School of Chemical Engineering and Analytical Sciences Catalytic Research Prof

Total Page:16

File Type:pdf, Size:1020Kb

School of Chemical Engineering and Analytical Sciences Catalytic Research Prof Faculty of Sciences and Engineering Faculty of Engineering and Physical Sciences School of Chemical Engineering and Analytical Sciences Catalytic Research Prof. Chris Hardacre School of Chemical Engineering and Analytical Science [email protected] Chris Hardacre is Head of the School of Chemical Engineering and Analytical Science and Professor of Chemical Engineering, with research interests in heterogeneous catalysis, in-situ method development and ionic liquids. He has 350+ publications with an H-index of 65 and over 15,000 citations. He is a Member of the Royal Irish Academy, Fellow of the Institute of Chemical Engineering and Fellow of Royal Society of Chemistry. He has a number of awards including the inaugural Andrew Medal for catalysis and has won ~£28M research grant over the past 20 years. We are a world-leading research group working on heterogeneous catalysis and ionic liquids. We have developed a number of state-of-the-art techniques for in- situ monitoring of the systems studied and have strong links with industry. We target applications in energy, bulk, fine and pharmaceutical chemical synthesis as well as environmental protection: •Non-thermal plasma catalysis. ACS Catal., 2015, 5 956; 2014, 4, 666; •Neutron and X-ray scattering studies of catalysts and ionic liquids, Chem. Sci., 2013, 4, 3484; 2013, 4, 1270; 2011, 2, 1594; •Activating gold catalysts. ACS Catal., 2012, 2, 552; Angew. Chem. Int. Ed., 2011, 50, 8912; JACS, 2009, 131, 6973; •Electrochemical reduction of CO2. Angew. Chem. Int. Ed., 2015, 54, 14164.(Hot paper); Sustainable Industrial Systems (SIS) Research Group Professor Adisa Azapagic, Dr Laurence Stamford and Dr Rosa Cuéllar-Franca School of Chemical Engineering and Analytical Science [email protected]; [email protected]; [email protected] Adisa Azapagic FREng FIChemE FRSC FRSA HonFSE is Professor of Sustainable Chemical Engineering, with research interests in life cycle sustainability assessment, carbon footprinting, sustainable production and consumption, and corporate sustainability. She has over 100 publications – including three books, one of which has been translated into Chinese – with an H- index of 35 and over 5229 citations. She has received many prestigious awards for her research achievements and has won over £12 million in research grants over the past 10 years. We are a world-leading research group working on identifying sustainability solutions for industrial systems on a life cycle basis. The group currently has 20 international researchers and PhD students. Our work covers different sectors and supply chains, including: • Energy systems (e.g. Energ Techn., 2014, 2, 1012; Appl Energ., 2015, 155, 393; Energ Policy, 2016, 93, 168) • Food and drink (e.g. Int J Life Cycle Ass., 2016, 21, 492; J Clean Prod., 2016, 112, 214) • Carbon capture and utilisation (e.g. Energ Environ Sci., 2015, 8, 1775; Faraday Discuss., 2016, in press) Laurence Stamford is a Lecturer in Sustainable Chemical Engineering. His research interests include energy sources (nuclear, fossil and renewable), energy storage, recycling systems and alternative food production techniques. Laurence graduated from the University of Oxford in 2006 and received his PhD from The University of Manchester in 2012. Rosa Cuéllar-Franca is a Lecturer in Sustainable Chemical Engineering with research interests in carbon capture and utilisation technologies and circular economy. She received her BSc from Technological Institute of Tijuana in 2007 and PhD from The University of Manchester in 2013. Manchester Polymer and Peptide Research Group Professor Aline Miller School of Chemical Engineering and Analytical Science and Institute of Biotechnology [email protected] Aline Miller is Director of Research for The School of Chemical Engineering and Analytical Science and Professor of Biomolecular Materials, with research interests that lie at the life- science interface. She has over 100 publication, is co-author on 4 patents and has won ~£11M research grants over the past 10 years. The technology developed in her group is currently licensed out to a company that she co-founded in 2014. We are a world-leading