Catalytic Enantioselective Reactions with (Benzo)Pyrylium Salts

Total Page:16

File Type:pdf, Size:1020Kb

Catalytic Enantioselective Reactions with (Benzo)Pyrylium Salts InnovatIve tools In organIc / organometallIc chemIstry CHIMIA 2020, 74, No. 11 857 doi:10.2533/chimia.2020.857 Chimia 74 (2020) 857–865 © S. Joseph, G. Khassenova, O. García Mancheño Catalytic Enantioselective Reactions with (Benzo)Pyrylium Salts Sumi Josepha, Gaukhar Khassenovaa, and Olga García Mancheño* Abstract: The use of (benzo)pyrylium salts as versatile synthetic building blocks has become an attractive plat- form for the preparation of valuable heterocyclic compounds. Besides other numerous direct applications of (benzo)pyryliums, the intrinsic electrophilic nature of these species or the dipole character of the related oxi- dopyrylium derivatives have been exploited towards the development of enantioselective transformations such as nucleophilic dearomatization and cycloaddition reactions. This review aims at providing an overview on the relevant catalytic enantioselective methodologies developed in the past years, which are presented considering the involved metal- and/or organic catalytic system, as well as the type of reaction. Keywords: Enantioselective catalysis · Metal catalysis · O-heterocycles · Organocatalysis · Pyrylium salts Prof. K.A. Jørgensen (University of Aarhus). She next moved to RWTH-Aachen for her postdoctoral research in the group of Prof. C. Bolm (2005–2008), followed by the start of her inde- pendent career at the University of Münster in 2008. In 2013, she was appointed as joint Chemistry Professor at the University of Regensburg and TUM-Campus Straubing, and since 2017 she is Professor for Organic Chemistry at the University of Münster. 1. Introduction (Benzo)pyrylium salts are privileged six-membered aromat- ic heterocycles containing a positively charged oxygen atom.[1] Important naturally occurring examples include the flavylium plant pigments,[2] while synthetic derivatives present fluores- cence[3] and photocatalytic activity,[4] among other properties S. Joseph, O. García Mancheño and G. Khassenova (Fig. 1, top). Moreover, the electronegativity of the oxygen atom in the aromatic ring induces a strong single perturbation, which Sumi Joseph was born in Kerala, southernmost part of India. makes it highly reactive towards nucleophilic additions leading to She earned her BSc in Chemistry from Calicut University in 2014 non-aromatic adducts, while it does not undergo typical aromatic and did her MSc (2016) studies at Mahathma Gandhi University electrophilic substitutions. with specialization in Organic Chemistry. In 2018, she was award- Several synthetic approaches have been developed for the ed a DAAD fellowship and joined the research group of Prof. Dr. preparation of (benzo)pyrylium salts (Fig. 1, bottom).[1] The Olga García Mancheño at the Westfälische Wilhelms-Universität most common method relies on the condensation of carbonyl Münster, where she is currently in her second year of the PhD compounds in the presence of a strong acid (e.g. TfOH, HBF , 4 Program in Organic Chemistry. Her research interests include etc.) as shown in Fig. 1a. However, in most cases this method non-covalent asymmetric anion-binding organocatalysis and total leads to 2,4,6-trisubstituted derivatives, in which all the nucleo- synthesis of natural products. philic sites are blocked. The second most employed synthesis of Gaukhar Khassenova was born in Karaganda, an industrial (benzo)pyrylium derivatives embraces substrates bearing a leav- city in central Kazakhstan. She completed both her Bachelor and ing group (LG) at the alpha position of the oxygen atom, which Master studies in the Department of Organic Chemistry with spe- facilitates the elimination of this group (normally RO- or RCO -) 2 cialization in Chemical Technology from the Karaganda State and formation of the corresponding salt (Fig. 1b). Besides these University. In 2019, she was awarded a DAAD