Taming Extreme Morphological Variability Through Coupling of Molecular Phylogeny and Quantitative Phenotype Analysis As a New Av
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astraptes Fulgerator Butterfly Ten Species in One: DNA Barcoding
Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator Paul D. N. Hebert, Erin H. Penton, John M. Burns, Daniel H. Janzen, and Winnie Hallwachs PNAS 2004;101;14812-14817; originally published online Oct 1, 2004; doi:10.1073/pnas.0406166101 This information is current as of January 2007. Online Information High-resolution figures, a citation map, links to PubMed and Google Scholar, & Services etc., can be found at: www.pnas.org/cgi/content/full/101/41/14812 Supplementary Material Supplementary material can be found at: www.pnas.org/cgi/content/full/0406166101/DC1 References This article cites 13 articles, 2 of which you can access for free at: www.pnas.org/cgi/content/full/101/41/14812#BIBL This article has been cited by other articles: www.pnas.org/cgi/content/full/101/41/14812#otherarticles E-mail Alerts Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here. Rights & Permissions To reproduce this article in part (figures, tables) or in entirety, see: www.pnas.org/misc/rightperm.shtml Reprints To order reprints, see: www.pnas.org/misc/reprints.shtml Notes: Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator Paul D. N. Hebert*†, Erin H. Penton*, John M. Burns‡, Daniel H. Janzen§, and Winnie Hallwachs§ *Department of Zoology, University of Guelph, Guelph, ON, Canada N1G 2W1; ‡Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0127; and §Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 Contributed by Daniel H. -
DNA Barcodes and Cryptic Species of Skipper Butterflies in the Genus Perichares in Area De Conservacio´ N Guanacaste, Costa Rica
DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacio´ n Guanacaste, Costa Rica John M. Burns*†, Daniel H. Janzen†‡, Mehrdad Hajibabaei§, Winnie Hallwachs‡, and Paul D. N. Hebert§ *Department of Entomology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 127, Washington, DC 20013-7012; ‡Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and §Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1 Contributed by Daniel H. Janzen, December 23, 2007 (sent for review November 16, 2007) DNA barcodes can be used to identify cryptic species of skipper butterflies previously detected by classic taxonomic methods and to provide first clues to the existence of yet other cryptic species. A striking case is the common geographically and ecologically widespread neotropical skipper butterfly Perichares philetes (Lep- idoptera, Hesperiidae), described in 1775, which barcoding splits into a complex of four species in Area de Conservacio´ n Guanacaste (ACG) in northwestern Costa Rica. Three of the species are new, and all four are described. Caterpillars, pupae, and foodplants offer better distinguishing characters than do adults, whose differences are mostly average, subtle, and blurred by intraspecific variation. The caterpillars of two species are generalist grass-eaters; of the other two, specialist palm-eaters, each of which feeds on different genera. But all of these cryptic species are more specialized in their diet than was the morphospecies that held them. The four ACG taxa discovered to date belong to a panneotropical complex of at least eight species. This complex likely includes still more species, whose exposure may require barcoding. -
Fractal Distribution of an Oceanic Copepod Neocalanus Cristatus in the Subarctic Pacific
Journal of Oceanography Vol. 51, pp. 261 to 266. 1995 Fractal Distribution of an Oceanic Copepod Neocalanus cristatus in the Subarctic Pacific ATSUSHI TSUDA Ocean Research Institute, University of Tokyo 1-15-1, Minamidai, Nakano, Tokyo 164, Japan (Received 13 April 1994; in revised form 28 June 1994; accepted 30 August 1994) Horizontal distribution of the copepod Neocalanus cristatus was shown to be fractal on the scale between tens of meters and over 100 km. The fractal dimensions ranged between 1.68–1.89, significantly higher than those of oceanic turbulence and phytoplankton distribution. 1. Introduction Heterogeneity in the horizontal distribution of zooplankton has been recognized for many years (e.g. Hardy, 1936). The phenomenon, however, has seldom been described precisely, although zooplankton patchiness is relevant to many aspects of biological oceanography. Recent studies reveal that copepod patches do not exhibit characteristic lengths (Mackas and Boyd, 1979; Tsuda et al., 1993) and that the patterns of copepod distribution are self-similar and independent of the scale of observation (Tsuda et al., 1993). These findings suggest that copepod distributions may be fractal. Mandelbrot (1967) introduced the concept of fractals for temporally or spatially irregular phenomena which show self-similarities over a wide range of scales. Many fractal objects have been found in nature (Mandelbrot, 1982), and the theory has been applied to some ecological studies (Morse et al., 1985; Pennycuick and Kline, 1986; Dicke and Burrough, 1988; Sugihara and May, 1990; McKinney and Frederick, 1992). In the oceans, environmental turbulence itself has fractal facets in many aspects (Mandelbrot, 1982; Sreenivasan and Meneveau, 1986). -
