Understanding the Threshold of Detection of Aeolian Features in Magellan Synthetic Aperture Radar Data Using Venusian and Terrestrial Dune Fields

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Threshold of Detection of Aeolian Features in Magellan Synthetic Aperture Radar Data Using Venusian and Terrestrial Dune Fields University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2020 Understanding the Threshold of Detection of Aeolian Features in Magellan Synthetic Aperture Radar Data Using Venusian and Terrestrial Dune Fields Louisa Xian-Yue Rader University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Rader, Louisa Xian-Yue, "Understanding the Threshold of Detection of Aeolian Features in Magellan Synthetic Aperture Radar Data Using Venusian and Terrestrial Dune Fields. " Master's Thesis, University of Tennessee, 2020. https://trace.tennessee.edu/utk_gradthes/6093 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Louisa Xian-Yue Rader entitled "Understanding the Threshold of Detection of Aeolian Features in Magellan Synthetic Aperture Radar Data Using Venusian and Terrestrial Dune Fields." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Geology. Bradley J. Thompson, Major Professor We have read this thesis and recommend its acceptance: Molly C. McCanta, Christopher M. Fedo Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Understanding the Threshold of Detection of Aeolian Features in Magellan Synthetic Aperture Radar Data Using Venusian and Terrestrial Dune Fields A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Louisa Xian-Yue Rader August 2020 Copyright © 2020 by Louisa Xian-Yue Rader All rights reserved. ii ACKNOWLEDGEMENTS Thank you to my advisor, Brad Thomson, for the opportunity to pursue my graduate degree and support through this journey. Without all your feedback and encouragement, I would not have been able to accomplish this. I would also like to thank Molly McCanta and Chris Fedo for providing advice and edits on my thesis. I would like to thank CJ Leight for always being there to make me smile and encouraging me every step of the way. I could not have done this without the support from Megan Mouser, Laura Breitenfeld, and my office desk pod buddy, Cole Nypaver. They have all cheered me on and provided moral support when I needed it. Finally, thank you to my parents for always supporting and believing in me. They have always encouraged my passions and helped me achieve more than I could ever imagine on my own. iii ABSTRACT The spatial resolution required for the detection of geomorphologic features on planetary surfaces is critical to developing a reproducible process for surface feature mapping and identification. The Magellan synthetic aperture radar (SAR) data of Venus have a spatial resolution of 75 m/pixel, which obfuscates features below about a kilometer in scale, while allowing analysis of larger-scale features (Saunders et al., 1991; Rader et al., 2019). Smaller- scale features, such as aeolian bedforms, are important for understanding erosional processes and the redistribution of sediment on the surface. (Rader et al., 2019). In order to properly detect and describe aeolian features on the surface of Venus and get a handle on their implications (e.g., for long-term wind patterns), we must understand the unique, diagnostic characteristics of aeolian features in low resolution SAR images and how these Magellan images can be interpreted (Rader et al., 2019). Here we show how to identify the diagnostic characteristics of dune fields in both visible and radar wavelength images and quantify the differences between them, using Earth as an analog for Venus. Aeolian features of the scale observed on Venus are also found in hyper- arid desert regions on Earth, with this study focusing on the Simpson Desert in Australia and the Namib Desert in Namibia (e.g., Bristow et al., 2007; Lancaster, 2009). The crestlines of linear dunes at these two terrestrial sites were mapped in optical (VIS) images at high resolution and in both high and low resolution SAR images as analogs for the venusian fields. The five venusian localities selected had a representative population of features mapped and then compared to the terrestrial dune fields (Greeley et al., 1992; Weitz et al., 1994; Rader et al., 2019). The mapped images were compared to identify diagnostic characteristics that can be used to identify other potential aeolian fields. These results demonstrate how dune fields can be identified on Venus and suggest possible reasons for the scarcity of potential venusian aeolian fields. iv TABLE OF CONTENTS 1. Introduction ................................................................................................................................. 1 2. Background ................................................................................................................................. 5 2.1 Synthetic Aperture Radar ...................................................................................................... 5 2.2 Magellan Orbiter ................................................................................................................... 6 2.3 Sentinel-1 .............................................................................................................................. 7 2.4 Optical Imagery ..................................................................................................................... 