Guidelines for Roadside Infrastructure on New and Existing Roads Project

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for Roadside Infrastructure on New and Existing Roads Project D06: European Best Practice for Roadside Design: Guidelines for Roadside Infrastructure on New and Existing Roads Project ACRONYM: RISER TITLE: Roadside Infrastructure for Safer European Roads PROJECT START DATE: 01/01/2003 DURATION: 36 months Date of issue of this report: 16/02/2005 Released by Chalmers University of Technology on behalf of the RISER Consortium Project funded by the European Community under the ‘Competitive and Sustainable Growth’ Programme (1998-2002) European Best Practice for Roadside Design Guidelines for Roadside Infrastructure on New and Existing Roads FOREWORD The European Commission Directorate General for Transportation and Energy (DG- TREN) sponsored a research project to investigate the best practice guidelines for roadside infrastructure. The RISER consortium has compiled the following document which is a synthesis of existing practice in Europe with additional information collected from accident and human behaviour studies. Several technical reports developed in the RISER project were the basis for this document and can provide more technical information. The following information is presented as a template for future users. There are national and regional issues that arise when it comes to the implementation of European norms or guidelines into the member states. This document should be considered as a starting point for national policies that must be adapted to the local geographical, economic, and demographic conditions. Through the use of a common starting point, commonly accepted best practice procedures will be spread through- out the EU member states and facilitate improved roadside safety design, and – most importantly – safety levels throughout the EU. In view of the current EU focus on road safety it is important to recognize the 3-pillar concept for road safety being: Infrastructure design Vehicle design Driver (education) It is evident that the following information addresses the infrastructure aspect for road safety. It should be recognized that the RISER project has included driver and vehicle aspects to not lose sight of the integrated approach that is required to reduce road traffic casualties. The information contained in this document should be used in conjunction with the document “European Best Practice for Roadside Design: Guidelines for Maintenance and Operations of Roadside Infrastructure”. I European Best Practice for Roadside Design Guidelines for Roadside Infrastructure on New and Existing Roads RISER CONSORTIUM Organisation Acronym Country CHALMERS Sweden Chalmers University of Technology (Coordinator) Robert Thomson, Helen Fagerlind, Gunnar Lannér CETE France Centre d’Etudes Techniques de l’Equipement Normandie Centre Guy Dupré, Olivier Bisson CIDAUT Spain Fundación para la Investigación y Desarrollo en Transporte y Energía Juan M. García, Francisco López ERF Belgium European Union Road Federation Brendan Halleman HIASA Spain HIASA Grupo Gonvarri Angel V. Martínez, Antonio Amengual HUT Finland Helsinki University of Technology Jarkko Valtonen, Marko Kelkka, Ute Gosse TNO The Netherlands Netherlands Organisation for Applied Scientific Research Cees W. Klootwijk, Boudewijn Hoogvelt Richard van der Horst, Selma de Ridder, TUG Austria Graz University of Technology Heinz Hoschopf VSRC United Kingdom Vehicle Safety Research Centre, Loughborough University Claire Naing, Julian Hill V&R Germany Volkmann & Rossbach GMBH & CO.KG Wolfgang Wink II European Best Practice for Roadside Design Guidelines for Roadside Infrastructure on New and Existing Roads TABLE OF CONTENTS FOREWORD..........................................................................................................................................................I RISER CONSORTIUM ...................................................................................................................................... II TABLE OF CONTENTS....................................................................................................................................III LIST OF FIGURES ..............................................................................................................................................V LIST OF TABLES ............................................................................................................................................ VII INTRODUCTION................................................................................................................................................. 1 PRINCIPLES FOR SAFE ROAD NETWORKS ............................................................................................................ 1 THE SELF EXPLAINING ROAD AND FORGIVING ROADSIDE PHILOSOPHIES .......................................................... 2 FRAMEWORK FOR ROADSIDE INFRASTRUCTURE DESIGN .................................................................................... 4 CHAPTER 1: DEFINITION AND IDENTIFICATION OF ROADSIDE AND MEDIAN HAZARDS ... 6 1.1 INTRODUCTION ..................................................................................................................................... 6 1.2 DEFINITIONS OF ROADSIDE AND MEDIAN OBJECTS (POINT AND DISTRIBUTED HAZARDS)................... 6 1.2.1 Point Objects................................................................................................................................... 6 1.2.2 Distributed Objects ......................................................................................................................... 8 1.3 OVERVIEW OF RESEARCH ..................................................................................................................... 9 1.3.1 Previous Studies.............................................................................................................................. 9 1.4 RISER ANALYSIS ............................................................................................................................... 10 1.4.1 RISER Statistical Database........................................................................................................... 10 1.4.2 RISER Detailed Database ............................................................................................................. 11 1.4.3 Current European Guidelines ....................................................................................................... 