Jonathan Zenneck 1871

Total Page:16

File Type:pdf, Size:1020Kb

Jonathan Zenneck 1871 Jonathan Zenneck 1871- 1959 Eine technisch-wissenschaftliche Biographie Von der Fakultät 8 Geschichts-, Sozial- und Wirtschaftswissenschaften der Universität Stuttgart zur Erlangung der Würde eines Doktors der Philosophie (Dr. phfl.) genehmigte Abhandlung Vorgelegt von Georg Schmucker aus München Hauptberlchter: Prof. Dr. Armin Hermann Mitberichter: Prof. Dr. Walter Kaiser RWTH Aachen Tag der mündlichen Prüfung: 29. Mai 2000 Historisches Institut Abteilung für Geschichte der Naturwissenschaften und Technik der Universität Stuttgart Stuttgart 1999 1 Inhaltsverzeichnis Zusammenfassung: Themen- und Aufgabenstellung 9 1. Einleitung 14 1.1 Vorwort 14 1.2 Überblick über bekannte Veröffentlichungen und Abhandlungen 17 1.3 Materialsammlung 20 1.4 Anmerkungen zur Einleitung 24 2. Vom Elternhaus zur Wissenschaft 26 2.1 Familiengeschichte 26 2.2 Kinderjahre und Schulzeit (1871 - 1884) 31 2.3 Seminare in Maulbronn und Blaubeuren (1885-1889) 38 2.4 Student im „Evangelischen Stift" in Tübingen (1889-1894) 41 2.4.1 Lehramtskandidat und Student an der Eberhard-Karls-Universität 42 2.4.2 Wissenschaftliche Arbeiten im Zoologischen Institut 46 2.4.3 Ferien in der französischen Schweiz 51 2.4.4 Examen 51 2.4.5 Im „Evangelischen Stift" 52 2.4.6 Die Studentenverbindung „Roigel" 55 2.5 Studienreise nach London über Paris 1894 59 2.5.1 Zwischenstation Paris 59 2.5.2 Aufenthalt in London, wissenschaftliche Arbeiten am Natural History Museum 60 2 2.6 Noch einmal ein zoologisches Forschungsthema 63 2.7 Anmerkungen zum Kapitel 2 66 3. Dienst bei der Marine-Infanterie 72 3.1 Vom Einjährigen-Freiwilligen über Reserveübungen 72 zum Hauptmann d. R. (1894 bis 1913) 3,2 Im Felde (1914) 76 3.3 Physikalische Überlegungen im Felde 77 3.4 Anmerkungen zum Kapitel 3 79 4. Physiker, Ingenieur und Hochschullehrer 80 4.1 Wissenschaftliche Arbeiten bei und mit Prof. Ferdinand Braun 1895 -1905 80 4.1.1 Das Physikalische Institut an der Universität Strasburg 1895 80 4.1.2 Zweiter Assistent bei Professor Braun 1895 - 1899 82 - Die Entwicklung der elektrischen Energieversorgung bis zur Jahrhundertwende 84 - Entdeckungen und Erfindungen in der Physik in den Jahren 1895 und 1896 87 4.1.2.1 Erste physikalische Forschungsarbeiten von Jonathan Zenneck 90 4.1.2.2 Die Braunsche Röhre 93 4.1.3 Lehrer arn protestantischen Gymnasium 105 4.1.4 Die drahtlose Telegraphie vor und um die Jahrhundertwende (1887 -1903) 107 4.1.4.1 Die Erfindung von Guglielrno Marconi 110 4.1.4.2 Der Weg zum Braunschen Sender 113 4.1.4.3 Funkversuche bei Cuxhaven (1899 - 1900) 119 4.1.4.4 Von der „Telebraun" zu Telefunken 137 3 4.1.5 Assistent und Privatdozent am Physikalischen Institut der Universität Straßburg (1901 bis 1905) 141 4.1.5.1 Habilitation an der Universität Straßburg; erste Vorlesungen 141 4.1.5.2 Wissenschaftliche Arbeiten am Institut und weitere Veröffentlichungen 143 4.15.3 Die erste Begegnung mit Arnold Sommerfeld und der Artikel „Gravitation" in der Enzyklopädie der