122 Structure and Bonding

Total Page:16

File Type:pdf, Size:1020Kb

122 Structure and Bonding 122 Structure and Bonding Series Editor: D. M. P.Mingos Editorial Board: P.Day·T.J.Meyer·H.W.Roesky·J.-P.Sauvage Structure and Bonding Series Editor: D. M. P.Mingos Recently Published and Forthcoming Volumes Single-Molecule Magnets Principles and Applications and Related Phenomena of Density Functional Theory Volume Editor: Winpenny, R. in Inorganic Chemistry II Vol. 122, 2006 Volume Editors: Kaltsoyannis, N., McGrady, J. E. Non-Covalent Multi-Porphyrin Assemblies Vol. 113, 2004 Synthesis and Properties Volume Editor: Alessio, E. Principles and Applications Vol. 121, 2006 of Density Functional Theory in Inorganic Chemistry I Recent Developments in Mercury Sience Volume Editors: Volume Editor: Atwood, David A. Kaltsoyannis, N., McGrady, J. E. Vol. 120, 2006 Vol. 112, 2004 Layered Double Hydroxides Supramolecular Assembly Volume Editors: Duan, X., Evans, D. G. via Hydrogen Bonds II Vol. 119, 2005 Volume Editor: Mingos, D. M. P. Vol. 111, 2004 Semiconductor Nanocrystals and Silicate Nanoparticles Applications of Evolutionary Computation Volume Editors: Peng, X., Mingos, D. M. P. in Chemistry Vol. 118, 2005 Volume Editors: Johnston, R. L. Vol. 110, 2004 Magnetic Functions Beyond the Spin-Hamiltonian Fullerene-Based Materials Volume Editor: Mingos, D. M. P. Structures and Properties Vol. 117, 2005 Volume Editor: Prassides, K. Vol. 109, 2004 Intermolecular Forces and Clusters II VolumeEditor:Wales,D.J. Supramolecular Assembly Vol. 116, 2005 via Hydrogen Bonds I Volume Editor: Mingos, D. M. P. Intermolecular Forces and Clusters I Vol. 108, 2004 VolumeEditor:Wales,D.J. Vol. 115, 2005 Optical Spectra and Chemical Bonding in Transition Metal Complexes Superconductivity in Complex Systems Special Volume II Volume Editor: Müller, K. A. dedicated to Professor Jørgensen Vol. 114, 2005 Volume Editor: Schönherr, T. Vol. 107, 2004 Single-Molecule Magnets and Related Phenomena Volume Editor: Richard Winpenny With contributions by G. Aromí · B. Barbara · E. K. Brechin · A. Caneschi R. Clérac · A. Cornia · A. F. Costantino · C. Coulon J. Curély · D. Gatteschi · T. Mallah · M. Mannini E. J. L. McInnes · H. Miyasaka · J.-N. Rebilly R. Sessoli · L. Zobbi 123 The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table. It focuses attention on new and developing areas of modern structural and theoretical chemistry such as na- nostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supra- molecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. As a rule, contributions are specially commissioned. The editors and publishers will, however, always be pleased to receive suggestions and supplementary information. Papers are accepted for Structure and Bonding in English. In references Structure and Bonding is abbeviated Struct Bond and is cited as a journal. Springer WWW home page: springer.com Visit the Struct Bond content at springerlink.com Library of Congress Control Number: 2006926433 ISSN 0081-5993 ISBN-10 3-540-33239-1 Springer Berlin Heidelberg New York ISBN-13 978-3-540-33239-8 Springer Berlin Heidelberg New York DOI 10.1007/b104234 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com c Springer-Verlag Berlin Heidelberg 2006 Printed in Germany The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Design & Production GmbH, Heidelberg Typesetting and Production: LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Printed on acid-free paper 02/3100 YL – 5 4 3 2 1 0 Series Editor Prof. D. Michael P. Mingos Principal St. Edmund Hall Oxford OX1 4AR, UK [email protected] Volume Editor Prof. Richard Winpenny Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL, UK [email protected] Editorial Board Prof. Peter Day Prof. Herbert W. Roesky Director and Fullerian Professor Institut for Anorganic Chemistry of Chemistry University of Göttingen The Royal Institution of Great Britain Tammannstr. 