14 1.5 SUMMARY .......................................................................................................................................... 17 1.5.1 Proposed Measurements for the Definition of Hazards ................................................................ 17 REFERENCES ..................................................................................................................................................... 19 CHAPTER 2: SPECIFICATIONS FOR SAFETY ZONES........................................................................ 20 2.1 INTRODUCTION ................................................................................................................................... 20 2.2 DEFINITION OF SAFETY ZONE ............................................................................................................. 20 2.3 OVERVIEW OF RESEARCH ................................................................................................................... 20 2.3.1 The Safety Zone Concept............................................................................................................... 20 2.4 RISER ANALYSIS ............................................................................................................................... 21 2.4.1 Criteria to Dimension the Safety Zone.......................................................................................... 21 2.4.2 Exit Conditions for Run-Off-Road Accidents ................................................................................ 22 2.4.3 Strategy for Determining a Safety Zone Width.............................................................................. 29 2.5 SUMMARY .......................................................................................................................................... 35 2.5.1 Safety Zone Requirements ............................................................................................................. 35 REFERENCES ..................................................................................................................................................... 37 CHAPTER 3: THE RECOVERY ZONE ..................................................................................................... 38 3.1 INTRODUCTION ................................................................................................................................... 38 3.2 DEFINITION OF THE RECOVERY ZONE................................................................................................. 38 3.2.1 The Main Functions of a Recovery Zone....................................................................................... 38 3.3 OVERVIEW OF RESEARCH ................................................................................................................... 39 3.3.1 Hard Shoulder Positive Effects on Accident Rates........................................................................ 39 3.3.2 Soft Shoulder Negative Effects on Run-off-road Accidents ........................................................... 40 3.3.3 Hard Shoulder Positive Effect on Accidents
Recommended publications
  • Module 6. Hov Treatments
    Manual TABLE OF CONTENTS Module 6. TABLE OF CONTENTS MODULE 6. HOV TREATMENTS TABLE OF CONTENTS 6.1 INTRODUCTION ............................................ 6-5 TREATMENTS ..................................................... 6-6 MODULE OBJECTIVES ............................................. 6-6 MODULE SCOPE ................................................... 6-7 6.2 DESIGN PROCESS .......................................... 6-7 IDENTIFY PROBLEMS/NEEDS ....................................... 6-7 IDENTIFICATION OF PARTNERS .................................... 6-8 CONSENSUS BUILDING ........................................... 6-10 ESTABLISH GOALS AND OBJECTIVES ............................... 6-10 ESTABLISH PERFORMANCE CRITERIA / MOES ....................... 6-10 DEFINE FUNCTIONAL REQUIREMENTS ............................. 6-11 IDENTIFY AND SCREEN TECHNOLOGY ............................. 6-11 System Planning ................................................. 6-13 IMPLEMENTATION ............................................... 6-15 EVALUATION .................................................... 6-16 6.3 TECHNIQUES AND TECHNOLOGIES .................. 6-18 HOV FACILITIES ................................................. 6-18 Operational Considerations ......................................... 6-18 HOV Roadway Operations ...................................... 6-20 Operating Efficiency .......................................... 6-20 Considerations for 2+ Versus 3+ Occupancy Requirement ............. 6-20 Hours of Operations ..........................................
    [Show full text]
  • Design Guidelines for the Use of Curbs and Curb/Guardrail
    DESIGN GUIDELINES FOR THE USE OF CURBS AND CURB/GUARDRAIL COMBINATIONS ALONG HIGH-SPEED ROADWAYS by Chuck Aldon Plaxico A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering by September 2002 APPROVED: Dr. Malcolm Ray, Major Advisor Civil and Environmental Engineering Dr. Leonard D. Albano, Committee Member Civil and Environmental Engineering Dr. Tahar El-Korchi, Committee Member Civil and Environmental Engineering Dr. John F. Carney, Committee Member Provost and Vice President, Academic Affairs Dr. Joseph R. Rencis, Committee Member Mechanical Engineering ABSTRACT The potential hazard of using curbs on high-speed roadways has been a concern for highway designers for almost half a century. Curbs extend 75-200 mm above the road surface for appreciable distances and are located very near the edge of the traveled way, thus, they constitute a continuous hazard for motorist. Curbs are sometimes used in combination with guardrails or other roadside safety barriers. Full-scale crash testing has demonstrated that inadequate design and placement of these systems can result in vehicles vaulting, underriding or rupturing a strong-post guardrail system though the mechanisms for these failures are not well understood. For these reasons, the use of curbs has generally been discouraged on high-speed roadways. Curbs are often essential, however, because of restricted right-of-way, drainage considerations, access control, delineation and other curb functions. Thus, there is a need for nationally recognized guidelines for the design and use of curbs. The primary purpose of this study was to develop design guidelines for the use of curbs and curb-barrier combinations on roadways with operating speeds greater than 60 km/hr.