research group working on understanding how to engineer advanced platform soft materials by applying physical principles to mimic, manipulate and improve biomolecular self-assembly. Our work is highly interdisciplinary and we regularly collaborate with chemists, physicists, medics, cell and synthetic biologists. We have a strong focus on the translational aspects of our research and regularly work with large multinationals and SMEs. Current projects include: • Hydrogels for cardiovascular applications (Biomacromolecules., 2013, 14, 1403) • Functional hydrogels for 3D cell culture (Langmuir, 2016, 32, 4917) • Biosensor Devices for early Disease Detection (Chem Comm, 2016, 6697) • Injectable Materials for Targeted Drug Delivery (J. Pep. Sci., 2014, 20, 578) Advanced Materials Engineering Research Group Professor Rahul Raveendran Nair School of Chemical Engineering and Analytical Science & National Graphene Institute [email protected] R. R. Nair is a Professor of Materials Physics and holds a prestigious Royal Society Fellowship. The main scope of his research is the novel synthesis and construction of application-oriented devices based on two-dimensional (2D) crystals and their modifications. He has published over 40 highly cited peer- refereed research articles, including four Science, two Nature, one Nature Physics, one Nature Nanotechnology, and five Nature Communications during the last nine years. His awards include a Leverhulme Early Career Fellowship from the Leverhulme Trust, UK, IUPAP Young scientist Award (2014) from the International Union of Pure and Applied Physics and the Moseley Medal and Prize (2015) from the Institute of Physics. His group is a world-leading research group in 2D materials based membranes and well-known both within and outside of the 2D materials community, which is confirmed by keynote and invited talks, lectures, invited seminars and media interviews (BBC, Reuters, etc.). His graphene based membrane research (Science 2012 & 2014) attracted interest and investment from various industries. So far his graphene based membrane research secured more than £7M funding in collaboration with large industrial companies. Our current research projects are developing novel membranes for water filtration, Organic solvent nanofiltration, gas separation, barrier coating applications and proton conducting membranes for fuel cells. Process Integration Research Group Professor Robin Smith School of Chemical Engineering and Analytical Science [email protected] Professor Robin Smith is Director of the Centre for Process Integration. He is also President of Process Integration Limited, a spin-out company from the University. He has extensive industrial experience and has acted extensively as a consultant to industry. He has published widely in the field of process integration and is author of “Chemical Process Design and Integration”, published by Wiley. He is a Fellow of the Royal Academy of Engineering, a Fellow of the Institution of Chemical Engineers. The Centre for Process Integration, within the School of Chemical Engineering and Analytical Science at The University of Manchester, is a world leader in the field of process design and integration. The Centre enjoys an outstanding international reputation for the quality of its research gained from many years of successful research and technology transfer. Key to this successful relationship is the Process Integration Research Consortium, which was founded in 1984, has in membership major companies representing different interests in and aspects of the process industries. Research projects of the group include: • Design and optimization of • Distillation system design cogeneration and site utility systems • Refinery distillation systems • Distributed energy systems • Refinery optimisation • Design and retrofit of heat • Decarbonised energy production exchanger networks • Biomass for the production of • Fouling in heat exchanger networks energy and chemicals • Sub-ambient separation systems • Flue gas emissions The Engineering Molecules, Particles and Processes (EMPAP) Group School of Chemical Engineering and Analytical Science Professor Roger Davey, Dr Thomas Vetter, Dr Aurora Cruz-Cabeza [email protected]; [email protected]; [email protected] Our research group is internationally renowned for connecting the fundamentals of crystallization