Comparison of Female Antennules in Some Genera of Cyclopidae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton. -
Volume 2, Chapter 10-1: Arthropods: Crustacea
Glime, J. M. 2017. Arthropods: Crustacea – Copepoda and Cladocera. Chapt. 10-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-1-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-1 ARTHROPODS: CRUSTACEA – COPEPODA AND CLADOCERA TABLE OF CONTENTS SUBPHYLUM CRUSTACEA ......................................................................................................................... 10-1-2 Reproduction .............................................................................................................................................. 10-1-3 Dispersal .................................................................................................................................................... 10-1-3 Habitat Fragmentation ................................................................................................................................ 10-1-3 Habitat Importance ..................................................................................................................................... 10-1-3 Terrestrial ............................................................................................................................................ 10-1-3 Peatlands ............................................................................................................................................. 10-1-4 Springs ............................................................................................................................................... -
Species Richness and Taxonomic Distinctness of Zooplankton in Ponds and Small Lakes from Albania and North Macedonia: the Role of Bioclimatic Factors
water Article Species Richness and Taxonomic Distinctness of Zooplankton in Ponds and Small Lakes from Albania and North Macedonia: The Role of Bioclimatic Factors Giorgio Mancinelli 1,2,3, Sotir Mali 4 and Genuario Belmonte 1,5,* 1 CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196 Roma, Italy; [email protected] 2 Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy 3 National Research Council (CNR), Institute of Biological Resources and Marine Biotechnologies (IRBIM), 08040 Lesina, Italy 4 Department of Biology, Faculty of Natural Sciences, “Aleksandër Xhuvani” University, 3001 Elbasan, Albania; [email protected] 5 Laboratory of Zoogegraphy and Fauna, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy * Correspondence: [email protected] Received: 13 October 2019; Accepted: 11 November 2019; Published: 14 November 2019 Abstract: Resolving the contribution to biodiversity patterns of regional-scale environmental drivers is, to date, essential in the implementation of effective conservation strategies. Here, we assessed the species richness S and taxonomic distinctness D+ (used a proxy of phylogenetic diversity) of crustacean zooplankton assemblages from 40 ponds and small lakes located in Albania and North Macedonia and tested whether they could be predicted by waterbodies’ landscape characteristics (area, perimeter, and altitude), together with local bioclimatic conditions that were derived from Wordclim and MODIS databases. The results showed that a minimum adequate model, including the positive effects of non-arboreal vegetation cover and temperature seasonality, together with the negative influence of the mean temperature of the wettest quarter, effectively predicted assemblages’ variation in species richness. -
Journal of Cave and Karst Studies
June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society. -
Mammoth Cave: a Hotspot of Subterranean Biodiversity in the United States
diversity Article Mammoth Cave: A Hotspot of Subterranean Biodiversity in the United States Matthew L. Niemiller 1,*, Kurt Helf 2 and Rickard S. Toomey 3 1 Department of Biological Sciences, The University of Alabama in Huntsville, 301 Sparkman Dr NW, Huntsville, AL 35899, USA 2 Cumberland Piedmont Network, National Park Service, Mammoth Cave National Park, 61 Maintenance Rd., Mammoth Cave, KY 42259, USA; [email protected] 3 Division of Science and Resources Management, Mammoth Cave National Park, P.O. Box 7, Mammoth Cave, KY 42259, USA; [email protected] * Correspondence: [email protected] or [email protected] Abstract: The Mammoth Cave System in the Interior Low Plateau karst region in central Kentucky, USA is a global hotspot of cave-limited biodiversity, particularly terrestrial