    [Show full text]
  • Impact Assessment
    Title: Impact Assessment (IA) Raising the speed limit for HGVs >7.5T on dual carriageway roads IA No: DfT00280 Date: 23/09/2014 Lead department or agency: Stage: Final Department for Transport Source of intervention: Domestic Other departments or agencies: Type of measure: Primary legislation None Contact for enquiries: [email protected] Summary: Intervention and Options RPC Opinion: EANCB Validated Cost of Preferred (or more likely) Option Total Net Present Business Net Net cost to business per In scope of One-In, Measure qualifies as Value Present Value year (EANCB on 2009 prices) Two-Out? £0m £0m £0m Yes Zero net cost What is the problem under consideration? Why is government intervention necessary? On dual carriageways the speed limit for HGVs>7.5T is 50 mph. The average actual speed at which these HGVs travel in free flow conditions (when they are not held up by other traffic or obstructions such as junctions, hills or bends) is about 53 mph (excludes rigid 2 axle HGVs)1. More than 80% of HGVs exceed 50 mph in free-flow conditions. The limit is out of date and systematically ignored by professional HGV drivers. The proposal is to raise the speed limit on dual carriageway roads for these vehicles to 60mph, which would better reflect the capabilities of modern HGVs. Government intervention is necessary because speed is regulated by government, through speed limits, in order to balance the private benefits of speed of travel with the social costs and risks (such as related to safety) of high speeds. What are the policy objectives and the intended effects? The intention is to modernise the speed limit, improve compliance, make the limit more credible and legitimise the behaviour of professional drivers.
    [Show full text]
  • Type 1 Single Carriageway Pavement Detail A
    A1 A B C D E F G H I J K L M N O P DESIGN REPORT 1 Notes: 1. This Drawing is only to be used for the Design Element identified in the title box. All other information shown on the drawing is to be considered indicative only. 2. These drawings are to be read in conjunction with all other relevant design drawings. 3. All dimensions are in (m) & are typical dimensions which are subject to requirements for visibility & curve widening. 2 3 3.00(MIN.) VARIES 3.00 2.50 7.30 2.50 3.00 VARIES VARIES 3.00 (MIN) VERGE HARD CARRIAGEWAY HARD VERGE SHOULDER 3.65 3.65 SHOULDER TRAFFIC TRAFFIC 1.00 LANE LANE FENCE LINE ROUNDING 0.50 VERGE LINE CONCRETE CHANNEL 1.00 1.00 CUT LINE IN ACCORDANCE WITH FENCE LINE 4 1.00 RCD/500/22 ROUNDING ROUNDING 0.10 TOPSOIL ROUNDING NORMAL CROSS NORMAL CROSS 0.50 0.50 FALL FALL TOE OF 1 5% VERGE LINE EMBANKMENT FOR FURTHER DETAILS 3 ON EARTHWORKS, 1 1 1 1 SEALED CARRIER DRAIN 5 5 5 5 REFER TO THE A EARTHWORKS SERIES 600 CUT CONDITION FILL CONDITION 1 0.10 TOPSOIL 0.75 3 VARIES FIN OR NARROW FOR FURTHER DETAILS FILTER DRAIN ON ROAD EDGE DRAINAGE TYPES, (WHERE REQUIRED) FOR FURTHER DETAILS REFER TO THE DRAINAGE SERIES 500 5 ON EARTHWORKS, REFER TO THE VARIES EARTHWORKS SERIES 600 UNLINED INTERCEPTOR DRAIN WHERE REQUIRED TYPE 1 SINGLE CARRIAGEWAY SCALE 1:100 (A1) 6 7 PAVEMENT DETAIL A Type A: N6 Type Single Carriageway.