DNA Barcoding Confirms Polyphagy in a Generalist Moth, Homona Mermerodes (Lepidoptera: Tortricidae)
Molecular Ecology Notes (2007) 7, 549–557 doi: 10.1111/j.1471-8286.2007.01786.x BARCODINGBlackwell Publishing Ltd DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera: Tortricidae) JIRI HULCR,* SCOTT E. MILLER,† GREGORY P. SETLIFF,‡ KAROLYN DARROW,† NATHANIEL D. MUELLER,§ PAUL D. N. HEBERT¶ and GEORGE D. WEIBLEN** *Department of Entomology, Michigan State University, 243 Natural Sciences Building, East Lansing, Michigan 48824, USA, †National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA, ‡Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, Minnesota 55108–1095 USA, §Saint Olaf College, 1500 Saint Olaf Avenue, Northfield, MN 55057, USA,¶Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1, **Bell Museum of Natural History and Department of Plant Biology, University of Minnesota, 220 Biological Sciences Center, 1445 Gortner Avenue, Saint Paul, Minnesota 55108–1095, USA Abstract Recent DNA barcoding of generalist insect herbivores has revealed complexes of cryptic species within named species. We evaluated the species concept for a common generalist moth occurring in New Guinea and Australia, Homona mermerodes, in light of host plant records and mitochondrial cytochrome c oxidase I haplotype diversity. Genetic divergence among H. mermerodes moths feeding on different host tree species was much lower than among several Homona species. Genetic divergence between haplotypes from New Guinea and Australia was also less than interspecific divergence. Whereas molecular species identification methods may reveal cryptic species in some generalist herbivores, these same methods may confirm polyphagy when identical haplotypes are reared from multiple host plant families. A lectotype for the species is designated, and a summarized bibliography and illustrations including male genitalia are provided for the first time. -
Biodiversity
1 CHAPTER 2 Biodiversity Kevin J. Gaston Biological diversity or biodiversity (the latter term The scale of the variety of life is difficult, and is simply a contraction of the former) is the variety of perhaps impossible, for any of us truly to visua- life, in all of its many manifestations. It is a broad lize or comprehend. In this chapter I first attempt unifying concept, encompassing all forms, levels to give some sense of the magnitude of biodiver- and combinations of natural variation, at all levels sity by distinguishing between different key ele- of biological organization (Gaston and Spicer ments and what is known about their variation. 2004). A rather longer and more formal definition Second, I consider how the variety of life has is given in the international Convention on changed through time, and third and finally Biological Diversity (CBD; the definition is how it varies in space. In short, the chapter will, provided in Article 2), which states that inevitably in highly summarized form, address “‘Biological diversity’ means the variability the three key issues of how much biodiversity among living organisms from all sources includ- there is, how it arose, and where it can be found. ing, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which 2.1 How much biodiversity is there? they are part; this includes diversity within species, between species and of ecosystems”.Whichever Some understanding of what the variety of life definition is preferred, one can, for example, comprises can be obtained by distinguishing be- speak equally of the biodiversity of some given tween different key elements. -
Notes on Some Species of Astraptes Hubner, 1819 (Hesperiidae)