species. We searched the literature, museum accessions, and database records to compile an updated list of troglobiotic and stygobiotic species for the Mammoth Cave System and compare our list with previously published checklists. Our list of cave-limited fauna totals 49 species, with 32 troglobionts and 17 stygobionts. Seven species are endemic to the Mammoth Cave System and other small caves in Mammoth Cave National Park. The Mammoth Cave System is the type locality for 33 cave-limited species. The exceptional diversity at Mammoth Cave is likely related to several factors, such as the high dispersal potential of cave fauna associated with expansive karst exposures, high surface productivity, and a long history of exploration and study. Nearly 80% of the cave-limited fauna is of conservation concern, many of which are at an elevated risk of extinction because of small ranges, few occurrences, Citation: Niemiller, M.L.; Helf, K.; and several potential threats. -
A Review of Karyological Studies on the Cyclopoida (Copepoda)
A REVIEW OF KARYOLOGICAL STUDIES ON THE CYCLOPOIDA (COPEPODA) BY WAN-XI YANG1,*), HANS-UWE DAHMS2,*) and JIANG-SHIOU HWANG2,3) 1) Zhejiang University, Zi Jin Gang Campus, 388 Yu Hang Tang Road, Hangzhou, Zhejiang 310058, China 2) Institute of Marine Biology, National Taiwan Ocean University, College of Life Sciences, 2 Pei-Ning Road, Keelung 202, Taiwan, ROC ABSTRACT A survey of chromosome studies among cyclopoid copepods is provided on the basis of new findings and data from the literature. Standard karyotypes of the Cyclopoida reveal substantial diversity in karyotypes. In some genera there are major karyotypic differences between species, whereas other groups appear to be highly conservative. Acanthocyclops americanus has the lowest known chromosome number, 2n = 10, and Megacyclops viridis the highest, 2n = 24, among cyclopoid copepods. Chromosome morphology has not successfully been employed in phylogenetic studies yet, since karyotypes are known only for about 4% of the copepod families and 8% of cyclopoid families. It is difficult to homologize copepod chromosomes, as chromosome shape provides only limited information and chromosome number is arbitrary, since fissions and fusions seem likely to occur independently. However, cytogenetic information may provide a useful evolutionary tool, particularly in the discovery of sibling or cryptic taxa, and for the clarification of generic boundaries. ZUSAMMENFASSUNG Es wird eine Übersicht zu Chromosomenstudien an cyclopoiden Copepoden gegeben auf der Grundlage eigener Untersuchungen und Daten aus der Literatur. Karyotypen der Cyclopoida zeigen eine erhebliche Diversität. Bei einigen Gattungen bestehen Artunterschiede während andere Taxa eher konservative Merkmalsausprägungen aufweisen. Unter den Cyclopoida weist Acanthocyclops americanus die niedrigste bekannte Chromosomenanzahl von 2n = 10 auf, und Megacyclops viridis die höchste von 2n = 24. -
Laboratory Evaluation of Mesocyclops Annulatus (Wierzejski, 1892
Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 97(6): 835-838, September 2002 835 Laboratory Evaluation of Mesocyclops annulatus (Wierzejski, 1892) (Copepoda: Cyclopidea) as a Predator of Container-breeding Mosquitoes in Argentina María V Micieli+, Gerardo Marti, Juan J García Centro de Estudios Parasitológicos y de Vectores, Calle 2 Nº 584 (1900) La Plata, Argentina In laboratory bioassays we tested the predatory capacity of the copepod Mesocyclops annulatus on Aedes aegypti and Culex pipiens larvae. A single adult female of M. annulatus caused 51.6% and 52.3% mortality of 50 first instar larvae of Ae. aegypti and Cx. pipiens respectively, in a 72 h test period. When alternative food was added to the containers, mortality rates declined to 16% and 10.3% for Ae. aegypti and Cx. pipiens respectively. When 50 first instar larvae of each of the two mosquito species tested were placed together with a single adult female of M. annulatus, mortality rates were 75.5% for Ae. aegypti larvae and 23.5% for Cx. pipiens larvae in a three day test period. Different density of adult females of M. annulatus ranged from 5 to 25 females produced mortality rates of Ae. aegypti first instar larvae from 50% to 100% respectively. When a single adult female of M. annulatus was exposed to an increasing number of first-instar Ae. aegypti larvae ranging from 10 to 100, 100% mortality was recorded from 1 to 25 larvae, then mortality declined to 30% with 100 larvae. The average larvae killed per 24 h period by a single copepod were 29. -