Introduction 1 Introduction 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human-Nature Relationships in the Tungus Societies of Siberia and Northeast China Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas
Human-nature relationships in the Tungus societies of Siberia and Northeast China Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas To cite this version: Alexandra Lavrillier, Aurore Dumont, Donatas Brandišauskas. Human-nature relationships in the Tungus societies of Siberia and Northeast China. Études mongoles et sibériennes, centrasiatiques et tibétaines, Centre d’Etudes Mongoles & Sibériennes / École Pratique des Hautes Études, 2018, Human-environment relationships in Siberia and Northeast China. Knowledge, rituals, mobility and politics among the Tungus peoples, 49, pp.1-26. 10.4000/emscat.3088. halshs-02520251 HAL Id: halshs-02520251 https://halshs.archives-ouvertes.fr/halshs-02520251 Submitted on 26 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Études mongoles et sibériennes, centrasiatiques et tibétaines 49 | 2018 Human-environment relationships in Siberia and Northeast China. Knowledge, rituals, mobility and politics among the Tungus peoples, followed by Varia Human-nature relationships in the Tungus societies of Siberia -
Morphology, Diet Composition, Distribution and Nesting Biology of Four Lark Species in Mongolia
© 2013 Journal compilation ISSN 1684-3908 (print edition) http://biology.num.edu.mn Mongolian Journal of Biological http://mjbs.100zero.org/ Sciences MJBS Volume 11(1-2), 2013 ISSN 2225-4994 (online edition) Original ArƟ cle Morphology, Diet Composition, Distribution and Nesting Biology of Four Lark Species in Mongolia Galbadrakh Mainjargal1, Bayarbaatar Buuveibaatar2* and Shagdarsuren Boldbaatar1 1Laboratory of Ornithology, Institute of Biology, Mongolian Academy of Sciences, Jukov Avenue, Ulaanbaatar 51, Mongolia, Email: [email protected] 2Mongolia Program, Wildlife Conservation Society, San Business Center 201, Amar Str. 29, Ulaanbaatar, Mongolia, email: [email protected] Abstract Key words: We aimed to enhance existing knowledge of four lark species (Mongolian lark, Horned Alaudidae, larks, lark, Eurasian skylark, and Lesser short-toed lark), with respect to nesting biology, breeding, food habits, distribution, and diet, using long-term dataset collected during 2000–2012. Nest and Mongolia egg measurements substantially varied among species. For pooled data across species, the clutch size averaged 3.72 ± 1.13 eggs and did not differ among larks. Body mass of nestlings increased signifi cantly with age at weighing. Daily increase in body mass Article information: of lark nestlings ranged between 3.09 and 3.89 gram per day. Unsurprisingly, the Received: 18 Nov. 2013 majority of lark locations occurred in steppe ecosystems, followed by human created Accepted: 11 Dec. 2013 systems; whereas only 1.8% of the pooled locations across species were observed in Published: 20 Apr. 2014 forest ecosystem. Diet composition did not vary among species in the proportions of major food categories consumed. The most commonly occurring food items were invertebrates and frequently consumed were being beetles (e.g. -
Fifty Common Birds of China
r • P91 29 ALBERT R. MANN LIBRARY AT CORNELL UNIVERSITY THE GIFT OF Hugh Hubbard ""'""'•*'"'"'» QL 691.C6K29 Fifty common birds of China, 3 1924 000 070 965" Cornell University v^> Library The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/cletails/cu31924000070965 FIFTY COMW)N BIRDS OF CHINA. BY C. R. KELLOGG, H. W. HUBBARD AND LEE HSIANG YUAN (^ ^ 7c). WITH NOTES AND SUGGESTIONS BY G. D. WILDER. PREFACE. This little book on birds is the outcome of a demand for a handbook of common Chinese birds to be used in Boy's Clubs, Nature Study Groups, and those interested in birdj study but who are bewildered by the number of unfamiliar birds they meet in China. Even those who are familiar with American and European birds find themselves at a loss when they come to