fellowship and methodologies, several annulation reactions, as well as enoliza- moved to Germany to pursue her doctoral studies in the group tions of (benzo)pyranones have also been widely used to generate of Prof. Dr. Olga García Mancheño at the Institute of Organic the aromatic pyrylium core (Fig. 1c and 1d, respectively). Hence, Chemistry of the Westfälische Wilhelms-Universität Münster. multiple possibilities for the synthesis of these compounds exist, Her work primarily focuses on non-covalent asymmetric anion- which make them very interesting synthetic building blocks with binding organocatalysis. a rich chemistry as they can act as electrophiles (at the ortho and Olga García Mancheño received her PhD in 2005 from the para positions) or, in the case of oxidopyryliums, as dipoles.[1] Universidad Autónoma de Madrid under the supervision of Prof. Consequently, these salts can act as versatile synthetic interme- J.C. Carretero. During her PhD she realized two short research diates for the preparation of highly added derivatives. However, stays with Prof. M.T. Reetz (MPI für Kohlenforschung) and most of the (benzo)pyrylium compounds obtained through the *Correspondence: Prof. O. García Mancheño, E-mail: [email protected] Organic Chemistry Institute, Münster University, Corrensstrasse 36, D-48149 Münster, Germany aThese authors contributed equally. 858 CHIMIA 2020, 74, No. 11 InnovatIve tools In organIc / organometallIc chemIstry above-mentioned methods are quite unstable, except for the more ion intermediate (Scheme 1).[5] To achieve this, they combined a robust 2,4,6-trisubstituted or flavin-type derivatives, and there- tartaric acid amide as chiral Brønsted acid and a lanthanoid tri- fore they are normally formed in situ and reacted without prior flate complex as Lewis acid system to simultaneously activate isolation. Moreover, in the past few years, their extremely high the boronate and chromene, respectively. In this case, the formed potential for the synthesis of chiral molecules has gained more reactive dioxoborolane intermediate added to the pyrylium ion, attention. Nonetheless, due to their intrinsic high reactivity, ef- which was formed upon action of the achiral inorganic cerium or ficient catalytic enantioselective transformations are still scarce. ytterbium Lewis acid. O OH Bn N HO Bn 1 CO2H R OH Ar R1 OEt OH O (5 mol%) OH B + EtO R3 O R3 Ce(OTf) (4.5 mol%) or Et O OEt R2 4 R2 OH N O Yb(OTf)3 (4.5-13.5 mol%) HO O Ar O Ar Et R EtOAc, 4to-40 °C 68-85% yield O O N 88-98% ee Cyanidin photocatalysts tartrate-type OH Ln(OTf)n catalyst -2EtOH (Flavylium) fluorescence probes R (e.g.Ar=Ph, TPT) Condensation O Bn N R1 HO 2 O O O O R1 O O O O 2x + Ln B R R H O B O O H Bn N O R3 O (mostly to 2,4,6-trisubstitution) 3 Et EtO Ln Bn 2 R R R2 Elimination of α-LG a) Enolization Scheme 1. Enantioselective addition of boronates to in situ-formed ben- O b) O d) zopyrylium ions. or O LG O O O or electrophile dipole In 2012, the Rueping group embraced a similar approach for O c) the generation of the active chromenium intermediate from (iso) Annulations chromene acetals and described the first enantioselective addition O OR R1 of aldehydes to oxocarbenium ions for the synthesis of 2-sub- [6] LG O O stituted chiral chromenes (Scheme 2). They also used a dual or ,etc catalytic system consisted of Yb(OTf) as achiral Lewis acid and N2 3 O R2 a chiral imidazolidinone catalyst, in which the latter reacts with Fig. 1. Representative examples, synthetic approaches and reactivity of the carbonyl reagent to form the reactive enamine nucleophile. pyrylium derivatives. In order to facilitate the handling of the obtained chromene-alde- hyde products, a final reduction to the corresponding alcohol was performed. Under these conditions, the desired chiral substituted In this review, we present the state of the art on catalytic enan- chromenes were obtained in good yields and enantioselectivities tioselective reactions involving (benzo)pyrylium salts. The review up to 96% ee. is divided in metal-catalyzed and organocatalytic approaches, which provide access to valuable O-heterocycles or important 1) O synthetic building blocks towards the synthesis of bioactive prod- N (20 mol%) ucts. Thus, the methodologies discussed here are classified based Bn N H R H OH on the catalytic system involved and type of key reaction, includ- O R Yb(OTf)3 (10 mol%) O ing diverse nucleophilic dearomatization and cycloaddition reac- + R1 O OEt H H R1 tions. 