8 2.5 World Imagery Layer ............................................................................................................ 8 2.6 Jet Propulsion Laboratory Topography Data ........................................................................ 9 2.7 Aeolian Features .................................................................................................................... 9 2.7.1 Dunes ............................................................................................................................ 10 2.7.1.1 Linear Dunes ......................................................................................................... 11 2.7.1.2 Transverse Dunes .................................................................................................. 12 2.7.2 Yardangs ....................................................................................................................... 12 2.7.3 Simpson Desert ............................................................................................................. 14 2.7.4 Namib Desert ................................................................................................................ 15 2.7.5 Venusian Features and Working Hypothesis................................................................ 15 2.8 Identification Resolution ..................................................................................................... 17 3. Methods and Data ..................................................................................................................... 19 3.1 Terrestrial SAR Data Processing......................................................................................... 19 v 3.2 Terrestrial ArcGIS Mapping ............................................................................................... 21 3.3 Magellan SAR Data Processing .......................................................................................... 22 3.4 Magellan ArcGIS Mapping ................................................................................................. 23 3.5 Venusian Topographic ArcGIS Mapping ........................................................................... 24 4. Results ....................................................................................................................................... 26 4.1 Simpson Desert ................................................................................................................... 26 4.1.1 VIS at 0.5 m/pixel ......................................................................................................... 26 4.1.2 SAR at 13.5 m/pixel ..................................................................................................... 27 4.1.3 SAR at 75 m/pixel ........................................................................................................ 28 4.2 Namib Desert....................................................................................................................... 29 4.2.1 Linear Dunes in VIS at 0.5 m/pixel .............................................................................. 29 4.2.2 Linear Dunes in SAR at 13.5 m/pixel ........................................................................... 30 4.2.3 Linear Dunes in SAR at 75 m/pixel .............................................................................. 31 4.2.4 Transverse Dunes in VIS at 0.5 m/pixel ....................................................................... 32 4.2.5 Transverse Dunes in SAR at 13.5 m/pixel ................................................................... 32 4.2.6 Transverse Dunes in SAR at 75 m/pixel
Recommended publications
  • Munga-Thirri–Simpson Desert Conservation Park and Regional Reserve
    <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5L9VKK" height="0" width="0" style="display:none;visibility:hidden"></iframe> Munga-Thirri–Simpson Desert Conservation Park and Regional Reserve About Check the latest Desert Parks Bulletin (https://cdn.environment.sa.gov.au/parks/docs/desert-parks-bulletin- 30092021.pdf) before visiting this park. Located within the driest region of the Australian continent, the Munga-Thirri–Simpson Desert Conservation Park is in the centre of the Simpson Desert, one of the world's best examples of parallel dunal desert. The Simpson Desert's sand dunes stretch over hundreds of kilometres and lie across the corners of three states - South Australia, Queensland and the Northern Territory. The Munga-Thirri–Simpson Desert Regional Reserve, just outside the Conservation Park, features a wide variety of desert wildlife preserved in a landscape of varied dune systems, extensive playa lakes, spinifex grasslands and acacia woodlands. The reserve links the Munga-Thirri–Simpson Desert Conservation Park to Witjira National Park. Simpson Desert parks in South Australia and Queensland are closed in summer from 1 December to 15 March. Vehicles are required to have high visibility safety flags (#safety) attached to the front of the vehicle. Opening hours Open daily. Munga-Thirri–Simpson Desert Conservation Park and Regional Reserve are closed from 1 December to 15 March each year. Access may be restricted due to local road conditions. Please refer to the latest Desert Parks Bulletin (https://cdn.environment.sa.gov.au/parks/docs/desert-parks-bulletin-30092021.pdf) for current access and road condition information. Closures and safety This park is closed on days of Catastrophic Fire Danger and may also be closed on days of Extreme Fire Danger.