study the birds of this country, and it is hoped that this booklet will aid in the identification of some Chinese birds and help to create an interest in their study. As first prepared brief descriptions were given of thirty common Fukien birds, with a color key for their identification, but the manuscript was later sent to Mr. H. W. Hubbard, of Paoting, (^ ^) Hopei Province, who added the descriptions of twenty common birds of North China and sent the material to Dr. G. D. Wilder for suggestions. The drawings and color key prepared by Mr. Hubbard, and the notes and corrections by both these enthusiastic and qualified bird students will serve to enlarge and greatly increase the usefulness of the work. -
PCR to Study Mammalian Phylogeny A
Russian Journal of Genetics, Vol. 38, No. 6, 2002, pp. 714–724. Translated from Genetika, Vol. 38, No. 6, 2002, pp. 853–864. Original Russian Text Copyright © 2002 by Bannikova, Matveev, Kramerov. Using Inter-SINE–PCR to Study Mammalian Phylogeny A. A. Bannikova1, V. A. Matveev1, and D. A. Kramerov2 1 Department of Vertebrate Zoology, Moscow State University, Moscow, 119899 Russia; e-mail: [email protected] 2 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia Received October 31, 2001 Abstract—Results of the use of the fingerprinting method related to short interspersed elements (SINEs), inter- SINE–PCR, in the study of phylogenetic and taxonomic relationship in mammals from orders Chiroptera (fam- ily Vespertilionidae) and Lipotyphla (family Erinaceidae) are reported. The inter-SINE–PCR method is based on the amplification of fragments situated between copies of SINEs, which are short retroposons spaced 100 to 1000 bp apart. Specifically selected primers were used, which are complementary to consensus sequences of two short retroposons: the mammalian interspersed repeat (MIR), which is typical of all mammals and some other vertebrates, was used in the cases of bats and Erinaceidae, and the ERI-1 element recently isolated from the genome of the Daurian hedgehog was used in the case of Erinaceidae. The results support the current view on phylogenetic relationship between hedgehogs belonging to genera Erinaceus, Hemiechinus, and Paraechi- nus (but not the genus Atelerix). In bats, the phylogenetic reconstruction revealed a statistically valid topology only at lower taxonomic levels, whereas the topology for the genus and supragenus ranks was unresolved and fan-shaped. -
Comparative Morphology of Two Sympatric Species of Hedgehog in Ikh Nart Nature Reserve, Mongolia Richard P
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2010 Comparative Morphology of Two Sympatric Species of Hedgehog in Ikh Nart Nature Reserve, Mongolia Richard P. Reading Denver Zoological Foundation, [email protected] David Kenny Denver Zoological Foundation Sodnomphil Batdorj Denver Zoological Foundation James Murdoch University of Vermont, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biolmongol Part of the Asian Studies Commons, Biodiversity Commons, Environmental Sciences Commons, Nature and Society Relations Commons, Other Animal Sciences Commons, and the Zoology Commons Reading, Richard P.; Kenny, David; Batdorj, Sodnomphil; and Murdoch, James, "Comparative Morphology of Two Sympatric Species of Hedgehog in Ikh Nart Nature Reserve, Mongolia" (2010). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 64. http://digitalcommons.unl.edu/biolmongol/64 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Copyright 2010, Martin-Luther-Universität Halle Wittenberg, Halle (Saale). Used by permission. Erforsch. biol. Ress. Mongolei (Halle/Saale) 2010 (11): 323-328 Comparative Morphology of Two Sympatric Species of Hedgehog in Ikh Nart Nature Reserve, Mongolia R. P. Reading, D. Kenny, S. Batdorj & J. -
Mongolia: the Gobi Desert, Steppe & Taiga 2019