mathematischen Wissenschaften 148 4.1.5.4 Über das damalige Leben in Straßburg 151 4.1.6 Anmerkungen zum Kapitel 4.1 155 4.2 Hochschullehrer an den Technischen Hochschulen in Danzig und Braunschweig (1905 bis 1909) 168 4.2.1 Dozent an der Technischen Hochschule in Danzig (1905 bis 1906) 168 4.2.1.1 Die TH Danzig und das Physikalische Institut 168 4.2.1.2 Wissenschaftliche Arbeiten am Physikalischen Institut 172 4.2.1.3 Eindrücke aus dem damaligen Danzig und seiner Umgebung 175 4.2.1.4 Besuch bei Professor Braun in Straßburg 176 4.2.2 Ordentlicher Professor an der Technischen Hochschule Braunschweig (1906 bis 1909) 178 4.2.2.1 DieTH Braunschweig und das Physikalische Institut 178 4.2.2.2 Wissenschaftliche Arbeiten und Veröffentlichungen 181 4.2.2.3 Begegnungen und Erlebnisse in Braunschweig 191 4.2.2.4 Verlobung und Familie 193 4.2.2.5 Unterbrechung der Hochschullaufbahn, Obertritt zur Badischen Anilin-und Sodafabrik 194 4.2.3 Anmerkungen zum Kapitel 4.2 195 4.3 Physiker bei der Badischen Anilin-und Sodafabrik A.G. (1909- 1911) 202 4.3.1 Das Problem der ausreichenden Versorgung der Kulturböden mit Stickstoff 202 4.3.2 Die Oxidation des Luftstickstoffes 203 4.3.2.1 Das Prinzip der künstlichen Darstellung von Salpeter 204 4.3.2.2 Die drei europäischen Verfahren 207 4 4.3.3 Das erste physikalische Laboratorium bei der BASF und dessen Aufgaben 213 4.3.3.1 Untersuchungen an den Lichtbogenöfen und den dazugehörenden Anlagen 214 4.3.3.2 Laboratoriumstätigkeit in Ludwigshafen 228 4.3.3.3 Veröffentlichungen und Vorträge 232 4.3.4 Industrielle Anlagen und deren Nutzung 235 4.3.5 Eindrücke, Begegnungen, Erfahrungen 238 4.3.5.1 Das Leben in Ludwigshafen 238 4.3.5.2 Eindrücke und Begegnungen in Norwegen 240 4.3.6 Abschied von der Badischen Anilin- und Sodafabrik A.G. 242 4.3.7 Anmerkungen zum Kapitel 4.3 248 4.4 Hochschullehrer und Institutsleiter an der Technischen Hochschule Danzig (1911 bis 1913) 256 4.4.1 Notwendige Informationen zum Forschungsstand und den Entwicklungsrichtungen in der Physik zu dieser Zeit 256 4.4.2 Das Physikalische Institut der Technischen Hochschule Danzig 1911 259 4.4.3 Wissenschaftliche Arbeiten und Veröffentlichungen 260 4.4.4 Das gesellschaftliche Leben der Hochschulangehörigen in Danzig-Langfuhr 264 4.4.5 Die Berufung an die Technische Hochschule München 265 4.4.6 Anmerkungen zum Kapitel 4.4 268 4.5 Hochschullehrer und Direktor des Physikalischen Instituts an der Technischen Hochschule München (1913 bis 1914) 271 4.5.1 Die Entwicklung der Technischen Hochschule München bis zum Ersten Weltkrieg 271 4.5.2 Das Physikalische Institut 1913 als Grundlage der Berufungsverhandlungen 273 4.5.3 Vorlesungen 278 4.5.4 Wissenschaftliche Arbeiten 279 4.5.5 Gesellschaftliche Gepflogenheiten der Hochschulangehörigen 281 4.5.6 Mobilmachung 1914 282 4.5.7 Anmerkungen zum Kapitel 4.5 284 5 4.6 Gutachter und Zeuge in den Patentprozessen in den Vereinigten - Staaten - Ausbau der Funkstation Sayville Internierung (1914 bis 1919) 288 4.6.1 Die Telegraphieverbindungen Deutschland - Nordamerika bis 