4 21 Albermarle Street 37077 Göttingen, Germany London W1X 4BS, UK [email protected] [email protected] Prof. Jean-Pierre Sauvage Prof. Thomas J. Meyer Faculté de Chimie Department of Chemistry Laboratoires de Chimie Campus Box 3290 Organo-Minérale Venable and Kenan Laboratories Université Louis Pasteur The University of North Carolina 4, rue Blaise Pascal and Chapel Hill 67070 Strasbourg Cedex, France Chapel Hill, NC 27599-3290, USA [email protected] [email protected] Structure and Bonding Also Available Electronically For all customers who have a standing order to Structure and Bonding, we offer the electronic version via SpringerLink free of charge. Please contact your librarian who can receive a password or free access to the full articles by registering at: springerlink.com If you do not have a subscription, you can still view the tables of contents of the volumes and the abstract of each article by going to the SpringerLink Home- page, clicking on “Browse by Online Libraries”, then “Chemical Sciences”, and finally choose Structure and Bonding. You will find information about the – Editorial Board –AimsandScope – Instructions for Authors –SampleContribution at springer.com using the search function. Preface In some ways the story of single-molecule magnets (SMMs) starts with work performed in the Christou group during the 1980s. The research was dedi- cated to the synthesis of model compounds of the oxygen-evolving complex in Photosystem II. The work resulted in a very large number of polymetallic mixed-valent manganese complexes being made—many having rather more metal centres than are strictly speaking required for an accurate representation oftheactivesiteoftheenzyme. The work had produced many beautiful model compounds and was very well reviewed at the time [1], but lacked a model for the highest oxidation state of the biological cycle. In attempting to make such a model by oxi- dation of manganese acetate with permanganate, a compound of formula [Mn12O12(O2CPh)16(H2O)4] was isolated [2]. This was a new compound, but rather surprisingly it had a very close precedent: in 1980 Lis had made [Mn12O12(O2CMe)16(H2O)4] and published the crystal structure [3]. Lis also included preliminary magnetic measurements from 4–300 K, but did not in- terpret them. Even more surprisingly the first proposal of a dodecanuclear manganese complex from this type of reaction was made in 1921 by Weinland and Fischer [4], although given the equipment available at the time Wein- land and Fischer did not get the metal-to-ligand stoichiometry correct. The rediscovery by the Christou group was therefore serendipitous. Boydet al. measuredthemagnetic propertiesof [Mn12O12(O2CPh)16(H2O)4] and deduced a spin ground state of S =14[2].Thisisincorrect,butthemis- take is unsurprising in that the behaviour of this compound is unlike that of previously prepared high-spin molecules. At that time, the highest spin known for a molecule was S = 12, for a molecule reported by Gatteschi’s group [5]. As a result of the paper by Boyd et al. the Gatteschi group reinvestigated the Lis compound by high-field magnetisation and high-frequency EPR spectroscopy. The resulting paper, published by Caneschi et al. in 1991 [6], describes the freez- ing of the magnetisation at low fields, and also explains this behaviour—which is analogous to that of superparamagnets—due to the negative axial anisotropy of the high-spin ground state of the compound. The ground state was found to be S = 10, and later measurements show that [Mn12O12(O2CPh)16(H2O)4] also has an S = 10 ground state [7, 8]. The paper by Caneschi et al. [6] misses one trick: the term single-molecule magnet is not used, however this is now X Preface how these molecules are universally known. Despite the lack of a snappy title this paper introduces many of the basic ideas underlying the physics of SMMs. These initial discoveries have provided physicists with ideal objects for studying quantum phenomena, such as tunnelling of magnetisation. This was first reported by Barbara and co-workers [9], and simultaneously by Friedman et al. [10]. Many following studies have been designed to understand these phenomena and the mechanism of tunnelling. The advantage in studying the physics of SMMs over particulate supraparamagnets is that coordination chemists can vary the physical properties of the quantum objects using the skills of a synthetic chemist. The result has been a remarkably large number of derivatives of “Mn12”. Reviews of the physics and the quantum phenomena of SMMs have been published previously [11, 12], therefore here we have concentrated on aspects that have not been reviewed. Aromi and Brechin explore synthetic routes to SMMs, covering the literature exhaustively until May 2005. McInnes has reviewed the spectroscopic studies of SMMs published until mid-2005. Mallah has reviewed the use of metallocyanates in making SMMs, and Cornia has reviewed the growing field of hybrid materials featuring SMMs.