with the properties of particulate products and devising efficient processes for their manufacture. The group currently has 15 international researchers and is equipped with state-of- the-art instrumentation for materials characterisation and process analytics. Professor Roger Davey is internationally renowned for his work on crystal polymorphism, growth and nucleation, as well as solution chemistry. His research has close connections to the practice of crystallization and formulation in the pharmaceutical industry. He is a Fellow of the Royal Society of Chemistry and the Academy of Pharmaceutical Sciences. He authored 240 publications with an H-index of 50, gathering over 8,200 citations. His research has attracted more than £7M over the last 10 years. Dr Thomas Vetter was appointed Lecturer in Chemical Engineering in September 2014. He is known for his simulation and experimental work on crystallization
Recommended publications
  • Quantum Biology: an Update and Perspective
    quantum reports Review Quantum Biology: An Update and Perspective Youngchan Kim 1,2,3 , Federico Bertagna 1,4, Edeline M. D’Souza 1,2, Derren J. Heyes 5 , Linus O. Johannissen 5 , Eveliny T. Nery 1,2 , Antonio Pantelias 1,2 , Alejandro Sanchez-Pedreño Jimenez 1,2 , Louie Slocombe 1,6 , Michael G. Spencer 1,3 , Jim Al-Khalili 1,6 , Gregory S. Engel 7 , Sam Hay 5 , Suzanne M. Hingley-Wilson 2, Kamalan Jeevaratnam 4, Alex R. Jones 8 , Daniel R. Kattnig 9 , Rebecca Lewis 4 , Marco Sacchi 10 , Nigel S. Scrutton 5 , S. Ravi P. Silva 3 and Johnjoe McFadden 1,2,* 1 Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK; [email protected] (Y.K.); [email protected] (F.B.); e.d’[email protected] (E.M.D.); [email protected] (E.T.N.); [email protected] (A.P.); [email protected] (A.S.-P.J.); [email protected] (L.S.); [email protected] (M.G.S.); [email protected] (J.A.-K.) 2 Department of Microbial and Cellular Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] 3 Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK; [email protected] 4 School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] (K.J.); [email protected] (R.L.) 5 Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester,
    [Show full text]
  • Cr7ni Wheels: Supramolecular Tectons for the Physical Implementation of Quantum Information Processing
    magnetochemistry Review Cr7Ni Wheels: Supramolecular Tectons for the Physical Implementation of Quantum Information Processing Jesus Ferrando-Soria † School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; [email protected]; Tel.: +34-963-544460 † Present address: Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, València, Spain. Academic Editor: Floriana Tuna Received: 11 August 2016; Accepted: 15 September 2016; Published: 21 September 2016 Abstract: The physical implementation of quantum information processing (QIP) is an emerging field that requires finding a suitable candidate as a quantum bit (qubit), the basic unit for quantum information, which can be organised in a scalable manner to implement quantum gates (QGs) capable of performing computational tasks. Supramolecular chemistry offers a wide range of chemical tools to bring together, with great control, different molecular building blocks in order to grow supramolecular assemblies that have the potential to achieve the current milestones in the field. In this review, we are particularly interested in the latest research developments on the supramolecular chemistry approach to QIP using {Cr7Ni} wheels as qubits for the physical implementation of QGs. Special emphasis will be given to the unique high degree of chemical tunability of this unique class of heterobimetallic octanuclear rings, which results in an attractive playground to generate aesthetically pleasing supramolecular assemblies of increasing structural complexity and interesting physical properties for quantum computing. Keywords: {Cr7Ni} heterobimetallic rings; quantum information processing; supramolecular chemistry; qubits; quantum gates 1. Introduction: Molecules as Qubits The physical implementation of quantum information processing (QIP) is currently a subject of intense research in chemistry, physics, materials science, and nanotechnology because of the thrilling potential technological applications that chemical and physical systems may exhibit in quantum computing [1–4].