1914 288 4.6.2 Die Patentsituation in der drahtlosen Telegraphie bis zum Beginn des Ersten Weltkrieges 1914 294 4.6.3 Die Marconi-Wireless-Telegraph Company strengt Patentprozeß 298 gegen Atlantic Communication Company, New York, an. 4.6.4 Die Abordnung von Prof. Zenneck nach Amerika 301 4.6.5 Der Prozeß der Marconi-Wireless-Telegraph Company of the United States gegen die Atlantic Communication Company, sein Verlauf und sein Umfeld 304 4.6.6 Die Prozesse der National-Electric-Signallng-Company Fessenden gegen die Atlantic-Communication Company, der Verlauf und das Umfeld 312 4.6.7 Einigungsbestrebungen 324 4.6.8 Kosten der Patentstreitigkeiten 326 4.6.9 Erweiterung und Betrieb der Funkstation Sayville (1914 bis 1917) 327 4.6.10 Leben und Eindrücke in Sayville, Boonton und New York 339 4.6.10.1 Allgemeine Erfahrungen 339 4.6.10.2 Das Institute of Radio Engineers, New York 341 4.6.11 Internierung 344 4.6.12 Entlassung und Heimkehr 1919 346 4.6.13 Anmerkungen zum Kapitel 4.6 349 4.7 Hochschullehrer und Direktor des Instituts für Experimentalphysik an der Technischen Hochschule München (1919 bis 1939) 364 4.7.1 Das politische Umfeld der Hochschule zu Beginn der zwanziger Jahre 364 4.7.2 Hochschule und Hochschullehrer 367 4.7.2.1 Hochschulangelegenheiten 367 4.7.2.2 Der Neubau des Physikalischen Instituts und des großen Physikhörsaales der Technischen Hochschule München 379 4.7.2.3 Vorlesungen 383 6 4.7.2.4 Die politische Einstellung der Studenten an der Technischen Hochschule 385 4.7.3 Anmerkungen zum Kapitel 4.7 388 4.8 Forschungsarbeiten und wissenschaftliche Veröffentlichungen aus dem Physikalischen Institut ab 1919 395 4.8.1 Wissenschaftliche Arbeiten und Veröffentlichungen auf dem Gebiet der drahtlosen Telegraphie und Telephonie 396 4.8.1.1 Lehrbuch der drahtlosen Telegraphie 396 4.8.1.2 Forschungsarbeiten im Physikalischen Institut 397 4.8.2 lonosphärenforschung 402 4.8.2.1 Der Weg zur lonosphärenforschung 402 4.8.2.2 Die Forschungsarbeiten auf der lonosphärenstation am Herzogstand 407 4.8.3 Untersuchungen und Beratungen zur Raumakustik 419 4.8.4 Anmerkungen zum Kapitel 4.8 425 5. Wissenschaftlich-organisatorische Tätigkeit in Akademien, wissenschaftlichen Gesellschaften und im Deutschen Museum 436 5.1 Bayerische Akademie der Wissenschaften 436 5.2 Akademie der Luftfahrtforschung 438 5.3 Deutsche Physikalische Gesellschaft 441 5.4 Mitarbeit in weiteren Organisationen und Verbänden 452 5.4.1 Verein Deutscher Ingenieure (VDl) und Verband Deutscher Elektrotechniker (VDE) 452 5.4.2 Union Radio Scientifique Internationale (U.R.S.l.) 453 5.4.3 Sonstige Gesellschaften oder Verbände 456 5.5 Das Ehrenamt im Deutschen Museum 457 5.6 Anmerkungen zum Kapitel 5 464 7 6: Die Persönlichkeit und der Mensch Jonathan Zenneck 506 6.1 Der Mensch Jonathan Zenneck 506 6.2 Anmerkungen zum Kapitel 6 514 7. Auszeichnungen, Ernennungen und Ehrungen 516 8; Zusammenfassung 522 9; Schluftbemerkungen 532 10. Anhang 534 10.1 Veröffentlichungen von Jonathan Zenneck 535 10.2 Literaturverzeichnis 545 Lebenslauf 552 8.