Field Guides Tour Report Mongolia: The Gobi Desert, Steppe & Taiga 2019 Jun 8, 2019 to Jun 26, 2019 Phil Gregory & Sundev Gombobataar For our tour description, itinerary, past triplists, dates, fees, and more, please VISIT OUR TOUR PAGE. These three Eurasian Eagle-Owl chicks and their mother were found on a cliff-side at Bogd Mountain, quite by accident! Guide Phil Gregory happened to set up the scope pointed right at the female owl, then found that she had these three large offspring in a nest nearby. This was just one of the exciting sightings we had on the tour. This was the third Field Guides tour to Mongolia, covering many of the key sites and habitats in central, southern and north-eastern Mongolia, including steppe, desert and boreal forest, and we succeeded very nicely. It was again a late, dry spring here, and some species like waders, wagtails and warblers were scarce or absent, but breeding was certainly in full swing. Staying primarily in ger camps was fun, but you have to get used to the low doorways and starlit nocturnal treks to the bathroom. Most came in early to get recovered and oriented, and a couple of folks did a cultural tour, which included the National Museum and the Dinosaur Museum, well worth doing and recommended. On day one we went to Songino and some riparian habitat along the Tuul River, and picked up the first Mongolian birds, including Asian Azure-winged Magpie, White-cheeked Starling, a nice assortment of wildfowl and Demoiselle Crane. Long-tailed Rosefinch showed nicely, as did Azure Tit and White-crowned Penduline Tit, plus White-backed Woodpecker. -
Asia 24 Supplementary Material
Asia 24 Supplementary Material Coordinating Lead Authors: Yasuaki Hijioka (Japan), Erda Lin (China), Joy Jacqueline Pereira (Malaysia) Lead Authors: Richard T. Corlett (China), Xuefeng Cui (China), Gregory Insarov (Russian Federation), Rodel Lasco (Philippines), Elisabet Lindgren (Sweden), Akhilesh Surjan (India) Contributing Authors: Elena M. Aizen (USA), Vladimir B. Aizen (USA), Rawshan Ara Begum (Bangladesh), Kenshi Baba (Japan), Monalisa Chatterjee (USA/India), J. Graham Cogley (Canada), Noah Diffenbaugh (USA), Li Ding (Singapore), Qingxian Gao (China), Matthias Garschagen (Germany), Masahiro Hashizume (Japan), Manmohan Kapshe (India), Andrey G. Kostianoy (Russia), Kathleen McInnes (Australia), Sreeja Nair (India), S.V.R.K. Prabhakar (India), Yoshiki Saito (Japan), Andreas Schaffer (Singapore), Rajib Shaw (Japan), Dáithí Stone (Canada/South Africa /USA), Reiner Wassman (Philippines), Thomas J. Wilbanks (USA), Shaohong Wu (China) Review Editors: Rosa Perez (Philippines), Kazuhiko Takeuchi (Japan) Volunteer Chapter Scientists: Yuko Onishi (Japan), Wen Wang (China) This chapter on-line supplementary material should be cited as: Hijioka , Y., E. Lin, J.J. Pereira, R.T. Corlett, X. Cui, G.E. Insarov, R.D. Lasco, E. Lindgren, and A. Surjan, 2014: Asia – supplementary material. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmen tal Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Available from www.ipcc-wg2.gov/AR5 and www.ipcc.ch. -
EAAFP MOP8 Agenda Documents Version 4
East Asian – Australasian Flyway Partnership 8th Meeting of Partners, Kushiro, Japan 16-21 January 2015 AGENDA DOCUMENTS VERSION 4 Please note the following changes from the Agenda Documents Version 3. Doc 3.2.1 Partner Report: China, Cambodia, WWF Doc 3.3.1 Task Force Report: SBS TF Doc 6.1.2 Partner Workplan: China Doc 5.2.7 Shorebird Working Group Informal meeting (16:00 – 16:50 on Monday 19 Jan) NOTES ON STATUS OF DOCUMENTS This is the first version of the Agenda Documents, circulated to Partners and to registered participants for the 8th Meeting of Partners (MoP8) before the Meeting date. It is also available on the MoP8 web page at http://www.eaaflyway.net/mop-8/. Additional material may be provided at registration or during the Meeting. ANNEX There are additional supporting documents for some agenda items. These supporting documents are attached to the same email as separate documents. • Annex. Doc 3.3.1.2_Scientific Task Force on Avian Influenza and Wild Birds statement (19th December 2014) • Annex. Doc 3.3.2.1_Input of Asian Waterbird Census and Waterbird Population Estimates • Annex. Doc 4.3.3_Review International Policy Framework EAAF • Annex. Doc 4.5.2_CMS COP PROGRAMME OF WORK ON MIGRATORY BIRDS AND FLYWAYS (Annex 1 to Resolution 11.14) • Annex. Doc 4.5.4_CAFF Strategy Series Report No. 5, May 2014_Arctic Migratory Birds Initiative (AMBI) • Annex. Doc 5.1.5 _FAO EMPRES animal health 360 No.44(2)/2014 INSTRUCTIONS In order to save paper and reduce impacts on our environment, no paper copies of the final agenda document for the MoP8 will be printed or provided. -
