldview Universe 2. A realization of their place in the Universe 3. A belief that the odds for life are reasonable. The beings of Q’earth must have taken their Q’astro Intelligent ET Life must want to communicate with us 330 class and came up with a good number of communicable civilizations in the Q’drake This means they MUST equation. believe in the possibility of us (and other ET life) Requirements: ! 1) Understand size and scale of the cosmos ASTR 330 2) Realize their place in the cosmos 3) Believe the odds for life elsewhere are reasonable Alien 3 Our Worldview First worldview: Earth Centric Why? Natural observations imply we are stationary 4 • The Mayans computed the length of year to within a few Ancient Astronomy seconds (0.001%). -
The History of Arabic Sciences: a Selected Bibliography
THE HISTORY OF ARABIC SCIENCES: A SELECTED BIBLIOGRAPHY Mohamed ABATTOUY Fez University Max Planck Institut für Wissenschaftsgeschichte, Berlin A first version of this bibliography was presented to the Group Frühe Neuzeit (Max Planck Institute for History of Science, Berlin) in April 1996. I revised and expanded it during a stay of research in MPIWG during the summer 1996 and in Fez (november 1996). During the Workshop Experience and Knowledge Structures in Arabic and Latin Sciences, held in the Max Planck Institute for the History of Science in Berlin on December 16-17, 1996, a limited number of copies of the present Bibliography was already distributed. Finally, I express my gratitude to Paul Weinig (Berlin) for valuable advice and for proofreading. PREFACE The principal sources for the history of Arabic and Islamic sciences are of course original works written mainly in Arabic between the VIIIth and the XVIth centuries, for the most part. A great part of this scientific material is still in original manuscripts, but many texts had been edited since the XIXth century, and in many cases translated to European languages. In the case of sciences as astronomy and mechanics, instruments and mechanical devices still extant and preserved in museums throughout the world bring important informations. A total of several thousands of mathematical, astronomical, physical, alchemical, biologico-medical manuscripts survived. They are written mainly in Arabic, but some are in Persian and Turkish. The main libraries in which they are preserved are those in the Arabic World: Cairo, Damascus, Tunis, Algiers, Rabat ... as well as in private collections. Beside this material in the Arabic countries, the Deutsche Staatsbibliothek in Berlin, the Biblioteca del Escorial near Madrid, the British Museum and the Bodleian Library in England, the Bibliothèque Nationale in Paris, the Süleymaniye and Topkapi Libraries in Istanbul, the National Libraries in Iran, India, Pakistan.. -
The Persian-Toledan Astronomical Connection and the European Renaissance
Academia Europaea 19th Annual Conference in cooperation with: Sociedad Estatal de Conmemoraciones Culturales, Ministerio de Cultura (Spain) “The Dialogue of Three Cultures and our European Heritage” (Toledo Crucible of the Culture and the Dawn of the Renaissance) 2 - 5 September 2007, Toledo, Spain Chair, Organizing Committee: Prof. Manuel G. Velarde The Persian-Toledan Astronomical Connection and the European Renaissance M. Heydari-Malayeri Paris Observatory Summary This paper aims at presenting a brief overview of astronomical exchanges between the Eastern and Western parts of the Islamic world from the 8th to 14th century. These cultural interactions were in fact vaster involving Persian, Indian, Greek, and Chinese traditions. I will particularly focus on some interesting relations between the Persian astronomical heritage and the Andalusian (Spanish) achievements in that period. After a brief introduction dealing mainly with a couple of terminological remarks, I will present a glimpse of the historical context in which Muslim science developed. In Section 3, the origins of Muslim astronomy will be briefly examined. Section 4 will be concerned with Khwârizmi, the Persian astronomer/mathematician who wrote the first major astronomical work in the Muslim world. His influence on later Andalusian astronomy will be looked into in Section 5. Andalusian astronomy flourished in the 11th century, as will be studied in Section 6. Among its major achievements were the Toledan Tables and the Alfonsine Tables, which will be presented in Section 7. The Tables had a major position in European astronomy until the advent of Copernicus in the 16th century. Since Ptolemy’s models were not satisfactory, Muslim astronomers tried to improve them, as we will see in Section 8. -