Recommended publications
  • AWAR Volume 24.Indb
    THE AWA REVIEW Volume 24 2011 Published by THE ANTIQUE WIRELESS ASSOCIATION PO Box 421, Bloomfi eld, NY 14469-0421 http://www.antiquewireless.org i Devoted to research and documentation of the history of wireless communications. Antique Wireless Association P.O. Box 421 Bloomfi eld, New York 14469-0421 Founded 1952, Chartered as a non-profi t corporation by the State of New York. http://www.antiquewireless.org THE A.W.A. REVIEW EDITOR Robert P. Murray, Ph.D. Vancouver, BC, Canada ASSOCIATE EDITORS Erich Brueschke, BSEE, MD, KC9ACE David Bart, BA, MBA, KB9YPD FORMER EDITORS Robert M. Morris W2LV, (silent key) William B. Fizette, Ph.D., W2GDB Ludwell A. Sibley, KB2EVN Thomas B. Perera, Ph.D., W1TP Brian C. Belanger, Ph.D. OFFICERS OF THE ANTIQUE WIRELESS ASSOCIATION DIRECTOR: Tom Peterson, Jr. DEPUTY DIRECTOR: Robert Hobday, N2EVG SECRETARY: Dr. William Hopkins, AA2YV TREASURER: Stan Avery, WM3D AWA MUSEUM CURATOR: Bruce Roloson W2BDR 2011 by the Antique Wireless Association ISBN 0-9741994-8-6 Cover image is of Ms. Kathleen Parkin of San Rafael, California, shown as the cover-girl of the Electrical Experimenter, October 1916. She held both a commercial and an amateur license at 16 years of age. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. Printed in Canada by Friesens Corporation Altona, MB ii Table of Contents Volume 24, 2011 Foreword ....................................................................... iv The History of Japanese Radio (1925 - 1945) Tadanobu Okabe .................................................................1 Henry Clifford - Telegraph Engineer and Artist Bill Burns ......................................................................
    [Show full text]
  • Ferdinand Braun - a Pioneer in Wireless Technology and Electronics
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/230874467 Ferdinand Braun - A Pioneer in Wireless Technology and Electronics Chapter · January 2012 CITATIONS READS 0 441 1 author: Peter Russer Technische Universität München 1,075 PUBLICATIONS 8,096 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Advanced Characterisation and Classification of Radiated Emissions in Densely Integrated Technologies – (ACCREDIT) View project Increasing the upper frequency limit of SAW filters and oscillators View project All content following this page was uploaded by Peter Russer on 15 May 2014. The user has requested enhancement of the downloaded file. FERDINAND Braun. A PIONEER IN WIRELESS technology AND electronics Ferdinand Braun – A pioneer in wireless technologY and electronics Peter Russer n 1909 Ferdinand Braun and Guglielmo Marconi jointly received the Nobel Prize for their groundbreaking contributions to wireless telegraphy. Beyond numerous important contributions to wireless transmitter and receiver cir- cuit technology Ferdinand Braun has given other epoch-making contribu- tions to electronics and wireless technology, including the discovery of the rectifying properties of a metal-semiconductor junction in 1874, the invention of the Icathode ray tube (Braunsche Röhre) in 1897, and precise voltage measurement in- struments. He has given the impact to the foundation of “Hartmann & Braun” and “Telefunken” and had a considerable influence on the industrial development of Ger- man wireless technology. Introduction Ferdinand Braun (1850-1918) has been an extraordinary influential pioneer in wire- less technology who has had a strong impact on the industrial development of that field.