    [Show full text]
  • Appendix a Recovery of Ejecta Material from Confirmed, Probable
    Appendix A Recovery of Ejecta Material from Confirmed, Probable, or Possible Distal Ejecta Layers A.1 Introduction In this appendix we discuss the methods that we have used to recover and study ejecta found in various types of sediment and rock. The processes used to recover ejecta material vary with the degree of lithification. We thus discuss sample processing for unconsolidated, semiconsolidated, and consolidated material separately. The type of sediment or rock is also important as, for example, carbonate sediment or rock is processed differently from siliciclastic sediment or rock. The methods used to take and process samples will also vary according to the objectives of the study and the background of the investigator. We summarize below the methods that we have found useful in our studies of distal impact ejecta layers for those who are just beginning such studies. One of the authors (BPG) was trained as a marine geologist and the other (BMS) as a hard rock geologist. Our approaches to processing and studying impact ejecta differ accordingly. The methods used to recover ejecta from unconsolidated sediments have been successfully employed by BPG for more than 40 years. A.2 Taking and Handling Samples A.2.1 Introduction The size, number, and type of samples will depend on the objective of the study and nature of the sediment/rock, but there a few guidelines that should be followed regardless of the objective or rock type. All outcrops, especially those near industrialized areas or transportation routes (e.g., highways, train tracks) need to be cleaned off (i.e., the surface layer removed) prior to sampling.
    [Show full text]
  • Liquid Water on Mars
    Report, Planetary Sciences Unit (AST80015), Swinburne Astronomy Online Preprint typeset using LATEX style emulateapj v. 12/16/11 LIQUID WATER ON MARS M. Usatov1 Report, Planetary Sciences Unit (AST80015), Swinburne Astronomy Online ABSTRACT Geomorphological, mineralogical and other evidence of the conditions favoring the existence of water on Mars in liquid phase is reviewed. This includes signatures of past and, possibly, present aqueous environments, such as the northern ocean, lacustrine environments, sedimentary and thermokarst landforms, glacial activity and water erosion features. Reviewed also are hydrous weathering processes, observed on surface remotely and also via analysis of Martian meteorites. Chemistry of Martian water is discussed: the triple point, salts and brines, as well as undercooled liquid interfacial and solid-state greenhouse effect melted waters that may still be present on Mars. Current understanding of the evolution of Martian hydrosphere over geological timescales is presented from early period to the present time, along with the discussion of alternative interpretations and possibilities of dry and wet Mars extremes. 1. INTRODUCTION morphological and mineralogical evidence of aqueous en- The presence of water on Earth, as seen from space, vironments available in the past and, possibly, present can be implied from the observations of low-albedo fea- time is presented in x3 which will be correlated with the tures, like seas and oceans, fluvial features on its sur- current understanding of the evolution of Martian hy- face, atmospheric phenomena, polar ice caps, and the drosphere at x4. Alternative (dry) interpretations of the snow cover exhibiting seasonal variations, not to mention evidence are discussed in x5. spectroscopy.
    [Show full text]
  • Copyright and Use of This Thesis This Thesis Must Be Used in Accordance with the Provisions of the Copyright Act 1968
    COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright The role of ecological interactions: how intrinsic and extrinsic factors shape the spatio-temporal dynamics of populations Aaron C. Greenville A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Faculty of Science The University of Sydney, Australia February 2015 Declaration of originality I hereby declare that the work contained in this thesis is my own and contains the results of an original investigation, except where otherwise referenced or acknowledged.