2) NaBH4,MeOH 0 °Ctor.t., 2h 13 examples 72-89% yield Yb(OTf) amino 2. Metal Catalysis 3 catalyst 75-96% ee 2.1 Metal-catalyzed Nucleophilic Dearomatization O NaBH4 N Reactions H O R 2 Ongoing efforts in this area are directed towards the devel- Bn R H O O N -aminocat. O opment of effective methodologies for the synthesis of chiral R1 EtO [Yb] 1 O-heterocycles. In this regard, the stereo-controlled synthesis of H H R biologically relevant chromenes and chromones can be achieved Scheme 2. Ytterbium-amino co-catalysis for the asymmetric addition of through the nucleophilic addition to a variety of in situ gener- aldehydes to chromeniums. ated pyrylium-type electrophilic reactive species. Two main ap- proaches have been employed to date, which involve i) an achiral metallic Lewis acid catalyst for the formation of the pyrylium spe- Later on, Schaus and co-workers further investigated the ef- cies in combination with a chiral organocatalyst that activates the fect of Lewis and Brønsted acid cooperative catalysis for the ad- nucleophile, or ii) chiral organometallic nucleophiles, obtained dition reaction of diazoesters to 2H‐chromene acetals (Scheme by using a chiral metal catalyst formed with the appropriate chiral 3).[7] In particular, efficient C–C bond formation between pro- ligand. Thus, several lanthanoid-, gold- and copper-based cata- chiral oxocarbenium ions and ethyl diazoacetate were promoted lyzed reactions have been described so far and are presented in using Yb(OTf) and commercially available chiral phosphoric ac- 3 the next sections. ids to yield valuable chiral 2H-chromene-diazomethane scaffolds.
Recommended publications
  • Pyrylium Salt Chemistry Emerging As a Powerful Approach for the Cite This: Chem
    Chemical Science View Article Online PERSPECTIVE View Journal | View Issue Over one century after discovery: pyrylium salt chemistry emerging as a powerful approach for the Cite this: Chem. Sci., 2020, 11, 12249 All publication charges for this article construction of complex macrocycles and metallo- have been paid for by the Royal Society of Chemistry supramolecules Yiming Li, ab Heng Wanga and Xiaopeng Li *a Over one century after its discovery, pyrylium salt chemistry has been extensively applied in preparing light emitters, photocatalysts, and sensitizers. In most of these studies, pyrylium salts acted as versatile precursors for the preparation of small molecules (such as furan, pyridines, phosphines, pyridinium salts, thiopyryliums and betaine dyes) and poly(pyridinium salt)s. In recent decades, pyrylium salt chemistry has emerged as a powerful approach for constructing complex macrocycles and metallo-supramolecules. In this perspective, we attempt to summarize the representative efforts of synthesizing and self-assembling Received 20th August 2020 large, complex architectures using pyrylium salt chemistry. We believe that this perspective not only Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Accepted 13th October 2020 highlights the recent achievements in pyrylium salt chemistry, but also inspires us to revisit this chemistry DOI: 10.1039/d0sc04585c to design and construct macrocycles and metallo-supramolecules with increasing complexity and rsc.li/chemical-science desired function. 1. Introduction pyrylium salt with perchlorate as the counterion was reported in 1911 by Baeyer;7 however, since the discovery of pyrylium salts, Pyrylium salts are a type of six-membered cationic heterocycles such salts have been underappreciated for about a half-century.