    [Show full text]
  • An Historical Survey on Light Technologies
    Received March 31, 2018, accepted May 1, 2018, date of publication May 8, 2018, date of current version June 5, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2834432 An Historical Survey on Light Technologies MASSIMO GUARNIERI , (Member, IEEE) Department of Industrial Engineering, University of Padua, 35131 Padova, Italy e-mail: [email protected] ABSTRACT Following the celebration of the International Year of Light and Light-based Technologies in 2015, this paper presents a survey of the exploitation of light throughout our history. Human beings started using light far into the Stone Age, in order to meet immediate needs, and widened its used when ancient civilizations developed. Other practical uses were conceived during the Middle Ages, some of which had a deep impact on social life. Nevertheless, it was after the Scientific Revolution and, to a wider extent, with the Industrial Revolution, that more devices were developed. The advancement of chemistry and electricity provided the ground and the tools for inventing a number of light-related devices, from photography to chemical and electrical lighting technologies. The deeper and broader scientific advancements of the 20th century, throughout wave and quanta paradigms and the research on the interactions with matter at the sub-atomic level, have provided the knowledge for a much broader exploitation of light in several different fields, leading to the present technological domains of optoelectronics and photoelectronics, including cinema, image processing, lasers, photovoltaic cells, and optical discs. The recent success of fiber optics, white LEDs, and holography, evidence how vastly and deeply the interaction between light and man is still growing.
    [Show full text]
  • The Chaning Face of Science and Technology in the Ehrensaal of The
    PREPRINT 13 Lisa Kirch The Changing Face of Science and Technology in the Ehrensaal of the Deutsches Museum, 1903–1955 The Changing Face of Science and Technology in the Ehrensaal of the Deutsches Museum, 1903–1955 Deutsches Museum Preprint Edited by Deutsches Museum Issue 13 Lisa Kirch received her Ph. D. in art history (University of Texas at Austin, 2003) with a dissertation on the portraits of Elector Palatine Ottheinrich (1502–1559). In collaboration with Andreas Kühne (LMU) she has published articles on portraits of the Herschel family and on the presentation and conservation of modern art. Her publications on visual and material culture in early-modern Germany appear under Miriam Hall Kirch. She is Associate Professor in the Art Department of the University of North Alabama. Lisa Kirch The Changing Face of Science and Technology in the Ehrensaal of the Deutsches Museum, 1903–1955 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet unter http://dnb.d-nb.de abrufbar. Lisa Kirch, “The Changing Face of Science and Technology in the Ehrensaal of the Deutsches Museum, 1903–1955” © 2017 of the present edition: MV-Wissenschaft MV-Wissenschaft is published by readbox publishing GmbH, Dortmund http://unipress.readbox.net/ © Deutsches Museum Verlag All rights reserved Editor: Dorothee Messerschmid Layout and Design: Jutta Esser Cover illustration: Draft of the Lilienthal glider, 1895
    [Show full text]
  • Karl Rawer's Life and the History of IRI
    Available online at www.sciencedirect.com ADVANCES IN SCIENCE d EDIRECT@ SPACE RESEARCH (a COSPAR publication) ELSEVIER Advances in Space Research 34 (2004) 1845-1850 www.elsevier.com/locate/asr Karl Rawer's life and the history of IRI Bodo W. Reinisch a,*, Dieter Bilitza b a Department of Environmental Earth and Atmospheric Sciences, Center for Atmospheric Research, University of Massachusetts Lowell, 600 Suffolk Street, Lowell, MA 01854, USA b Raytheon ITSSISSD00, GSFC, Code 632, Greenbelt, MD 20771, USA Received 12 September 2004; accepted 13 September 2004 Abstract This laudation is given in honor of the 90th birthday of Prof. Karl Rawer that coincides with the 35th anniversary of the Inter- national Reference Ionosphere (IRI). The ionosphere was discovered during Karl Rawer's life, and he has dedicated his life to the exploration of this part of Earth's environment. The horrible events of world wars I and II shaped his early life, but they also launched his career as one of the eminent geophysical scientists of the twentieth century. The paper looks back at Karl's life and the 35 years of research and development in the framework of the IRI project. K. Rawer initiated this international modeling effort and was the first chairman of the IRI Working Group. IRI is a joint project of the Committee on Space Research (COSPAR) and the International Union of Radio science (URSI) that has the goal to establish an international standard model of the ionospheric densities temperatures, and drifts. © 2004 COSPAR. Published by Elsevier Ltd. All rights reserved. Keywords: Karl Rawer; International Reference Ionosphere; Ionosphere 1.