SILENT STEPPE II: Mongolia’S Wildlife Trade Crisis, Ten Years Later
MONGOLIA SILENT STEPPE II: Mongolia’s Wildlife Trade Crisis, Ten Years Later MONGOLIA IRIM Independent Research Institute MONGOLIA SILENT STEPPE II: Mongolia’s Wildlife Trade Crisis, Ten Years Later MONGOLIA IRIM Independent Research Institute MONGOLIA SILENT STEPPE II: Mongolia’s Wildlife Trade Crisis, Ten Years Later September 2019 This study was prepared by The Zoological This report is a product of the staff of the Society of London (ZSL), Legal Atlas, and the Zoological Society of London, Legal Atlas, and Independent Research Institute of Mongolia IRIM, as well as the reviewers that provided (IRIM) with funding from the Illegal Wildlife valuable input to the final draft. In this regard, Trade Challenge Fund of Great Britain’s special thanks are due to Mr. Gombobaatar Department for Environment, Food and from the Ministry of Environment and Natural Rural Affairs (DEFRA). The UK government is Resources, who provided a review of the committed to tackling illegal wildlife trade, a critical chapters. The report’s findings do not criminal industry worth more than £6 billion necessarily reflect the views of the Directors of each year threatening both wildlife and people. these entities or the government of Mongolia. The Illegal Wildlife Trade (IWT) Challenge No entity involved in this study guarantees the Fund provides financial support to practical accuracy of the data included. Likewise, the projects around the world which: boundaries, colors, denominations, and other information shown on any map in this work • develop sustainable livelihoods for do not imply any judgment on the part of communities affected by illegal wildlife any entity named herein concerning the legal trade status of any territory or the endorsement or • strengthen law enforcement and the role acceptance of such boundaries. -
Print This Article
97 Flyway structure, breeding, migration and wintering distributions of the globally threatened Swan Goose Anser cygnoides in East Asia IDERBAT DAMBA1,2,3, LEI FANG1,4, KUNPENG YI1, JUNJIAN ZHANG1,2, NYAMBAYAR BATBAYAR5, JIANYING YOU6, OUN-KYONG MOON7, SEON-DEOK JIN8, BO FENG LIU9, GUANHUA LIU10, WENBIN XU11, BINHUA HU12, SONGTAO LIU13, JINYOUNG PARK14, HWAJUNG KIM14, KAZUO KOYAMA15, TSEVEENMYADAG NATSAGDORJ5, BATMUNKH DAVAASUREN5, HANSOO LEE16, OLEG GOROSHKO17,18, QIN ZHU1,4, LUYUAN GE19, LEI CAO1,2 & ANTHONY D. FOX20 1State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. 2University of Chinese Academy of Sciences, Beijing 100049, China. 3Ornithology Laboratory, Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia. 4Life Sciences, University of Science and Technology of China, Hefei, China. 5Wildlife Science and Conservation Center of Mongolia, Union Building B701, Ulaanbaatar 14210, Mongolia. 6Planning and Design Team of Datian Forestry Investigation, Fujian 366100, China. 7Animal and Plant Quarantine Agency, Gimcheon 39660, Korea. 8National Institute of Ecology, Seocheon 33657, Korea. 9Fujian Wildlife Conservation Center, Fuzhou 350003, China. 10Jiangxi Poyang Lake National Reserve Authority, Nanchang, Jiangxi 330038, China. 11Shengjin Lake National Nature Reserve, Dongzhi, Anhui, China. 12Nanji Wetland National Nature Reserve Agency, Nanchang, China. 13Inner Mongolia Hulun Lake National Nature Reserve Administration, Hulunbeir 021008, China. 14Migratory Bird Research Center National Institute of Biological Research, Incheon, Korea. 15Japan Bird Research Association, Tokyo, Japan. 16Korea Institute of Environmental Ecology, 62-12 Techno 1-ro, Yuseong-gu, Daejeon 34014, Korea. 17Daursky State Nature Biosphere Reserve, Zabaykalsky Krai, 674480, Russia. 18Chita Institute of Nature Resources, Ecology and Cryology, Zabaykalsky Krai 672014, Russia. -