    [Show full text]
  • Direct, Catalytic, Intermolecular Anti
    DIRECT, CATALYTIC, INTERMOLECULAR ANTI-MARKOVNIKOV HYDROACETOXYLATIONS OF ALKENES ENABLED VIA PHOTOREDOX CATALYSIS, AND INVESTIGATIONS INTO THE MECHANISM OF THE POLYMERIZATION OF 4-METHOXYSTYRENE INITIATED BY PYRYLIUM SALTS Andrew Perkowski A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2014 Approved by: David A Nicewicz Erik Alexanian Marcey Waters Maurice Brookhart Joseph Templeton © 2014 Andrew Perkowski ALL RIGHTS RESERVED ii ABSTRACT Andrew Perkowski: Direct, Catalytic, Intermolecular Anti-Markovnikov Hydroacetoxylations of Alkenes Enabled via Photoredox Catalysis, and Investigations into the Mechanism of the Polymerization of 4-Methoxystyrene Initiated by Pyrylium Salts (Under the Direction of David A. Nicewicz) I. Intermolecular Anti-Markovnikov Addition of Oxygen Nucleophiles to Alkenes: Direct and Indirect Catalytic Methods to Address a Fundamental Challenge Markovnikov versus anti-Markovnikov functionalization of alkenes is discussed, as well as the inherent challenge in overcoming Markovnikov selectivity. Stoichiometric and catalytic methods for anti-Markovnikov functionalization are discussed and appraised. II. Anti-Markovnikov Addition of Oxygen Nucleophiles to Alkene Cation Radical Intermediates The formation of alkene cation radicals is disccused, as well as examples of anti- Markovnikov nucleophilic addition to alkene cation radicals. III. The Direct Anti-Markovnikov
    [Show full text]
  • ABSTRACT Synthesis of New Chiral Pyrylium Salts, the Corresponding
    ABSTRACT Synthesis of New Chiral Pyrylium Salts, the Corresponding Phosphinine and Pyridine Derivatives and the Kinetic Studies of the Epimerization of Pyrylium Salts Nelson A. van der Velde, Ph.D. Mentor: Charles M. Garner, Ph.D. Despite the versatility of pyrylium salts as precursors to many heteroaromatic systems, chiral pyrylium salts are almost unknown in the literature. One reason for this scarcity is that pyrylium salts are often involved as intermediates rather than as isolated and characterized materials. Another is that many pyrylium salts preparations tend to result in non-characterizable black solid due to polymerization reactions. We have developed the synthesis of several new chiral pyrylium salts and their conversion to the corresponding pyridines and phosphinines. This work almost triples the number of reported chiral pyrylium salts, and also represents the first racemizable/epimerizable pyrylium salts. The derived phosphinines and pyridines represent rare alpha-chiral ligands for transition metals. Interestingly, only a few examples of chiral phosphinines have been reported in the literature. Incorporation of chirality directly (i.e., alpha to aromatic ring) onto these planar ring systems has proven to be difficult. From our pyrylium salts we have synthesized new phosphinines with the chirality as close as possible to the phosphorus center. Two known pyridinium salts were also prepared with the thiosemicarbazone moiety. The cytotoxicity and inhibition of cruzain were evaluated and found to be non-actives. Our interest in chiral pyrylium salts led us to investigate the configurational stability of chiral centers alpha to the pyrylium ring. Although no epimerizable (or even racemizable) pyrylium salts have been reported, deuterium exchange at ortho and especially para benzylic positions is well-known, suggesting that epimerization is possible.