    [Show full text]
  • Karl Rawer's Life and Scientific Achievements
    Advances in Radio Science (2004) 2: 263–264 © Copernicus GmbH 2004 Advances in Radio Science Karl Rawer’s life and scientific achievements∗ B. W. Reinisch Environmental, Earth and Atmospheric Sciences Department, Center for Atmospheric Research, University of Massachusetts Lowell, 600 Suffolk St., Lowell, MA 01854, USA ∗Dedicated to Prof. Dr. K. Rawer on the occasion of his 90th birthday. Abstract. This laudation is given in honor of the 90th birth- Rocard to establish an ionospheric prediction service in the day of Prof. Karl Rawer. The ionosphere was discovered French Zone. A new ionospheric institute came to life first in during Karl Rawer’s life, and he has dedicated his life to the Neuershausen, then in Breisach (Baden-Wurttemberg),¨ i.e. exploration of this part of Earth’s environment. The horrible close to Karl’s academic origins in Freiburg and to his na- events of world wars I and II shaped his early life, but they tive Saarland. I first met Professor Rawer in 1960 when he also launched his career as one of the eminent geophysical accepted me as a graduate student at the “Ionospharen¨ Insti- scientists of the twentieth century. tut Breisach”. Other graduate students at the time included Rolf Kraft, Jurgen¨ Buchau,¨ Fritz Fischer, Frank Ade, Ger- hard Schmitdke, Christian Munter,¨ and Hans Bohnel.¨ A life long friendship connected all of us until today, most of us 1 Introduction – the early years now retired. Sadly Fritz and Hans died early, and Jurgen,¨ who together with me emigrated from Germany to the USA, “Actually, it was chance and circumstances that gave me the died 10 years ago.
    [Show full text]
  • Klaus Staubermann
    00frontmatter.qxd 6/13/09 9:00 PM Page i Illuminating Instruments 00frontmatter.qxd 6/13/09 9:00 PM Page ii 00frontmatter.qxd 6/13/09 9:00 PM Page iii Illuminating Instruments Artefacts: STUDIES IN THE HISTORY OF SCIENCE AND TECHNOLOGY, VOLUME 7 Edited by Peter Morris and Klaus Staubermann Series Editors Robert Bud, Science Museum, London Bernard Finn, Smithsonian Institution Helmuth Trischler, Deutsches Museum, Munich WASHINGTON, D.C. 2009 00frontmatter.qxd 6/13/09 9:00 PM Page iv 00frontmatter.qxd 6/13/09 9:00 PM Page v he series “Artefacts: Studies in the History of Science and Technology” was established Tin 1996 under joint sponsorship by the Deutsches Museum (Munich), the Science Museum (London), and the Smithsonian Institution (Washington, DC). Subsequent spon- soring museums include: Canada Science and Technology Museum, Istituto e Museo Nazionale di Storia della Scienza, Medicinsk Museion Kobenhavns Universitet, MIT Museum, Musée des Arts et Métiers, Museum Boerhaave, Národní Technické Museum, Prague, National Museum of Scotland, Norsk Teknisk Museum, Országos Mıszaki Múzeum Tanulmánytára (Hungarian Museum for S&T), Technisches Museum Wien, Tekniska Museet–Stockholm, The Bakken, Whipple Museum of the History of Science. Editorial Advisory Board Robert Anderson, Cambridge University Jim Bennett, Museum of the History of Science, University of Oxford Randall Brooks, Canada Science and Technology Museum Ruth Cowan, University of Pennsylvania Robert Friedel, University of Maryland Sungook Hong, Seoul National University David Hounshell,
    [Show full text]
  • Physical Realization of Non-Radiative Wireless Power Transmission Using Zenneck Waves