    [Show full text]
  • Mothers in Science
    The aim of this book is to illustrate, graphically, that it is perfectly possible to combine a successful and fulfilling career in research science with motherhood, and that there are no rules about how to do this. On each page you will find a timeline showing on one side, the career path of a research group leader in academic science, and on the other side, important events in her family life. Each contributor has also provided a brief text about their research and about how they have combined their career and family commitments. This project was funded by a Rosalind Franklin Award from the Royal Society 1 Foreword It is well known that women are under-represented in careers in These rules are part of a much wider mythology among scientists of science. In academia, considerable attention has been focused on the both genders at the PhD and post-doctoral stages in their careers. paucity of women at lecturer level, and the even more lamentable The myths bubble up from the combination of two aspects of the state of affairs at more senior levels. The academic career path has academic science environment. First, a quick look at the numbers a long apprenticeship. Typically there is an undergraduate degree, immediately shows that there are far fewer lectureship positions followed by a PhD, then some post-doctoral research contracts and than qualified candidates to fill them. Second, the mentors of early research fellowships, and then finally a more stable lectureship or career researchers are academic scientists who have successfully permanent research leader position, with promotion on up the made the transition to lectureships and beyond.
    [Show full text]
  • Start-Up Company Networking Event 31St March 2021 (Wednesday) 1800 – 2000 Online (MS Teams)
    Start-up company networking event 31st March 2021 (Wednesday) 1800 – 2000 Online (MS Teams) IChemE start-up company networking event Aims: Event details: • Build a community of chem-eng- • Anticipated participants: related start-ups for sharing • 13 start-ups information and experience • 1 government grant expert • ~20 IChemE members (spectators) • Inspire students/researchers about the application of chem eng knowledge and possible career paths Schedule • 1800 – 1830: Introduction by start-up representatives • 3 min each (10 start-ups: CMCL Innovations / Manchester Biogel / Octeract / Carbon Sink LLC / Accelerated Materials / Dye Recycle / Olwg / Nanomox / Solveteq / Greenr) • 1830 – 1910: Talks by Professor Nigel Brandon, Mr Phil Caldwell & Dr David Hodgson • 10 min each --- > start-up journey + key learning points • 10 min Q & A for all three speakers • 1910 – 1930: Talk by Dr Mat Westergreen-Thorne • 10 min --- > application of government grants • 10 min Q & A • 1930 – 2000: Panel discussions • Topics: • Personal development for start-up founders with technical background • Early-stage development: common mistakes, major milestones, resources available • Website: https://www.rfcpower.com/ Prof. Nigel Brandon (Director & co-founder) • Founded: 2017 • Product: Novel hydrogen-manganese reversible fuel • https://www.imperial.ac.uk/people/n.brandon cell for grid scale energy storage. • Email: [email protected] • RFC Power specializes in developing novel flow • Dean of the Faculty of Engineering and Chair in battery chemistries for energy storage systems. The Sustainable Development in Energy, Imperial College company was spun out from Imperial College’s London. Departments of Earth Science & Engineering and Chemistry in 2017, underpinned by a number of • BSc(Eng) in Minerals Technology and PhD in scientific breakthroughs and patents from the labs of electrochemical engineering from Imperial College Nigel Brandon, Anthony Kucernak, Javier Rubio Garcia London, followed by a 14 year research career in and Vladimir Yufit over the prior 8 years.
    [Show full text]
  • Catalysishub NEWSLETTER
    CatalysisHub NEWSLETTER The UK Catalysis Hub has created a thriving and successful network of catalytic scientists who are developing and promoting catalytic science in the UK. The Hub has succeeded in coordinating the community and is contributing to the development of new approaches and techniques in the field. It has provided substantial added value and is now recognised widely both in the UK and internationally. It will provide an excellent base for the future development of this crucial area of science in the UK. “The Hub has demonstrated resilience in the current pandemic with the community coming together to support each other through webinars and training courses and we will continue these in more normal times. Our proposal round was very successful with a large number of high quality proposals submitted and we have funded an excellent portfolio of research. The next few months will hopefully see an easing of the lockdown and an increase in our ability to do research. We hope that all are keeping well and safe and we look forward to meeting in person when we can and discussing catalytic research face to face.” ~ Professor Christopher Hardacre, Director Events Highlights of 2020 online via our website, so they will be a future resource for the whole catalysis community. COVID-19 has had a major impact on scientific network and dissemination due to travel UKCC 2020, 7 - 9 January 2020 restrictions and social distancing making face to face meetings and conferences unfeasible. The UK Catalysis Hub winter conference was held virtually and we worked on a vibrant programme of webinars, scientific discussions and other online events.