Recommended publications
  • Cr7ni Wheels: Supramolecular Tectons for the Physical Implementation of Quantum Information Processing
    magnetochemistry Review Cr7Ni Wheels: Supramolecular Tectons for the Physical Implementation of Quantum Information Processing Jesus Ferrando-Soria † School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; [email protected]; Tel.: +34-963-544460 † Present address: Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, València, Spain. Academic Editor: Floriana Tuna Received: 11 August 2016; Accepted: 15 September 2016; Published: 21 September 2016 Abstract: The physical implementation of quantum information processing (QIP) is an emerging field that requires finding a suitable candidate as a quantum bit (qubit), the basic unit for quantum information, which can be organised in a scalable manner to implement quantum gates (QGs) capable of performing computational tasks. Supramolecular chemistry offers a wide range of chemical tools to bring together, with great control, different molecular building blocks in order to grow supramolecular assemblies that have the potential to achieve the current milestones in the field. In this review, we are particularly interested in the latest research developments on the supramolecular chemistry approach to QIP using {Cr7Ni} wheels as qubits for the physical implementation of QGs. Special emphasis will be given to the unique high degree of chemical tunability of this unique class of heterobimetallic octanuclear rings, which results in an attractive playground to generate aesthetically pleasing supramolecular assemblies of increasing structural complexity and interesting physical properties for quantum computing. Keywords: {Cr7Ni} heterobimetallic rings; quantum information processing; supramolecular chemistry; qubits; quantum gates 1. Introduction: Molecules as Qubits The physical implementation of quantum information processing (QIP) is currently a subject of intense research in chemistry, physics, materials science, and nanotechnology because of the thrilling potential technological applications that chemical and physical systems may exhibit in quantum computing [1–4].
    [Show full text]
  • The 45Th Annual International Meeting of the ESR Spectroscopy Group of the Royal Society of Chemistry
    The 45th Annual International Meeting of the ESR Spectroscopy Group of the Royal Society of Chemistry The University of Manchester 25th – 29th March 2012 Contents Conference Programme 3 Information for delegates 6 Getting there 6 Map of conference venue 9 University of Manchester campus map 10 Speaker/poster presenter information 11 Internet access 11 Car parking/taxis 11 Checking out and left luggage 11 Accompanying persons 12 Free afternoon 12 Manchester city centre map 13 Conference sponsors 14 EPR @ Manchester 15 Bruker prize lecture and reception 16 JEOL student prize lectures 17 Committee of the ESR spectroscopy Group of the RSC 18 Next meeting (2013) 19 Abstracts for Talks T1‐T48 Abstracts for Posters P1‐P31 Presenting Author Index R1‐R2 Title Index R3‐R6 List of participants R7‐R14 2 Conference Programme Sunday 25th March 16.00 – 18.30 Registration Chancellors Reception 18.30 – 20.00 Dinner Chancellors Carriage Restaurant RSC Wine Reception 20.00 – 22.30 Chancellors Conservatory and bar and free bar Monday 26th March 07.30 – 08.55 Breakfast Chancellors or Luther King House or Willowbank Hotel Session 1 Chair: David Collison 08.55 – 09.00 Mark Newton Conference opening and welcome note 09.00 – 09.30 Richard Winpenny Keynote Lecture: EPR Studies of Rings and Dimers of Rings Intercluster exchange interactions and spin state switching in 09.35 – 09.50 Irina Drozdyuk copper nitroxide based molecular magnets Cu(hfac)2LR studied by EPR Quantum operations by pulsed ESR spectroscopy: Molecular 09.55 – 10.10 Shigeaki Nakazawa design for
    [Show full text]