Journal of the Lepidopterists' Society 36(3), 1982,236-237 NOTES ON SOME SPECIES OF ASTRAPTES HUBNER, 1819 (HESPERIIDAE) Astraptes fulgerator (Walch) 1775 Synonymy: mercatus Fabricius, 1793; fulminator Sepp, 1848; misitra Ploetz 1881; albifasciatus Rober, 1925; catemacoensis Freeman, 1967, NEW SYNONYMY. Type locality: (?) Distribution: U.S.A. (Texas), through Mexico, Central America to Argentina in South America. Remarks: Apparently there are two subspecies involved here, A. fulgerator fulge rator (Walsh) and A.julgerator azul (Reakirt). Typicalfulgerator occurs from southern Mexico (Oaxaca and Chiapas) to Argentina. A. fulgerator has the following character istics: wing bases greenish-blue; the hind termen convex; the upper and lower surfaces dark brown; the central band on the primaries dislocated at vein 3, and spot 2 not conjoined to the cell spot; usually 3 apical spots in the males, 4 in the females; cilia in space 1b white; the white basal streak on the lower surface of the secondaries short and broad, with a black streak at the extreme base present; and one of the most im portant characteristics is the broad, distinct, white suffusion in space Ib on the lower surface of the primaries. A. fulgerator azul (Reakirt), 1866 is the subspecies that occurs in Texas and most of Mexico, extending into South America. A.j. azul has the following characteristics: the wing bases are blue or violet-blue; the hind termen straight or convex; the upper and lower surfaces dark to pale brown; the central band on the primaries usually compact, with -
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton. -
Volume 2, Chapter 10-1: Arthropods: Crustacea
Glime, J. M. 2017. Arthropods: Crustacea – Copepoda and Cladocera. Chapt. 10-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-1-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-1 ARTHROPODS: CRUSTACEA – COPEPODA AND CLADOCERA TABLE OF CONTENTS SUBPHYLUM CRUSTACEA ......................................................................................................................... 10-1-2 Reproduction .............................................................................................................................................. 10-1-3 Dispersal .................................................................................................................................................... 10-1-3 Habitat Fragmentation ................................................................................................................................ 10-1-3 Habitat Importance ..................................................................................................................................... 10-1-3 Terrestrial ............................................................................................................................................ 10-1-3 Peatlands ............................................................................................................................................. 10-1-4 Springs ............................................................................................................................................... -
BUTTERFLIES in Thewest Indies of the Caribbean
PO Box 9021, Wilmington, DE 19809, USA E-mail: [email protected]@focusonnature.com Phone: Toll-free in USA 1-888-721-3555 oror 302/529-1876302/529-1876 BUTTERFLIES and MOTHS in the West Indies of the Caribbean in Antigua and Barbuda the Bahamas Barbados the Cayman Islands Cuba Dominica the Dominican Republic Guadeloupe Jamaica Montserrat Puerto Rico Saint Lucia Saint Vincent the Virgin Islands and the ABC islands of Aruba, Bonaire, and Curacao Butterflies in the Caribbean exclusively in Trinidad & Tobago are not in this list. Focus On Nature Tours in the Caribbean have been in: January, February, March, April, May, July, and December. Upper right photo: a HISPANIOLAN KING, Anetia jaegeri, photographed during the FONT tour in the Dominican Republic in February 2012. The genus is nearly entirely in West Indian islands, the species is nearly restricted to Hispaniola. This list of Butterflies of the West Indies compiled by Armas Hill Among the butterfly groupings in this list, links to: Swallowtails: family PAPILIONIDAE with the genera: Battus, Papilio, Parides Whites, Yellows, Sulphurs: family PIERIDAE Mimic-whites: subfamily DISMORPHIINAE with the genus: Dismorphia Subfamily PIERINAE withwith thethe genera:genera: Ascia,Ascia, Ganyra,Ganyra, Glutophrissa,Glutophrissa, MeleteMelete Subfamily COLIADINAE with the genera: Abaeis, Anteos, Aphrissa, Eurema, Kricogonia, Nathalis, Phoebis, Pyrisitia, Zerene Gossamer Wings: family LYCAENIDAE Hairstreaks: subfamily THECLINAE with the genera: Allosmaitia, Calycopis, Chlorostrymon, Cyanophrys, -
A New Acanthocyclops Kiefer, 1927 (Cyclopoida: Cyclopinae) from an Ecological Reserve in Mexico City Nancy F