    [Show full text]
  • Peter Weiss. Andrei Platonov. Ragnvald Blix. Georg Henrik Von Wright. Adam Michnik
    A quarterly scholarly journal and news magazine. March 2011. Vol IV:1 From the Centre for Baltic and East European Studies (CBEES) Södertörn University, Stockholm FEATURE. Steklov – Russian BALTIC temple of pure thought W O Rbalticworlds.com L D S COPING WITH TRANSITIONS PETER WEISS. ANDREI PLATONOV. RAGNVALD BLIX. GEORG HENRIK VON WRIGHT. ADAM MICHNIK. SLAVENKA DRAKULIĆ. Sixty pages BETRAYED GDR REVOLUTION? / EVERYDAY BELARUS / WAVE OF RELIGION IN ALBANIA / RUSSIAN FINANCIAL MARKETS 2short takes Memory and manipulation. Transliteration. Is anyone’s suffering more important than anyone else’s? Art and science – and then some “IF YOU WANT TO START a war, call me. Transliteration is both art and science CH I know all about how it's done”, says – and, in many cases, politics. Whether MÄ author Slavenka Drakulić with a touch царь should be written as tsar, tzar, ANNA of gallows humor during “Memory and czar, or csar may not be a particu- : H Manipulation: Religion as Politics in the larly sensitive political matter today, HOTO Balkans”, a symposium held in Lund, but the question of the transliteration P Sweden, on December 2, 2010. of the name of the current president This issue of the journal includes a of Belarus is exceedingly delicate. contribution from Drakulić (pp. 55–57) First, and perhaps most important: in which she claims that top-down gov- which name? Both the Belarusian ernance, which started the war, is also Аляксандр Лукашэнка, and the Rus- the path to reconciliation in the region. sian Александр Лукашенко are in use. Balkan experts attending the sympo- (And, while we’re at it, should that be sium agree that the war was directed Belarusian, or Belarussian, or Belaru- from the top, and that “top-down” is san, or Byelorussian, or Belorussian?) the key to understanding how the war BW does not want to take a stand on began in the region.
    [Show full text]
  • The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise Through Primary Mission
    p. 1 The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission Michael C. Malin and Kenneth S. Edgett Malin Space Science Systems P.O. Box 910148 San Diego CA 92130-0148 (note to JGR: please do not publish e-mail addresses) ABSTRACT More than three years of high resolution (1.5 to 20 m/pixel) photographic observations of the surface of Mars have dramatically changed our view of that planet. Among the most important observations and interpretations derived therefrom are that much of Mars, at least to depths of several kilometers, is layered; that substantial portions of the planet have experienced burial and subsequent exhumation; that layered and massive units, many kilometers thick, appear to reflect an ancient period of large- scale erosion and deposition within what are now the ancient heavily cratered regions of Mars; and that processes previously unsuspected, including gully-forming fluid action and burial and exhumation of large tracts of land, have operated within near- contemporary times. These and many other attributes of the planet argue for a complex geology and complicated history. INTRODUCTION Successive improvements in image quality or resolution are often accompanied by new and important insights into planetary geology that would not otherwise be attained. From the variety of landforms and processes observed from previous missions to the planet Mars, it has long been anticipated that understanding of Mars would greatly benefit from increases in image spatial resolution. p. 2 The Mars Observer Camera (MOC) was initially selected for flight aboard the Mars Observer (MO) spacecraft [Malin et al., 1991, 1992].
    [Show full text]
  • Did Mars Possess a Dense Atmosphere During the First ~400 Million Years?
    Did Mars possess a dense atmosphere during the first ~400 million years? M. Scherf1, H. Lammer1 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria ([email protected], [email protected]); This is a preprint of an article published in Space Science Reviews. The final authenticated version can be found online at: https://doi.org/10.1007/s11214- 020-00779-3 Abstract It is not yet entirely clear whether Mars began as a warm and wet planet that evolved towards the present-day cold and dry body or if it always was cold and dry with just some sporadic episodes of liquid water on its surface. An important clue into this question can be gained by studying the earliest evolution of the Mar- tian atmosphere and whether it was dense and stable to maintain a warm and wet climate or tenuous and susceptible to strong atmospheric escape. In this review we therefore discuss relevant aspects for the evolution and stability of a potential early Martian atmosphere. This contains the EUV flux evolution of the young Sun, the formation timescale and volatile inventory of the planet including volcanic degas- sing, impact delivery and removal, the loss of the catastrophically outgassed steam atmosphere, atmosphere-surface interactions, as well as thermal and non-thermal escape processes affecting a potential secondary atmosphere at early Mars. While early non-thermal escape at Mars before 4 billion years ago is poorly understood, in particular in view of its ancient intrinsic magnetic field, research on thermal es- cape processes and the stability of a CO2-dominated atmosphere around Mars against high EUV fluxes indicate that volatile delivery and volcanic degassing can- not counterbalance the strong thermal escape.