  • A Monometallic Lanthanide Bis(Methanediide) Single Molecule Magnet with a Large Energy Barrier Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A monometallic lanthanide bis(methanediide) single molecule magnet with a large energy barrier Cite this: Chem. Sci.,2016,7,155 and complex spin relaxation behaviour† Matthew Gregson,‡a Nicholas F. Chilton,‡a Ana-Maria Ariciu,b Floriana Tuna,b Iain F. Crowe,c William Lewis,d Alexander J. Blake,d David Collison,a Eric J. L. McInnes,b Richard E. P. Winpenny*a and Stephen T. Liddle*a We report a dysprosium(III) bis(methanediide) single molecule magnet (SMM) where stabilisation of the highly magnetic states and suppression of mixing of opposite magnetic projections is imposed by a linear arrangement of negatively-charged donor atoms supported by weak neutral donors. Treatment TMS TMS TMS 2À TMS of [Ln(BIPM )(BIPM H)] [Ln ¼ Dy, 1Dy;Y,1Y; BIPM ¼ {C(PPh2NSiMe3)2} ; BIPM H ¼ À TMS {HC(PPh2NSiMe3)2} ] with benzyl potassium/18-crown-6 ether (18C6) in THF afforded [Ln(BIPM )2] [K(18C6)(THF)2] [Ln ¼ Dy, 2Dy;Y,2Y]. AC magnetic measurements of 2Dy in zero DC field show Creative Commons Attribution 3.0 Unported Licence. temperature- and frequency-dependent SMM behaviour. Orbach relaxation dominates at high temperature, but at lower temperatures a second-order Raman process dominates. Complex 2Dy exhibits two thermally activated energy barriers (Ueff) of 721 and 813 K, the largest Ueff values for any monometallic dysprosium(III) complex. Dilution experiments confirm the molecular origin of this phenomenon. Complex 2Dy has rich magnetic dynamics; field-cooled (FC)/zero-field cooled (ZFC) susceptibility measurements show a clear divergence at 16 K, meaning the magnetic observables are out-of-equilibrium below this temperature, however the maximum in ZFC, which conventionally defines the blocking temperature, TB, is found at 10 K.
    [Show full text]
  • Correlating Blocking Temperatures in Single Molecule Magnets with Raman Relaxation
    doi.org/10.26434/chemrxiv.7067669.v1 Correlating Blocking Temperatures in Single Molecule Magnets with Raman Relaxation Marcus J. Giansiracusa, Andreas Kostopoulos, George F. S. Whitehead, David Collison, Floriana Tuna, Richard Winpenny, Nicholas Chilton Submitted date: 10/09/2018 • Posted date: 11/09/2018 Licence: CC BY-NC-ND 4.0 Citation information: Giansiracusa, Marcus J.; Kostopoulos, Andreas; F. S. Whitehead, George; Collison, David; Tuna, Floriana; Winpenny, Richard; et al. (2018): Correlating Blocking Temperatures in Single Molecule Magnets with Raman Relaxation. ChemRxiv. Preprint. We report a six coordinate DyIII single-molecule magnet (SMM) with an energy barrier of 1110 K for thermal relaxation of magnetization. The sample shows no retention of magnetization even at 2 K and this led us to find a good correlation between the blocking temperature and the Raman relaxation regime for SMMs. The key parameter is the relaxation time (ᵰ ) at the point where switch the Raman relaxation mechanism becomes more important than Orbach. File list (1) Dy-mon_final_for ChemRxiv.pdf (1.77 MiB) view on ChemRxiv download file Correlating Blocking Temperatures in Single Molecule Magnets with Raman Relaxation Marcus J. Giansiracusa, Susan Al-Badran, Andreas K. Kostopoulos, George F. S. Whitehead, David Collison, Floriana Tuna, Richard E. P. Winpenny*, and Nicholas F. Chilton* Dedications Abstract: We report a six coordinate DyIII single-molecule magnet length to the anionic DiMeQ oxygen donors at 2.150(4) Å. The (SMM) with an energy barrier of 1110 K for thermal relaxation of trans equatorial Dy-Cl bonds are 2.681(2) Å, and the third Cl magnetization. The sample shows no retention of magnetization even ligand trans to the neutral water ligand (2.32(1) Å) has a bond at 2 K and this led us to find a good correlation between the blocking length of 2.897(8) Å.