    [Show full text]
  • Costing of Bicycle Infrastructure and Programs in Canada Project Team
    Costing of Bicycle Infrastructure and Programs in Canada Project Team Project Leads: Nancy Smith Lea, The Centre for Active Transportation, Clean Air Partnership Dr. Ray Tomalty, School of Urban Planning, McGill University Researchers: Jiya Benni, The Centre for Active Transportation, Clean Air Partnership Dr. Marvin Macaraig, The Centre for Active Transportation, Clean Air Partnership Julia Malmo-Laycock, School of Urban Planning, McGill University Report Design: Jiya Benni, The Centre for Active Transportation, Clean Air Partnership Cover Photo: Tour de l’ile, Go Bike Montreal Festival, Montreal by Maxime Juneau/APMJ Project Partner: Please cite as: Benni, J., Macaraig, M., Malmo-Laycock, J., Smith Lea, N. & Tomalty, R. (2019). Costing of Bicycle Infrastructure and Programs in Canada. Toronto: Clean Air Partnership. CONTENTS List of Figures 4 List of Tables 7 Executive Summary 8 1. Introduction 12 2. Costs of Bicycle Infrastructure Measures 13 Introduction 14 On-street facilities 16 Intersection & crossing treatments 26 Traffic calming treatments 32 Off-street facilities 39 Accessory & support features 43 3. Costs of Cycling Programs 51 Introduction 52 Training programs 54 Repair & maintenance 58 Events 60 Supports & programs 63 Conclusion 71 References 72 Costing of Bicycle Infrastructure and Programs in Canada 3 LIST OF FIGURES Figure 1: Bollard protected cycle track on Bloor Street, Toronto, ON ..................................................... 16 Figure 2: Adjustable concrete barrier protected cycle track on Sherbrook St, Winnipeg, ON ............ 17 Figure 3: Concrete median protected cycle track on Pandora Ave in Victoria, BC ............................ 18 Figure 4: Pandora Avenue Protected Bicycle Lane Facility Map ............................................................ 19 Figure 5: Floating Bus Stop on Pandora Avenue ........................................................................................ 19 Figure 6: Raised pedestrian crossings on Pandora Avenue .....................................................................
    [Show full text]
  • Getting to the Curb: a Guide to Building Protected Bike Lanes.”)
    Getting to the Curb A Guide to Building Protected Bike Lanes That Work for Pedestrians This report is dedicated to Joanna Fraguli, a passionate pedestrian safety advocate whose work made San Francisco a better place for everyone. This report was created by the Senior & Disability Pedestrian Safety Workgroup of the San Francisco Vision Zero Coalition. Member organizations include: • Independent Living Resource Center of San Francisco • Senior & Disability Action • Walk San Francisco • Age & Disability Friendly SF • San Francisco Mayor’s Office on Disability Primary author: Natasha Opfell, Walk San Francisco Advisor/editor: Cathy DeLuca, Walk San Francisco Illustrations: EricTuvel For more information about the Workgroup, contact Walk SF at [email protected]. Thank you to the San Francisco Department of Public Health for contributing to the success of this project through three years of funding through the Safe Streets for Seniors program. A sincere thanks to everyone who attended our March 6, 2018 charette “Designing Protected Bike Lanes That Are Safe and Accessible for Pedestrians.” This guide would not exist without your invaluable participation. Finally, a special thanks to the following individuals and agencies who gave their time and resources to make our March 2018 charette such a great success: • Annette Williams, San Francisco Municipal Transportation Agency • Jamie Parks, San Francisco Municipal Transportation Agency • Kevin Jensen, San Francisco Public Works • Arfaraz Khambatta, San Francisco Mayor’s Office on Disability Table of
    [Show full text]
  • User Manual for the Highways Agency's Routine Maintenance Management System