History of Islam
Istanbul 1437 / 2016 © Erkam Publications 2016 / 1437 H HISTORY OF ISLAM Original Title : İslam Tarihi (Ders Kitabı) Author : Commission Auteur du Volume « Histoire de l’Afrique » : Dr. Said ZONGO Coordinator : Yrd. Doç. Dr. Faruk KANGER Academic Consultant : Lokman HELVACI Translator : Fulden ELİF AYDIN Melda DOĞAN Corrector : Mohamed ROUSSEL Editor : İsmail ERİŞ Graphics : Rasim ŞAKİROĞLU Mithat ŞENTÜRK ISBN : 978-9944-83-747-7 Addresse : İkitelli Organize Sanayi Bölgesi Mahallesi Atatürk Bulvarı Haseyad 1. Kısım No: 60/3-C Başakşehir / Istanbul - Turkey Tel : (90-212) 671-0700 (pbx) Fax : (90-212) 671-0748 E-mail : [email protected] Web : www.islamicpublishing.org Printed by : Erkam Printhouse Language : English ERKAM PUBLICATIONS TEXTBOOK HISTORY OF ISLAM 10th GRADE ERKAM PUBLICATIONS Table of Contents TABLE OF CONTENTS CHAPTER I THE ERA OF FOUR RIGHTLY GUIDED CALIPHS (632–661) / 8 A. THE ELECTION OF THE FIRST CALIPH .............................................................................................. 11 B. THE PERIOD OF ABU BAKR (May Allah be Pleased with him) (632–634) ....................................... 11 C. THE PERIOD OF UMAR (May Allah be Pleased with him) (634–644) ............................................... 16 D. THE PERIOD OF UTHMAN (May Allah be Pleased with him) (644–656) ........................................ 21 E. THE PERIOD OF ALI (May Allah be pleased with him) (656-661) ...................................................... 26 EVALUATION QUESTIONS ......................................................................................................................... -
Stellarium for Cultural Astronomy Research
RESEARCH The Simulated Sky: Stellarium for Cultural Astronomy Research Georg Zotti Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology, Vienna, Austria [email protected] Susanne M. Hoffmann Friedrich-Schiller-Universität Jena, Michael-Stifel-Center/ Institut für Informatik and Physikalisch- Astronomische Fakultät, Jena, Germany [email protected] Alexander Wolf Altai State Pedagogical University, Barnaul, Russia [email protected] Fabien Chéreau Stellarium Labs, Toulouse, France [email protected] Guillaume Chéreau Noctua Software, Hong Kong [email protected] Abstract: For centuries, the rich nocturnal environment of the starry sky could be modelled only by analogue tools such as paper planispheres, atlases, globes and numerical tables. The immer- sive sky simulator of the twentieth century, the optomechanical planetarium, provided new ways for representing and teaching about the sky, but the high construction and running costs meant that they have not become common. However, in recent decades, “desktop planetarium programs” running on personal computers have gained wide attention. Modern incarnations are immensely versatile tools, mostly targeted towards the community of amateur astronomers and for knowledge transfer in transdisciplinary research. Cultural astronomers also value the possibili- ties they give of simulating the skies of past times or other cultures. With this paper, we provide JSA 6.2 (2020) 221–258 ISSN (print) 2055-348X https://doi.org/10.1558/jsa.17822 ISSN (online) 2055-3498 222 Georg Zotti et al. an extended presentation of the open-source project Stellarium, which in the last few years has been enriched with capabilities for cultural astronomy research not found in similar, commercial alternatives. -
Presentation Slides
Forgotten History Al-Sufi's Book Of Fixed Stars Khalid Baheyeldin January 2018 Who Is This Guy? ● Khalid (ª ... edº not ª ... eeeeedº) ● Pharmacist by education ● Open Source Software Development and Consulting by experience (32 years) ● One of the developers of Drupal, a Web Content Management System ● NASA ● RASC Condensed History ● Egyptians (3100 B.C.E - 323 B.C.E) – Rise of stars every 10 days (Decans) ● Babylonians, Assyrians (1st millenium B.C.E) ● Alexander the Great 323 B.C.E ● Library of Alexandria, by Ptolemy (his general) – Library, University, and Research Institute ● Roman Occupation of Egypt 30 B.C.E Hipparchus ● Hipparchus of Nicaea ~ 130 B.C.E. – Precession (1 degree per century) – Magnitude Scale – Star Catalog, lost but incorporated in Almagest Claudius Ptolmey ● Lived in Alexandria ~ 150 C.E. ● Authored Almagest, Tetrabiblos (Astrology), translated to Arabic (800s), then from Arabic to Latin in (1100s) ● 48 Constellation visible from mid northern latitudes (Alexandria ~ 31 N) – Grouped by `North of ecliptic', zodiacal, and `South of Ecliptic' ● 1025 stars, 5 nebulous, 6 reddish ● Star catalog and magnitude scale of Hipparchus Where In The World? Arab Folk Astronomy ● Pre-Islamic (before 622 C.E.) ● Wide area – Southern Iraq, Syria, all of Arabia ● Preserved in poetry, and handed down in stories and proverbs ● Not the regular signs of the zodiac ● 28 stations of the moon, one per day ● Various asterisms Anwaa Tradition ● Rising and setting of certain stars (e.g. Sirius, Canopus, Pleiades, ...etc) ● Timing of important -