    [Show full text]
  • James Walsh Postdoctoral Fellow Department of Chemistry
    James Walsh Postdoctoral Fellow Department of Chemistry Northwestern University Evanston, IL 60208 phone: (847) 491-4356 email: [email protected] Current Position Assistant Professor, Department of Chemistry, University of Massachusetts Amherst (Sep 2019) Postdoctoral Fellow, Department of Chemistry, Northwestern University (2015 – Present) Advisors: Prof. Danna Freedman and Prof. Steven Jacobsen Background Postdoctoral Fellow, Aarhus University (2015) Advisor: Dr. Jacob Overgaard Ph.D. in Inorganic Chemistry, University of Manchester (2010 – 2014) Advisors: Prof. David Collison, Prof. Eric McInnes, Prof. Richard Winpenny Master’s in Chemistry, University of Manchester (2006 – 2010) Honors International Institute for Nanotechnology Outstanding Researcher Award (2017) Activities and Interests My research interests center on the use of extremely high pressure for the synthesis of completely new structures and chemical bonds. More broadly, I am interested in the use of X-ray crystallography as a tool to examine reaction mechanism in solid-state chemistry. I am a frequent user of the HPCAT and GSECARS beamlines at the APS. I collaborate closely with beamline scientists across both sectors and have averaged 8 shifts each run over the last four years. The APS is a world leader in the field of high pressure and is the source of many of the cutting-edge techniques that have since been adopted by other beamlines. This trend of origination is set to continue with the upgrade, which will position the APS at the forefront of synchrotron radiation science. The enormous increase in flux will make it the flagship of a new generation of experiments that allow for crystallographic access to unprecedented ultrafast timescales.
    [Show full text]
  • School of Chemical Engineering and Analytical Sciences Catalytic Research Prof
    Faculty of Sciences and Engineering Faculty of Engineering and Physical Sciences School of Chemical Engineering and Analytical Sciences Catalytic Research Prof. Chris Hardacre School of Chemical Engineering and Analytical Science [email protected] Chris Hardacre is Head of the School of Chemical Engineering and Analytical Science and Professor of Chemical Engineering, with research interests in heterogeneous catalysis, in-situ method development and ionic liquids. He has 350+ publications with an H-index of 65 and over 15,000 citations. He is a Member of the Royal Irish Academy, Fellow of the Institute of Chemical Engineering and Fellow of Royal Society of Chemistry. He has a number of awards including the inaugural Andrew Medal for catalysis and has won ~£28M research grant over the past 20 years. We are a world-leading research group working on heterogeneous catalysis and ionic liquids. We have developed a number of state-of-the-art techniques for in- situ monitoring of the systems studied and have strong links with industry. We target applications in energy, bulk, fine and pharmaceutical chemical synthesis as well as environmental protection: •Non-thermal plasma catalysis. ACS Catal., 2015, 5 956; 2014, 4, 666; •Neutron and X-ray scattering studies of catalysts and ionic liquids, Chem. Sci., 2013, 4, 3484; 2013, 4, 1270; 2011, 2, 1594; •Activating gold catalysts. ACS Catal., 2012, 2, 552; Angew. Chem. Int. Ed., 2011, 50, 8912; JACS, 2009, 131, 6973; •Electrochemical reduction of CO2. Angew. Chem. Int. Ed., 2015, 54, 14164.(Hot
    [Show full text]
  • The 17Th International Conference on Molecule-Based Magnets Online
    The 17th International Conference on Molecule-based Magnets Online via The University of Manchester 14 - 18 June 2021 Sponsors 2 Knowledge for your next step forward Volume 9 Number 1 7 January 2018 C h e m i c a l Pages 1-268 C h e m i c a l S c i e n c e S c i e n c e rsc.li/chemical-science Open and free, for authors and readers The Royal Society of Chemistry’s flagship journal introduces primary research in all fields to a global readership Editor-in-chief ISSN 2041-6539 EDGE ARTICLE Andrew Cooper University of Liverpool, UK Xinjing Tang et al. Caged circular siRNAs for photomodulation of gene expression in cells and mice Submit your work rsc.li/chemical-science @ChemicalScience Volume 46 Number 10 14 March 2017 D a l t o n Pages 3073-3412 Dalton Transactions T r a n s a c t i o n s An international journal of inorganic chemistry rsc.li/dalton The international journal for high quality, original research in inorganic and organometallic chemistry Fast times to publication mean rapid visibility for your work Editorial Board Chair Russell Morris University of St Andrews, UK ISSN 0306-0012 COMMUNICATION Douglas W. Stephen et al. Submit your work N-Heterocyclic carbene stabilized parent sulfenyl, selenenyl, and tellurenyl cations (XH+, X = S, Se, Te) rsc.li/dalton @DaltonTrans Get journal updates: rsc.li/alerts Registered charity number: 207890 Contents Sponsors ..................................................................................................................................... 2 Contents ..................................................................................................................................... 3 Programme ................................................................................................................................. 4 Prof. Keith Murray: Olivier Kahn Lecture ..................................................................................... 5 Prof.