    [Show full text]
  • The Medusae Fossae Formation As the Single Largest Source of Dust on Mars
    ARTICLE DOI: 10.1038/s41467-018-05291-5 OPEN The Medusae Fossae Formation as the single largest source of dust on Mars Lujendra Ojha1, Kevin Lewis1, Suniti Karunatillake 2 & Mariek Schmidt3 Transport of fine-grained dust is one of the most widespread sedimentary processes occurring on Mars today. In the present climate, eolian abrasion and deflation of rocks are likely the most pervasive and active dust-forming mechanism. Martian dust is globally 1234567890():,; enriched in S and Cl and has a distinct mean S:Cl ratio. Here we identify a potential source region for Martian dust based on analysis of elemental abundance data. We show that a large sedimentary unit called the Medusae Fossae Formation (MFF) has the highest abundance of S and Cl, and provides the best chemical match to surface measurements of Martian dust. Based on volume estimates of the eroded materials from the MFF, along with the enrichment of elemental S and Cl, and overall geochemical similarity, we propose that long-term deflation of the MFF has significantly contributed to the global Martian dust reservoir. 1 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA. 2 Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA. 3 Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada. Correspondence and requests for materials should be addressed to L.O. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:2867 | DOI: 10.1038/s41467-018-05291-5 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05291-5 ust is ubiquitous on Mars and plays a key role in con- formation on Mars today is likely abrasion of mechanically weak temporary atmospheric and surface processes.
    [Show full text]
  • Evolution of Major Sedimentary Mounds on Mars: Build-Up Via Anticompensational Stacking Modulated by Climate Change
    Evolution of major sedimentary mounds on Mars: build-up via anticompensational stacking modulated by climate change Edwin S. Kite1,*, Jonathan Sneed1, David P. Mayer1, Kevin W. Lewis2, Timothy I. Michaels3, Alicia Hore4, Scot C.R. Rafkin5. 1. University of Chicago. 2. Johns Hopkins University. 3. SETI Institute. 4. Brock University. 5. Southwest Research Institute. (*[email protected]) Abstract. We present a new database of >300 layer-orientations from sedimentary mounds on Mars. These layer orientations, together with draped landslides, and draping of rocks over differentially- eroded paleo-domes, indicate that for the stratigraphically-uppermost ~1 km, the mounds formed by the accretion of draping strata in a mound-shape. The layer-orientation data further suggest that layers lower down in the stratigraphy also formed by the accretion of draping strata in a mound-shape. The data are consistent with terrain-influenced wind erosion, but inconsistent with tilting by flexure, differential compaction over basement, or viscoelastic rebound. We use a simple landscape evolution model to show how the erosion and deposition of mound strata can be modulated by shifts in obliquity. The model is driven by multi-Gyr calculations of Mars’ chaotic obliquity and a parameterization of terrain-influenced wind erosion that is derived from mesoscale modeling. Our results suggest that mound-spanning unconformities with kilometers of relief emerge as the result of chaotic obliquity shifts. Our results support the interpretation that Mars’ rocks record intermittent liquid-water runoff during a 108-yr interval of sedimentary rock emplacement. 1. Introduction. Understanding how sediment accumulated is central to interpreting the Earth’s geologic records (Allen & Allen 2013, Miall 2010).