    RMMS MANUAL __________________________________________________ User Manual for the Highways Agency's Routine Maintenance Management System Copies available from:- Highways Agency Operations Support Division St Christopher House Southwark Street LONDON SE1 OTE Tel: 0171-921-3971 Fax: 0171-921-3878 Price £50.00 per copy © Crown Copyright 1996 HIGHWAYS AGENCY RMMS MANUAL CONTENTS INTRODUCTION Part 1: SURVEY 1.1 Introduction 1.2 Network Referencing 1.3 Survey Procedure Part 2: INVENTORY 2.1 Introduction 2.2 Surface Options 2.3 Carriageway 2.4 Footways and Cycle Tracks 2.5 Covers, Gratings, Frames and Boxes 2.6 Kerbs, Edgings and Pre-formed Channels 2.7 Highway Drainage 2.8 Communication Installations 2.9 Embankments and Cuttings 2.10 Grassed Areas 2.11 Hedges and Trees 2.12 Sweeping and Cleaning 2.13 Safety Fences and Barriers 2.14 Fences, Walls, Screens and Environmental Barriers 2.15 Road Studs 2.16 Road Markings 2.17 Road Traffic Signs 2.18 Road Traffic Signals 2.19 Road Lighting 2.20 Highway Structures Version 1 Amend.No 0 Issue Date May '96 HIGHWAYS AGENCY RMMS MANUAL CONTENTS (Continued) Part 3: INSPECTION 3.1 Introduction 3.2 RMMS Intervals and Frequencies 3.3 Carriageway 3.4 Footways and Cycle Tracks 3.5 Covers, Gratings, Frames and Boxes 3.6 Kerbs, Edgings and Pre-formed Channels 3.7 Highway Drainage 3.8 Communication Installations 3.9 Embankments and Cuttings 3.10 Grassed Areas 3.11 Hedges and Trees 3.12 Sweeping and Cleaning 3.13 Safety Fences and Barriers 3.14 Fences, Walls, Screens and Environmental Barriers 3.15 Road Studs 3.16
    [Show full text]
  • TA 79/99 Amendment No 1 3
    Chapter 3 Volume 5 Section 1 Determination of Urban Road Capacity Part 3 TA 79/99 Amendment No 1 3. DETERMINATION OF URBAN ROAD CAPACITY 3.1 Table 1 sets out the types of Urban Roads and the features that distinguish between them and affect their traffic capacity. Tables 2 & 3 give the flow capacity for each road type described in Table 1. 3.2 Table 4 gives the adjustments when the proportion of heavy vehicles in a one way flow exceeds 15%. A heavy vehicle is defined in this context as OGV1, OGV2 or Buses and Coaches as given in the COBA Manual (DMRB 13.1 Part 4, Chapter 8). 3.3 The flows for road type UM in Table 2 apply to urban motorways where junctions are closely spaced giving weaving lengths of less than 1 kilometre. Urban motorways with layout and junction spacing similar to rural motorways can carry higher flows and TA46/97 “Traffic Flow Ranges for Use in the Assessment of New Rural Roads” will be more applicable. 3.4 Flows for single carriageways are based upon a 60/40 directional split in the flow. The one-way flows shown in Table 2 represent the busiest flow 60% figure. 3.5 The capacities shown apply to gradients of up to 5-6%. Special consideration should be made for steeper gradients, which would reduce capacity. 3.6 On-road parking reduces the effective road width and disrupts flow, e.g. where parking restrictions are not applied on road type UAP2 the flows are likely to be similar to UAP3 where unrestricted parking applies, see Table 1, Similarly effective parking restrictions can lead to higher flows.
    [Show full text]
  • The A19 Trunk Road
    THE CHARTERED INSTITUTION OF HIGHWAYS & TRANSPORTATION The A19 Trunk Road The A19 tends to live in the shadow of the more well known A1 it runs more or less parallel with. However, it is no less important to the region, serving the heavy industry and associated ports of Teesside, Wearside and Tyneside. Its journey from a single carriageway road linking coastal towns to modern day dual carriageway has been a painstaking process of over 45 years but has brought both economic and visual transformation to the North East. 1 A Broad History Today the A19 trunk road is a modern all-purpose dual carriageway running from the junction with the A1 at Seaton Burn, north of Newcastle, until it leaves the region south of Middlesbrough. It continues through North Yorkshire to Thirsk and, via a short link (A168), rejoins the A1 at Dishforth. The A19 itself continues as a non-trunk road to Doncaster. In 1952, the A19 was very different. It existed only south of the River Tyne and was a coastal route of single carriageway and relatively poor standard. Starting at South Shields it passed through Whitburn, Sunderland and Seaham, heading inland through Easington and then back out to the coast via Horden and onto Hartlepool. It then snaked its way through Billingham, Stockton, Eaglescliffe and Yarm. The improvements in our region towards the route we know today began at the Tyne Tunnel in 1967/8. The tunnel (£13.4m) was built with approach roads from the A1058 Newcastle to Tynemouth Coast Road (£6.5m) in the north and the A184 Gateshead to Sunderland Trunk Road (£3.5m) in the south.