    [Show full text]
  • Puck.Js Realvnc and Raspberry Pi Research Skills
    The RingTHE JOURNAL OF T HE CAMBRIDGE COMPU T ER LAB RING Issue XLIV— January 2017 Who’s who 6 Puck.js 2 Another Kickstarter success for Hall of Fame news 8 Espruino Computer Laboratory news 11 RealVNC and Raspberry Pi 5 A shared passion Research Skills 9 Programming matter www.cl.cam.ac.uk/ring 2 HALL OF FAME PROFILE Puck.js Gordon Williams started the Espruino project in 2012. Puck.js is the third successful Espruino Kickstarter and, since Christmas, over 20,000 devices have been shipped worldwide. First it was Espruino, the first Java Script microcontroller. Then came However there are many other uses for beacons such as coarse Espruino Pico which allows you to control electronics quickly and positioning (of a user relative to beacons, or of beacons relative to easily with a tiny USB stick that runs JavaScript. Gordon Williams’s receivers). Their low price (sometimes less than $5 each, including latest Kickstarter project is Puck.js, an open source JavaScript micro- case and battery), makes them extremely attractive. controller that you can program wirelessly. TR: Puck.js is a Bluetooth low energy (BLE) beacon. What is special about it? TR: Can you explain what Bluetooth LE is, and why it’s interesting? GW: Puck.js can be a BLE beacon, but it’s a lot more than that. It GW: Bluetooth LE (Bluetooth Low Energy or Bluetooth Smart) is contains a button, temperature and light sensors, a magnetometer, IR a 2.4Ghz radio standard originally created by Nokia. Unlike normal transmitter, and a full Bluetooth LE implementation (both a master Bluetooth it’s designed for low power and cost rather than high band- and slave) along with the Espruino JavaScript interpreter (software width.
    [Show full text]
  • Synthetic Biology
    From Molecular Biology to Synthetic Biology, what’s new? Sandra Taylor, Senior Research Technician, BSc (Hons), Mphil, Rsci, MIScT [email protected] (0161) 306 5131 Small beginnings in Norwich, after my first degree • 1987 - First lab job veterinary tests: Bacteriology, post mortems, blood, urine, faeces tests etc. Plant Molecular Genetics 1988 to 1998 – the lab grew from 6 to 16 people and several papers were published on the way that flowering is controlled. 1998 to 2001: Biochemistry Division, School of Biological Sciences, Manchester University – I supported 6 research groups, sharing expertise. Topics from cell division (in toads) to asthma (in horses and people), and cultured human cells. Career Break from 2001 to 2007 • Starting again after 6 years was a challenge but I soon got back up to speed. Technical roles are very varied, never boring, a bit like being a Mum! 2007 to present • I spent 7 years in the Michael Smith Building (Life Sciences) – various roles (cell culture, cloning, yeast two-hybrid) • In 2014 I moved to the MIB – more Chemistry/Biochemistry focussed Nano-scale 3D printing?! Micro-titre plates with 96, 384 or even 1536 sample wells – technology is being developed to “write” strings of DNA into these tiny wells using 3D nano-printing technology. Present Challenges Supporting SYNBIOCHEM • New subject(s) and equipment to learn about • The new SYMBIOCHEM team is 10 people and 4 robots! • IT technology means writing electronic lab notebooks instead of paper ones! • The new team is multidisciplinary so lots to learn but good fun! • This is now the age of writing DNA, as opposed to just reading it Publications (please note publications I contributed prior to 2006 were under my maiden name of Doyle) Structural Basis for Specific Interaction of TGFβ Signaling Regulators SARA/Endofin with HD-PTP.