    [Show full text]
  • Global Catastrophes in Earth History
    GLOBAL CATASTROPHES IN EARTH HISTORY An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality Snowbird, Utah October 20-23, 1988 N89-2 12E7 --?HEW- Sponsored by The Lunar and Planetary Institute and The National Academy of Sciences Abstracts Presented to the Topical Conference Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality Snowbird, Utah October 20 - 23,1988 Sponsored by Lunar and Planetary Institute and The National Academy of Sciences LPI Contribution No. 673 Compiled in 1988 Lunar and Planetary Institute Material in this volume may be copied without restraint for library, abstract service, educational, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as appropriate acknowledgment of this publication. PREFACE This volume contains abstracts that have been accepted for presentation at the topical conference Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism and Mass Mortality. The Organizing Committee consisted of Robert Ginsburg, Chairman, University of Miami; Kevin Burke, Lunar and Planetary Institute; Lee M. Hunt, National Research Council; Digby McLaren, University of Ottawa; Thomas Simkin, National Museum of Natural History; Starley L. Thompson, National Center for Atmospheric Research; Karl K. Turekian, Yale University; George W. Wetherill, Carnegie Institution of Washington. Logistics and administrative support were provided by the Projects Ofice at the Lunar and Planetary Institute. This abstract volume was prepared by the Publications Office staff at the Lunar and Planetary Institute. The Lunar and Planetary Institute is operated by the Universities Space Research Association under contract No. NASW-4066 with the National Aeronautics and Space Administration.
    [Show full text]
  • Structures for Survival Rakali, the Australian Water Rat (Hydromys Chryogaster)
    fact sheet Structures for survival Rakali, the Australian water rat (Hydromys chryogaster) Rakali is a specialised rodent that inhabits Australian freshwater systems. It is one of photo: Erin Whitford, used by permission the top predators in this environment. It is Australia’s largest rodent, with a body length of around 40 cm and a tail almost as long. The largest specimen recorded weighed an impressive 1.12 kg. photo: Andrew McCutcheon, used by permission What’s in the name? What’s on the menu? The Australian water rat is sometimes called the native otter, but generally they Rakali are predominantly are called rakali, which is their Western carnivorous and opportunistic, Australian Indigenous name. Their so their diet is highly varied. Many scientific name is Hydromys chryogaster, aquatic organisms are on the menu: and as you might have guessed, this is a particularly insects, worms, spiders and rat that loves water. crustaceans. They also dine on fish, frogs, tortoise, small mammals and waterbirds. Where do rakali live? Rakali prefer to take their meals on land, visiting favourite feeding platforms called Rakali is one of Australia’s most successful middens. rodent species and is found across the country. They also live in New Guinea and Fashionable fur adjacent islands. Rakali were hunted extensively for their Rakali habitats include creeks, rivers, fur during the first half of the twentieth estuaries, wetlands and farm dams. century, with over 10 000 animals trapped They are also found in brackish each year in Victoria alone. Rakali have been environments, including mangroves of protected nationwide since the 1950s.
    [Show full text]
  • Low-Albedo Surfaces and Eolian Sediment: Mars Orbiter Camera Views of Western Arabia Terra Craters and Wind Streaks
    Low-albedo surfaces and eolian sediment: Mars Orbiter Camera views of western Arabia Terra craters and wind streaks Kenneth S. Edgett Malin Space Science Systems, Inc., San Diego, California, USA Abstract. High spatial resolution (1.5 to 6 m/pixel) Mars Global Surveyor Mars Orbiter Camera images obtained September 1997 to June 2001 show that each of the large, dark wind streaks of western Arabia Terra originate at a barchan dune field on a crater floor. The streaks consist of a relatively thin (< 1 m) coating of sediment deflated from the dune fields and their vicinity. In most cases, this sediment drapes over a previous mantle that more thickly covers nearly all of western Arabia Terra. No concurrent eolian bedforms are found within the dark streaks, nor do any dunes climb up crater walls to deliver sand via saltation to the streaks. The relations between dunes, wind streak, and subjacent terrain imply that dark-toned grains finer than those that comprise the dunes are lifted into suspension and carried out of the craters to be deposited on the adjacent terrain. Previous eolian physics and thermal inertia studies suggest that, under modern Martian conditions, such grains likely include silt (3.9–62.5 !m), very fine sand (62.5–125 !m), and possibly fine sand (to ~210 !m). The streaks change in terms of extent, relative albedo, and surface pattern over periods measured in years; however, through June 2001, very little evidence for recent eolian activity (dust plumes, storms, dune movement) was observed. received 18 July 2001, revised 21 December 2001, accepted 2 January 2002, published 13 June 2002 Citation: Edgett, K.
    [Show full text]