    [Show full text]
  • Optimized Design of Concrete Curb Under Off Tracking Loads December 2008 6
    Technical Report Documentation Page 1. Report No. 2. Government 3. Recipient’s Catalog No. FHWA/TX-09/0-5830-1 Accession No. 4. Title and Subtitle 5. Report Date Optimized Design of Concrete Curb under Off Tracking Loads December 2008 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Chul Suh, Soojun Ha, Moon Won 0-5830-1 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research 11. Contract or Grant No. The University of Texas at Austin 0-5830 3208 Red River, Suite 200 Austin, TX 78705-2650 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report, 09/2005-08/2007 Research and Technology Implementation Office 14. Sponsoring Agency Code P.O. Box 5080 Austin, TX 78763-5080 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. 16. Abstract Most research studies in the portland cement concrete (PCC) pavement area focused on addressing distresses related to pavement structure itself. As a result, the design and construction of other structural elements of the concrete curb and curb and gutter (CCCG) system have been overlooked and not much research has been done in this area. Visual inspection of damaged CCCG systems was conducted in the field. All damaged CCCG systems were the TxDOT Type II system and almost all damaged CCCG systems were found at U-turn curbs due to excessive off tracking of traffic. Although geometric changes of the curb design are the fundamental solutions for the off tracking failure, such changes are not feasible in most cases due to economic and space limitations.
    [Show full text]
  • Dual Carriageways Dual Carriageways – Know the Dangers
    ROAD SAFETY EDUCATION Dual Carriageways Dual carriageways – know the dangers Never confuse a dual carriageway with a motorway. Both may have 2 or 3 lanes, a central reservation and a national speed limit of 70 mph, but that’s as far as the similarity goes. When driving on a dual carriageway there are many dangers you need to be aware of. Know the difference between dual carriageways and motorways Unlike motorways… • Dual carriageways may have variable speed limits; • Dual carriageways usually permit right turns; • Dual carriageways allow traffic to join from the left and cross from left to right; • Cyclists, mopeds, farm vehicles and pedestrians are allowed to use dual carriageways; • Dual carriageways may have Pelican Crossings, traffic lights, roundabouts and Zebra Crossings. 2 Know the speed limits Dual carriageways often have lower or variable speed limits shown by red circular signs. Rule 124 of The Highway Code NI says you MUST NOT exceed the maximum speed limits for the road and for your vehicle. The presence of street lights generally means that there is a 30 mph (48 km/h) speed limit unless otherwise specified. 3 Know your stopping distances (Rule 126) Always drive at a speed that will allow you to stop well within the distance you can see to be clear. Leave enough space between you and the vehicle in front so that you can pull up safely if it suddenly slows down or stops. Remember - • Never get closer than the overall stopping distance (see typical stopping distances table); • Always allow at least a two-second gap between you and the vehicle Know how to join a in front on roads carrying dual carriageway fast-moving traffic and in tunnels where visibility is reduced; When joining a dual carriageway • The two-second gap rule should obey signs and road markings.
    [Show full text]
  • Click Here for Technical Note
    DESIGN MANUAL FOR ROADS AND BRIDGES VOLUME 6 ROAD GEOMETRY SECTION 1 LINKS PART 4 TD 70/XX DESIGN OF WIDE SINGLE 2+1 ROADS SUMMARY This Standard sets out the design requirements for Wide Single 2+1 roads. INSTRUCTIONS FOR USE DESIGN MANUAL FOR ROADS AND BRIDGES VOLUME 6 ROAD GEOMETRY SECTION 1 LINKS PART 4 TD 70/XX DESIGN OF WIDE SINGLE 2+1 ROADS Contents Chapter 1. Introduction 2. Design Principles 3. Geometric Standards 4. Junctions 5. Traffic Signs and Road Markings 6. Road Users’ Specific Requirements 7. Economics 8. References 9. Enquiries Appendix A: Traffic Signs and Road Markings (Sample layouts) Volume 6 Section 1 Chapter 1 Part 4 TD 70/XX Introduction 1. INTRODUCTION General Changeover: A carriageway layout which effects 1.1 A Wide Single 2+1 (WS2+1) road consists a change in the designated use of the middle lane of two lanes of travel in one direction and a single of a WS2+1 road from one direction of traffic to lane in the opposite direction. This provides the opposite direction. overtaking opportunities in the two lane direction, while overtaking in the single lane direction is Climbing Lane: An additional lane added to a prohibited. single or dual carriageway in order to improve capacity and/or safety because of the presence of a steep gradient. Scope Conflicting Changeover: A changeover where 1.2 This Standard applies to single carriageway the vehicles using the middle lane are travelling trunk roads in rural areas. TD 9 (DMRB 6.1.1) is towards each other.
    [Show full text]