    [Show full text]
  • The 45Th Annual International Meeting of the ESR Spectroscopy Group of the Royal Society of Chemistry
    The 45th Annual International Meeting of the ESR Spectroscopy Group of the Royal Society of Chemistry The University of Manchester 25th – 29th March 2012 Contents Conference Programme 3 Information for delegates 6 Getting there 6 Map of conference venue 9 University of Manchester campus map 10 Speaker/poster presenter information 11 Internet access 11 Car parking/taxis 11 Checking out and left luggage 11 Accompanying persons 12 Free afternoon 12 Manchester city centre map 13 Conference sponsors 14 EPR @ Manchester 15 Bruker prize lecture and reception 16 JEOL student prize lectures 17 Committee of the ESR spectroscopy Group of the RSC 18 Next meeting (2013) 19 Abstracts for Talks T1‐T48 Abstracts for Posters P1‐P31 Presenting Author Index R1‐R2 Title Index R3‐R6 List of participants R7‐R14 2 Conference Programme Sunday 25th March 16.00 – 18.30 Registration Chancellors Reception 18.30 – 20.00 Dinner Chancellors Carriage Restaurant RSC Wine Reception 20.00 – 22.30 Chancellors Conservatory and bar and free bar Monday 26th March 07.30 – 08.55 Breakfast Chancellors or Luther King House or Willowbank Hotel Session 1 Chair: David Collison 08.55 – 09.00 Mark Newton Conference opening and welcome note 09.00 – 09.30 Richard Winpenny Keynote Lecture: EPR Studies of Rings and Dimers of Rings Intercluster exchange interactions and spin state switching in 09.35 – 09.50 Irina Drozdyuk copper nitroxide based molecular magnets Cu(hfac)2LR studied by EPR Quantum operations by pulsed ESR spectroscopy: Molecular 09.55 – 10.10 Shigeaki Nakazawa design for
    [Show full text]
  • Scientists a Step Closer to Developing Renewable Propane 10 April 2015
    Scientists a step closer to developing renewable propane 10 April 2015 change. Efforts to find cleaner, more sustainable forms of energy as well as using biotechnology techniques to produce synthetic chemicals are currently being developed at The University of Manchester." Natural metabolic pathways for the renewable biosynthesis of propane do not exist but scientists at the University have developed an alternative microbial biosynthetic pathway to produce renewable propane. The team led by Nigel Scrutton and Dr Patrik Jones from Imperial College, modified existing fermentative butanol pathways using an engineered enzyme variant to redirect the microbial pathway to produce propane as opposed to butanol. The team was able to achieve propane biosynthesis creating a platform for next-generation microbial propane production. Researchers at The University of Manchester have Propane has very good physicochemical properties made a significant breakthrough in the which allow it to be stored and transported in a development of synthetic pathways that will enable compressed liquid form. While under ambient renewable biosynthesis of the gas propane. This conditions it is a clean-burning gas, with existing research is part of a programme of work aimed at global markets and infrastructure for storage, developing the next generation of biofuels. distribution and utilization in a wide range of applications ranging from heating to transport fuel. This study provides new insight and understanding Consequently, propane is an attractive target of the development of next-generation biofuels. In product in research aimed at developing new this latest study, published in the journal renewable alternatives to complement currently Biotechnology for Biofuels, scientists at the used petroleum-derived fuels.
    [Show full text]
  • Proteins: from Chemical to Physiological Mechanism 26 October 2001
    Meeting report report Proteins: from Chemical to Physiological Mechanism 26 October 2001 The Molecular Enzymology Group of the Biochemical Society by David Trentham held a special 1-day meeting at the Royal Society on ‘Proteins: (National Institute of Medical from Chemical to Physiological Mechanism’.The aim of the Research, Mill Hill) and Downloaded from http://portlandpress.com/biochemist/article-pdf/24/3/31/3597/bio024030031.pdf by guest on 01 October 2021 meeting was to inform and stimulate discussion on kinetic Michael Greeves approaches to the life sciences by bringing together work on (University of Kent) dynamic aspects of protein function.The meeting also honoured Professor H. (Freddie) Gutfreund, FRS, on his 80th birthday. Professor Gutfreund persuaded the Executive Committee of the Society to found the Molecular Enzymology Group, the first sub-group of the Society. His view of the strategic value in Professor Freddie encouraging like-minded biochemists to interact has done much to Gutfreund during his provide the critical mass necessary for sustaining excellence in the presentation ‘Development various sub-disciplines of biochemistry. of kinetics in biology’. The talks reflected Professor about how proteins function. and his family. The dinner was Gutfreund’s many contributions In particular, he has made major followed by entertaining and to the study of biochemistry and contributions to the development affectionate talks presented biophysics. His early prominence of transient and relaxation kinetic by Nigel Scrutton, the present arose from developing the method- methods including stopped-flow, Chairman of the Molecular Speakers and Chairmen: ology to study fast events on quenched-flow and pressure- Enzymology Group, Hugh Back row (from left to enzymes which are now central to jump techniques.