    Supplementary Material for Physical Realization of Non-Radiative Wireless Power Transmission Using Zenneck Waves Sai Kiran Oruganti,1 Jagannath Malik,1 Jongwon Lee,1 Woojin Park,1 Bonyoung Lee,1 Seoktae Seo,1 Dipra Paul,1 Haksun Kim,1 Thomas Thundat,2 and Franklin Bien.1∗ January 3, 2019 1 Electrical Length: Half Wave Helical Transformer Throughout 2015-18, authors conducted the experiments to study the voltage oscillation across the GBI resonator system. One such experiment carrying out power transfer across 80 mm metal wall can be seen in fig. S 1. This experiment uses the ground plate and wire arrangement to sustain a meaningful voltage oscillation across the terminals of the load (40 watts halogen). Based on the experimental findings shown in fig. S 1, the authors tried to replace the equivalent RLC lumped elements(unsuccessfully so). The reasons behind the failure of RLC lumped elements based counterpoise were carefully and qualitatively investigated, through a series of experiments. It was observed that the planar structure of the receiver was unable to sustain a significant value of voltage and current. As shown in Fig. S 2 , the gap between the mesh and ground layer is g=1.5 mm. At a target frequency of 27MHz, g << λ/4. The largest dimension of the transceiver system is Ax = 150 mm, which is << λ/2π = 1767mm at target frequency of 27MHz. Thus, the proposed receiver in its present form is electrically smallS1,S2. It has been observed that the dimensions of the lumped RLC elements become the part of the over all electrical length of the antenna beyond 900MHz S3,S4.
    [Show full text]
  • Michael Eckert Science, Life and Turbulent Times –
    Michael Eckert Arnold Sommerfeld Science, Life and Turbulent Times – Michael Eckert Arnold Sommerfeld. Science, Life and Turbulent Times Michael Eckert translated by Tom Artin Arnold Sommerfeld Science, Life and Turbulent Times 1868–1951 Michael Eckert Deutsches Museum Munich , Germany Translation of Arnold Sommerfeld: Atomphysiker und Kulturbote 1868–1951, originally published in German by Wallstein Verlag, Göttingen ISBN ---- ISBN ---- (eBook) DOI ./---- Springer New York Heidelberg Dordrecht London Library of Congress Control Number: © Springer Science+Business Media New York Th is work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. Th e use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • The AWA Review
    The AWA Review Volume 27 • 2014 Published by THE ANTIQUE WIRELESS ASSOCIATION PO Box 421, Bloomfield, NY 14469-0421 http://www.antiquewireless.org Devoted to research and documentation of the history of wireless communications. THE ANTIQUE WIRELESS ASSOCIATION PO Box 421, Bloomfield, NY 14469-0421 http://www.antiquewireless.org Founded 1952, Chartered as a non-profit corporation by the State of New York. The AWA Review EDITOR Robert P. Murray, Ph.D. Vancouver, BC, Canada ASSOCIATE EDITORS Erich Brueschke, BSEE, MD, KC9ACE David Bart, BA, MBA, KB9YPD, Julia Bart, BA, MA FORMER EDITORS Robert M. Morris W2LV, (silent key) William B. Fizette, Ph.D., W2GDB Ludwell A. Sibley, KB2EVN Thomas B. Perera, Ph.D., W1TP Brian C. Belanger, Ph.D. OFFICERS OF THE ANTIQUE WIRELESS ASSOCIATION DIRECTOR: Tom Peterson, Jr. DEPUTY DIRECTOR: Robert Hobday, N2EVG SECRETARY: William Hopkins, Ph.D., AA2YV TREASURER: Stan Avery, WM3D AWA MUSEUM CURATOR: Bruce Roloson, W2BDR 2014 by the Antique Wireless Association, ISBN 978-0-9890350-1-9 Cover images: Front: Hallicrafters 5-T Sky Buddy with Boy, and without Boy. Back: Parts of the 5-T with Boy dial (Fig. 7 in article), and Hallicrafters 5-19 Sky Buddy. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopy- ing, recording, or otherwise, without the prior written permission of the copyright owner. Book design and layout by Fiona Raven, Vancouver, BC, Canada Printed in Canada by Friesens, Altona, MB Contents ■ Volume 27, 2014 Foreword .................................................... iv W.