    [Show full text]
  • Last Name First Name Títle Authors Abstract Abouelwafa Ahmed Towards Novel Photoswitches Using the Viologen A
    Last Name First Name Títle Authors Abstract Abouelwafa Ahmed Towards Novel Photoswitches Using the Viologen A. Abouelwafa, C. Anson, B. Pilawa, S. Balaban, Annie. K. Poster System Powell Affronte Marco Molecular spin clusters for quantum computation M. Affronte, F. Troiani, A. Ghirri, S. Carretta, P. Santini, R. Poster Schuecker, G. Timco and R. E. Winpenny Ako Ayuk Manase A Ferromagnetically coupled Mn19 Aggregate with a Ayuk M. Ako, Ian J. Hewitt, Valeriu Mereacre, Rodolphe Clérac, Poster Record S=83/2 Ground Spin State Wolfgang Wernsdorfer, Christopher E. Anson, Annie K. Powell Ambrus Christina Metal-templated Macrocyclic (N3O2) Coordination C.Ambrus, B. Møller Petersen, J. O. Jeppesen, S.X. Liu, S. Poster Compounds Decurtins Anwar Muhammad The Search for New Molecular Base Magnets M. U. Anwar, R. Kania, G. Abbas, S. Mukherjee, C. Anson and Poster Usman Containing Vanadium Annie K Powell Arnold Zdenek Ordering temperatures of TM3[Cr(CN)6]2.nH2O (TM – Ni, Z. Arnold, M. Cieslar, J. Kamarád, S. Maťaš, M. Mihalik, Z. Poster Mn) nanoparticles under pressure Mitróová, V. Zeleňák, M. Zentková, and A. Zentko Aromí Guillem Multidentate Ligands for Novel Magnetic Clusters or G. Aromí, L. A. Barrios, O. Roubeau, P. Gamez, S. J. Teat, J. Poster Nano-Structured Materials Ribas 5+ 2+ Balanda Maria Magnetism of the genuine bi-layered (tetrenH5) -Cu - M. Bałanda, Z. Arnold, T. Korzeniak, R. Pełka, R. Podgajny, F.L. Poster 3- [W(CN)8] molecular magnet studied by the Pratt, M. Rams, B. Sieklucka, T. Wasiutyński, M. Zentkova, P.M. complementary methods Zieliński Baskar Viswanathan Manganese, Zinc and Sodium Polyoxoantimonates: Viswanathan Baskar, Maheswaran Shanmugam, Simon J.
    [Show full text]
  • James P. S. Walsh
    James P. S. Walsh [email protected] University of Massachusetts Amherst Department of Chemistry +1 (413) 545–1557 Physical Sciences Building http://jpswalsh.com 690 N Pleasant St [email protected] Amherst, MA 01003 RESEARCH POSITIONS Assistant Professor Sep 2019 – Present University of Massachusetts Amherst, United States Postdoctoral Fellow with Prof Danna Freedman May 2015 – Aug 2019 Northwestern University, United States Postdoctoral Fellow with Dr Jacob Overgaard Mar 2015 – May 2015 Aarhus University, Denmark Research Associate with Dr Alistair Fielding Nov 2014 – Feb 2015 University of Manchester, United Kingdom EDUCATION PhD in Inorganic Chemistry Sep 2010 – Oct 2014 Nanoscience Doctoral Training Centre, University of Manchester, United Kingdom Advisors: Prof David Collison, Prof Eric McInnes, and Prof Richard Winpenny MChem in Chemistry with Forensic Science Sep 2006 – Aug 2010 University of Manchester, United Kingdom HONOURS AND AWARDS COMPRES Postdoc Travel Scholarship (Annual Meeting, Santa Ana Pueblo, New Mexico, USA) Aug 2018 IUCr-HP Early Career Travel Award (IUCr Commission on High-Pressure, Honolulu, Hawaiʻi, USA) Jul 2018 Northwestern Postdoctoral Professional Development Travel Award Dec 2017 International Institute for Nanotechnology Outstanding Researcher Award Sep 2017 COMPRES Postdoc Travel Scholarship (Annual Meeting, Santa Ana Pueblo, New Mexico, USA) Jul 2017 Marie Skłodowska-Curie Masterclass Invited Participant (Aarhus University, Denmark) May 2016 INVITED TALKS Special Seminar (Georgia Institute of Technology,
    [Show full text]
  • Controlled Synthesis of Nanoscopic Metal Cages Jesus̀ Ferrando-Soria, Antonio Fernandez, Eufemio Moreno Pineda, Sarah A