ASTR 101L Astronomical Motions I: the Night Sky (Spring)
ASTR 101L Astronomical Motions I: The Night Sky (Spring) Early Greek observers viewed the sky as a transparent sphere which surrounded the Earth. They divided the stars into six categories of brightness and arranged the stars into groupings called constellations (as did many other cultures). Most of the names of the eighty-eight constellations we use today are based on Greek mythology and their Latin translations. Modern astronomy uses the constellation designations to map the sky. On skymaps, the size of the dot is usually related to the brightness of the object (look on your planisphere). Most only show the brightest stars. They are typically named from brightest to faintest using a letter from the Greek alphabet (α, β, γ, etc.) and the constellation name in the genitive form; e.g. alpha (α) Cygni is the brightest star in Cygnus. Many stars also have Arabic names such as Betelgeuse, Algol, and Arcturus; α Cygni is named Deneb and α Ursa Minoris is more commonly known as Polaris. Either designation is correct. In the exercise “Angles and Parallax,” you made a cross-staff and quadrant and learned how to use them to measure objects inside. Now we will use them to measure objects in the night sky, much like Tycho Brahe did in the 1500’s. Remember to record the date, time, and conditions when making any astronomical observations! All numerical data should be recorded to one decimal place. Objectives: . Measure angular separations and altitudes of objects in the night sky with instruments . Estimate angular separations and altitudes of objects in the night sky with your hands . -
The Golden Age of Islamic Achievement a Five-Part Social Studies Unit for Middle School
The Golden Age of Islamic Achievement a five-part social studies unit for middle school Created by the Middle East Studies Center at Portland State University Written by: Courtney Ferrari, Sarah Segal, Elisheva Cohen The Golden Age of Islamic Achievement a five-part social studies unit for middle school Created by the Middle East Studies Center at Portland State University Lessons: 1. History of the Abbasid and Umayyad Dynasties 2. Geography of Islamic Expansion 3. Cities of Baghdad and Cordoba 4. House of Wisdom—scholarship in the Abbasid Dynasty 5. Scholarship, Art and Architecture in Muslim Spain Unit goal: Students will understand the role of Islamic civilization in the medieval world: its geographic and historical context, its achievements, scope and impact. Curriculum framing questions for the unit: Lesson 1: ‹ What events constitute the Abbasid and Umayyad Golden Ages? ‹ How are events in distant empires related? ‹ When and how did the empires begin and end? ‹ What events constitute the Golden Age of Islamic empires? Lesson 2: ‹ What was the geographic extent of the dynasties that made up the Islamic Golden Age? ‹ How were these societies shaped by the physical geography of their empires? Lesson 3: ‹ How are events in distant empires related? ‹ In what ways were the achievements of the Abbasid and Umayyad dynasties similar? In what ways were they different? ‹ Where did the Golden Age take place and how did geography affect its character? Lesson 4: ‹ What was the House of Wisdom and why was it important? ‹ Why did Caliph al-Ma’mun create the House of Wisdom and why did he choose Baghdad for its location? Lesson 5: ‹ What can objects tell us about the people who made them? ‹ In what ways were the achievements of the Abbasid and Umayyad dynasties similar? In what ways were they different? ‹ How did the achievements of these dynasties influence the world around them? Golden Age of Islamic Achievement: Overview 2 Learning objectives for the unit: Lesson 1: ‹ Students will be able to construct a proportional, parallel timeline to compare political units.