    [Show full text]
  • Historical Group Occasional Paper 7 Nitrogen, Novel High-Pressure
    Historical Group OCCASIONAL PAPERS No 7 Nitrogen, Novel High-Pressure Chemistry, and the German War Effort (1900-1918) Anthony S. Travis (Sidney M. Edelstein Center for the History and Philosophy of Science, Technology and Medicine, The Hebrew University of Jerusalem) The Seventh Wheeler Lecture Royal Society of Chemistry, 22 October 2014 April 2015 Introduction “The story still is told of a Minister, a member of the War Cabinet, who, finding the conversation at a certain dinner turning to the sinister menace of the submarine campaign, then at its height, and its effects especially on the Chile communications, turned to his neighbour with the enquiry: ‘Tell me, what is this nitrate they are all making such a fuss about?’” Stanley I. Levy, “The Status of Chemists and Chemistry”, in Chemistry and Industry, no. 11 (14 March 1924): 285-6. Apocryphal or not, this extract from the correspondence columns of the then new British journal Chemistry and Industry in 1924 exposes the apparent general ignorance in Britain, and also for a time in Germany, of a crucial and even desperate episode in the conduct of what became known as the First Great War. “Nitrate”, a commodity essential to the production of modern explosives employed in warfare, mainly aromatic nitro compounds such as TNT and picric acid, was common currency to all belligerents. Nevertheless outside of scientific and industrial circles the critical roles of what was in fact Chilean nitrate (Chilean saltpetre, or sodium nitrate), extracted from the mineral caliche, and the other nitrogen-containing chemicals of commerce, such as calcium cyanamide and ammonia, as sources of vast destructive power, was generally given little, if any, prominence at the start of the war in early August 1914.
    [Show full text]
  • Sparks to Signals: Literature, Science, and Wireless Technology, 1800–1930
    Sparks to Signals: Literature, Science, and Wireless Technology, 1800–1930 by Erik Christopher Born A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in German and Medieval Studies and the Designated Emphasis in Film Studies in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Niklaus Largier, chair Professor Anton Kaes Professor Mary Ann Doane Spring 2016 Sparks to Signals: Literature, Science, and Wireless Technology, 1800–1930 © 2016 by Erik Christopher Born Abstract Sparks to Signals: Literature, Science, and Wireless Technology, 1800–1930 by Erik Christopher Born Doctor of Philosophy in German and Medieval Studies Designated Emphasis in Film Studies University of California, Berkeley Professor Niklaus Largier, Chair “Going wireless” involves not only the elimination of wires but also the production of electromagnetic waves, a realization that had far-reaching implications for the cultural logics of German modernity. As a media archaeology of wirelessness, this dissertation situates the “discovery” of electromagnetic radiation and the “invention” of wireless transmission in a richer field of scientific, experimental, and aesthetic relations during the early and pre-history of national broadcasting. Before wireless transmission came to be synonymous with the mass distribution medium of radio or even the long-distance communication medium of wireless telegraphy, it was at the center of speculation about a variety of possible wireless
    [Show full text]