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Communication pubs.acs.org/JACS Controlled Synthesis of Nanoscopic Metal Cages Jesus̀ Ferrando-Soria, Antonio Fernandez, Eufemio Moreno Pineda, Sarah A. Varey, Ralph W. Adams, Iñigo J. Vitorica-Yrezabal, Floriana Tuna, Grigore A. Timco, Christopher A. Muryn, and Richard E. P. Winpenny* School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K. *S Supporting Information such, they are two-level systems and are candidates as ABSTRACT: Here we show an elegant and general route molecular qubits,14 e.g., they have sufficient phase memory to the assembly of a giant {M12C24} cage from 12 times to allow gate operations before state degradation can palladium ions (M) and 24 heterometallic octanuclear occur,15 and it is also possible to control the interaction 16 coordination cages (C = {Cr7Ni-Py2}). The molecule is 8 between the heterometallic rings. A major question as we nm in size, and the methods for its synthesis and move toward scalable quantum devices is whether sufficient characterization provide a basis for future developments molecular qubits can be incorporated in one assembly while at this scale. retaining the phase memory time; here we show that this is possible in an assembly containing 24 qubits. We first functionalize the inorganic building block to obtain anoscopic objects falling around 10 nm in size are the groups needed to assemble the target nanoscopic cage difficult to make in a monodisperse form, as traditional (Figure 1a) and then carry out a self-assembly reaction (Figure N − approaches to nanoparticle synthesis tend to produce 1b).
    [Show full text]
  • High-Frequency and High-Field EPR/ESR in Tallahassee, FL
    2012 epr volume 22 number 2 news A letter zz R PELDOR PELDOR signals The Publication of the International time (ns) EPR (ESR) Society newsepr letter www.epr-newsletter.ethz.ch Officers of the international ePr (esr) society The official publication of the International EPR (ESR) Society is supported by the Society, by corporate and President secretArY other donors, the Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, Kazan, Russian seigo Yamauchi sushil K. Misra Federation, and the Swiss Federal Institute of Technology, Institute of Multidisciplinary Research for Concordia University, Zürich, Switzerland. Advanced Materials (IMRAM), 1455 de Maisonneuve Boulevard West, Tohoku University, Montreal (Quebec), H3G 1M8, Canada Katahira-2-1-1, phone: 514-848-2424 ext. 3278, fax: 514-848-2828 editOr Aobaku, Sendai 980-8577, Japan e-mail: [email protected] Laila V. Mosina phone: 81-22-217-5617, fax: 81-22-217-5616 web: physics.concordia.ca/faculty/misra.php Zavoisky Physical-Technical Institute e-mail: [email protected] Russian Academy of Sciences treAsurer Kazan, Russian Federation Vice Presidents tatyana i. smirnova [email protected] Americas North Carolina State University, AssOciAte editOrs Lawrence Berliner Department of Chemistry, Candice S. Klug Department of Chemistry and Biochemistry, Campus Box 8204, Raleigh, NC 27695-8204, USA Medical College of Wisconsin University of Denver, phone: (919) 513-4375, fax: (919) 513-7353 Milwaukee, WI, USA 2090 E. Iliff Ave, Denver, CO, OR 80208 USA e-mail: [email protected] [email protected] phone: 303-871-7476, fax: 303-871-2254 Hitoshi Ohta e-mail: [email protected] ImmediAte PAst President Molecular Photoscience Research Center, web: www.du.edu/chemistry/Faculty/lberliner.html Jack H.
    [Show full text]