Federal Register/Vol. 85, No. 74/Thursday, April 16, 2020/Notices
21262 Federal Register / Vol. 85, No. 74 / Thursday, April 16, 2020 / Notices acquisition were not included in the 5275 Leesburg Pike, Falls Church, VA Comment (1): We received one calculation for TDC, the TDC limit would not 22041–3803; (703) 358–2376. comment from the Western Energy have exceeded amongst other items. SUPPLEMENTARY INFORMATION: Alliance, which requested that we Contact: Robert E. Mulderig, Deputy include European starling (Sturnus Assistant Secretary, Office of Public Housing What is the purpose of this notice? vulgaris) and house sparrow (Passer Investments, Office of Public and Indian Housing, Department of Housing and Urban The purpose of this notice is to domesticus) on the list of bird species Development, 451 Seventh Street SW, Room provide the public an updated list of not protected by the MBTA. 4130, Washington, DC 20410, telephone (202) ‘‘all nonnative, human-introduced bird Response: The draft list of nonnative, 402–4780. species to which the Migratory Bird human-introduced species was [FR Doc. 2020–08052 Filed 4–15–20; 8:45 am]‘ Treaty Act (16 U.S.C. 703 et seq.) does restricted to species belonging to biological families of migratory birds BILLING CODE 4210–67–P not apply,’’ as described in the MBTRA of 2004 (Division E, Title I, Sec. 143 of covered under any of the migratory bird the Consolidated Appropriations Act, treaties with Great Britain (for Canada), Mexico, Russia, or Japan. We excluded DEPARTMENT OF THE INTERIOR 2005; Pub. L. 108–447). The MBTRA states that ‘‘[a]s necessary, the Secretary species not occurring in biological Fish and Wildlife Service may update and publish the list of families included in the treaties from species exempted from protection of the the draft list. -
Two Distinct Flyways with Different Population Trends Of
13 Two distinct flyways with different population trends of Bewick’s Swan Cygnus columbianus bewickii in East Asia LEI FANG1, JUNJIAN ZHANG2,3, QINGSHAN ZHAO2, DIANA SOLOVYEVA4, DIDIER VANGELUWE5, SONIA B. ROZENFELD6, THOMAS LAMERIS7, ZHENGGANG XU8, INGA BYSYKATOVA-HARMEY9, NYAMBAYAR BATBAYAR10, KAN KONISHI11, OUN-KYONG MOON12 , BU HE13, KAZUO KOYAMA14, SACHIKO MORIGUCHI15,16, TETSUO SHIMADA17, JINYOUNG PARK18, HWAJUNG KIM18, GUANHUA LIU19, BINHUA HU20, DALI GAO21, LUZHANG RUAN22, TSEVEENMYADAG NATSAGDORJ10, BATMUNKH DAVAASUREN10, ALEXEY ANTONOV23, ANASTASIA MYLNIKOVA4, ALEXANDER STEPANOV4,9, GEORGE KIRTAEV6, DMYTRY ZAMYATIN6, SAVAS KAZANTZIDIS24, TSUNEO SEKIJIMA15, IDERBAT DAMBA2,3, HANSOO LEE25, BEIXI ZHANG2,3, YANBO XIE26, EILEEN C. REES27, LEI CAO2,3,* & ANTHONY D. FOX28 1Life Sciences, University of Science and Technology of China, Hefei, China. 2State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China. 3School of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China. 4Laboratory of Ornithology, Institute of Biological Problems of the North, Magadan, Russia. 5Royal Belgian Institute of Natural Sciences, Brussels, Belgium. 6Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia. 7Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands. 8Key Laboratory of Forestry Remote Sensing Based on Big Data & Ecological Security of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China. 9Institute of Biological Problems of Cryolitozone, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russia. 10Wildlife Sciences and Conservation Center of Mongolia, Union Building, B-701, UNESCO Str., Ulaanbaatar 14210, Mongolia. 11Hamatonbetsu Lake Kutcharo Waterfowl Observatory, Kutcharo-kohan, Hamatonbetsu-cho, Esashi-gun, Hokkaido 098-5739, Japan.