This article was downloaded by: [UNAM Ciudad Universitaria] On: 18 February 2013, At: 17:41 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Natural History Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tnah20 A new Acanthocyclops Kiefer, 1927 (Cyclopoida: Cyclopinae) from an ecological reserve in Mexico City Nancy F. Mercado-Salas a & Carlos Álvarez-Silva b a Unidad Chetumal, El Colegio de la Frontera Sur (ECOSUR), A.P. 424., Chetumal, Quintana Roo, 77014, Mexico b Departamento de Hidrobiología, Universidad Autónoma Metropolitana Campus Iztapalapa, Av. San Rafael Atlixco No. 186 Colonia Vicentina, Iztapalapa, C.P, 09340, México, D.F Version of record first published: 11 Feb 2013. To cite this article: Nancy F. Mercado-Salas & Carlos Álvarez-Silva (2013): A new Acanthocyclops Kiefer, 1927 (Cyclopoida: Cyclopinae) from an ecological reserve in Mexico City, Journal of Natural History, DOI:10.1080/00222933.2012.742589 To link to this article: http://dx.doi.org/10.1080/00222933.2012.742589 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and- conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. -
Species Richness and Taxonomic Distinctness of Zooplankton in Ponds and Small Lakes from Albania and North Macedonia: the Role of Bioclimatic Factors
water Article Species Richness and Taxonomic Distinctness of Zooplankton in Ponds and Small Lakes from Albania and North Macedonia: The Role of Bioclimatic Factors Giorgio Mancinelli 1,2,3, Sotir Mali 4 and Genuario Belmonte 1,5,* 1 CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196 Roma, Italy; [email protected] 2 Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy 3 National Research Council (CNR), Institute of Biological Resources and Marine Biotechnologies (IRBIM), 08040 Lesina, Italy 4 Department of Biology, Faculty of Natural Sciences, “Aleksandër Xhuvani” University, 3001 Elbasan, Albania; [email protected] 5 Laboratory of Zoogegraphy and Fauna, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy * Correspondence: [email protected] Received: 13 October 2019; Accepted: 11 November 2019; Published: 14 November 2019 Abstract: Resolving the contribution to biodiversity patterns of regional-scale environmental drivers is, to date, essential in the implementation of effective conservation strategies. Here, we assessed the species richness S and taxonomic distinctness D+ (used a proxy of phylogenetic diversity) of crustacean zooplankton assemblages from 40 ponds and small lakes located in Albania and North Macedonia and tested whether they could be predicted by waterbodies’ landscape characteristics (area, perimeter, and altitude), together with local bioclimatic conditions that were derived from Wordclim and MODIS databases. The results showed that a minimum adequate model, including the positive effects of non-arboreal vegetation cover and temperature seasonality, together with the negative influence of the mean temperature of the wettest quarter, effectively predicted assemblages’ variation in species richness. -
Neocalanus Copepods As an Integral Component for Ecological Modeling in the PICES Regions
Neocalanus copepods as an integral component for ecological modeling in the PICES regions PICES Annual Meeting Oct. 25, 2008 Dalian T. Kobari (Kagoshima Univ.) M.J. Dagg (LUMCON) T. Ikeda, A. Yamaguchi (Hokkaido Univ.) What’s “Neocalanus” ? Ontogenetically migrating1. What’scopepods “Neocalanus”NC ? 2. Life cycle pattern Regional comparison 3. Structural roles in ecosystems NF BiomassNP Feeding habitsBering Sea Okhotsk Linkage to higher trophic levels 4. SeaFunctional roles in ecosystems Pacific Ocean Feeding impacts on food web Japan Sea Carbon flux 5. Response to climate change • Neocalanus is a genus name of crustacean zooplankters belonging to calanoid copepods. 6.• TheseConclusion species are large in size up to 10 mm. • These copepods are abundant across the entire subarctic Pacific Ocean and its marginal seas. Fig. 1. Geographical distribution of the three Neocalanus copepods in the North Pacific Ocean and its marginal seas (after Kobari in press). Stars show study site where their life histories revealed to date. Life cycle pattern 0 Bloom 50 100 250 N. flemingeri 500 Depth (m) 750 Spawning N. plumchrus 1000 N. cristatus 2000 J F M A M J J A S O N D J Fig. 2. Schematic diagram of life cycles for Neocalanus copepods in the Oyashio region (modified from Kobari 2008). • Neocalanus copepods carry out an extensive ontogenetic migration in their life cycles. • Young specimens develop from early spring to summer. N. cristatus reside at subsurface from January to August. The other species appear at near surface but the seasons are segregated during March to June for N. flemingeri and during April to August for N.