    [Show full text]
  • Designing Ionic-Complementary
    DESIGNING IONIC-COMPLEMENTARY HYDROGELS FOR BONE TISSUE REPAIR A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy (PhD) in the Faculty of Chemical Engineering and Analytical Science 2014 MSc. LUIS ALBERTO CASTILLO DIAZ School of Chemical Engineering and Analytical Science CONTENTS List of figures……………………………………………………………….................4 List of abbreviations…………………………………………………………….……..5 Declaration…………………………………………………………………………….8 Copyright………………………………………………………………………………9 Acknowledgements…………………………………………………………………..10 Thesis Structure……………………………………………………………….…..….11 Abstract………………………………………………………………………………12 Objectives of the thesis………………………………………………………………13 1 Chapter 1 - Introduction. Versatile peptide hydrogels for bone and dental tissue regeneration………………….…………………….………………………..…….….14 2 Chapter 2- Human osteoblasts within soft peptide hydrogels promote mineralisation in vitro…………………………………………………………………….….70 3 Chapter 3 - Functional peptide hydrogels for bone formation applications………..71 4 Chapter 4 - Osteogenic differentiation of human mesenchymal stem cells promotes mineralisation within an octa-peptide hydrogel……………………...…....99 5 Chapter 5- Materials and methods……………………….………………………129 5.1 Materials…………………………………………………………………….…..129 2 5.2 Methods…………………………………………………………………………130 5.3 References………………………………………………………………………139 6 Chapter 6 – Conclusions, outlook and recommendations for future work………..140 6.1 Conclusions……………..……………………………………………………....140 6.2 Outlook………………………………………………………………………….141 6.3 Recommendations
    [Show full text]
  • The Jon Weaver Phd Prize 2014
    Macro Group UK & Polymer Physics Group Bulletin No 82 July 2014 Number Page 82 1 July 2014 MACRO GROUP UK POLYMER PHYSICS GROUP BULLETIN INSIDE THIS ISSUE: Editorial Views from the Top 2 Welcome to the July edition of the Macro Group and PPG bulletin. This edition sees a change to the PPG bulletin officer. Steve Eichhorn is 3 stepping down from this role and is replaced by Anthony Higgins. The Committee members MacroGroup and PPG committees would like to thank Steve for all his editorial work over the last two years. Awards 4 As usual, this issue of the bulletin contains several reports on recent conferences, and we would like to remind students that bursaries are News 7 available to MacroGroup and PPG student members to help fund conference expenses (see p10 for details of MacroGroup bursaries and Competitions announcements 10 p11 for details of bursaries available to PPG student members). Of special note, is the availability of the DH Richards bursaries to postdoctoral researchers who are members of the MacroGroup. Bursaries & Conference Reports 10-14 We also have many notices of forthcoming meetings and we would like to highlight in particular the one day Careers in Polymer Science: Beyond Forthcoming Meetings 15-18 Academia event in October, aimed specifically at postgraduate students and post-docs considering non-academic career paths. This issue also sees the call for nominations for the PPG Founders’ PrizePrizePrize and the PPG/DPOLY exchange lectureship with deadlines in early September. Contributions for inclusion in the BUL- LETIN should be emailed (preferably) Thank you to everyone who has contributed an item to this newsletter.
    [Show full text]