    [Show full text]
  • Catalytic Synthesis of 1,3,5-Triphenylbenzenes, Β
    J. Mex. Chem. Soc. 2006, 50(3), 114-118 Article © 2006, Sociedad Química de México ISSN 1870-249X Catalytic Synthesis of 1,3,5-Triphenylbenzenes, β-Methylchalcones and 2,4,6-Triphenyl Pyrylium Salts, Promoted by a Super Acid Triflouromethane Sulfonic Clay from Acetophenones Rosario Ruíz-Guerrero,1 Jorge Cárdenas,1 Lorena Bautista,1 Marina Vargas,1,3 Eloy Vázquez-Labastida2 and Manuel Salmón*1 1 Instituto de Química de la Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, México D. F. [email protected] 2 Escuela Superior de Ingeniería Química e Industrias Extractivas del Instituto Politécnico Nacional, Edificio 7, Unidad Profesional, Zacatenco, Col. La Escalera, México 07038, D. F. 3 Departamento de Química, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México 54740. Dedicated to Professor Pedro Joseph-Nathan on the occasion of his 65th birthday. Recibido el 9 de marzo del 2006; aceptado el 31 de mayo del 2006 Abstract. A montmorillonite clay from the State of Durango, Resumen. Una arcilla de montmorilonita del estado de Durango se Mexico, was used as catalyst. The clay was activated with trifluo- empleó como catalizador. La arcilla fue activada con ácido trifluoro- romethane sulfonic acid and used to study the condensation of differ- metansulfónico y usada para estudiar la condensación de diferentes ent acetophenones in refluxing benzene to produce triphenylben- acetofenonas en benceno a reflujo para producir trifenilbencenos, β- zenes, β-methylchalcones and pyrylium salts. This catalytic proce- metilchalconas y sales de pirilio. Este proceso catalítico produjo un dure afforded a new simple one-step method for the synthesis of com- nuevo método en una sola etapa para la síntesis de moléculas comple- plex organic molecules through the C-C bonds formation and the jas a través de la formación de enlaces C-C con el contraión del ácido counter ion for the pyrylium salt.
    [Show full text]
  • On the Impact of Excited State Antiaromaticity Relief in a Fundamental
    On the Impact of Excited State Antiaromaticity Relief in a Fundamental Benzene Photoreaction Leading to Substituted Bicyclo[3.1.0]hexenes Tomáš Slanina,1,2 Rabia Ayub,1,‡ Josene Toldo,1,‡ Johan Sundell,3 Wangchuk Rabten,1 Marco Nicaso,1 Igor Alabugin,4 Ignacio Fdez. Galván,5 Arvind K. Gupta,1 Roland Lindh,5,6 Andreas Orthaber,1 Richard J. Lewis,7 Gunnar Grönberg,7 Joakim Bergman3,* and Henrik Ottosson1,* 1 Department of Chemistry – Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden. 2 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo námĕstí 2, 16610 Prague 6, Czech Republic 3 Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden. 4 Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, 5 Department of Chemistry – BMC, Uppsala University, 751 23, Uppsala, Sweden, 6 Uppsala Center for Computational 7 Chemistry – UC3, Uppsala University, 751 23, Uppsala Sweden, Medicinal Chemistry, Research and Early Development Respiratory, Inflammation and Autoimmune, BioPharmaceutical R&D, AstraZeneca Gothenburg, Sweden. ‡ These authors contributed equally. Table of contents 1. Materials and Methods ..................................................................................................................... 3 1.1 General information .....................................................................................................................
    [Show full text]
  • Versatile Synthetic Methods for Photoluminescent Pyrylium Tosylates Jung Jae Koh University of Nevada, Las Vegas, [email protected]
    UNLV Theses, Dissertations, Professional Papers, and Capstones 8-1-2015 Versatile Synthetic Methods for Photoluminescent Pyrylium Tosylates Jung Jae Koh University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Chemistry Commons Repository Citation Koh, Jung Jae, "Versatile Synthetic Methods for Photoluminescent Pyrylium Tosylates" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2487. https://digitalscholarship.unlv.edu/thesesdissertations/2487 This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. VERSATILE SYNTHETIC METHODS FOR PHOTOLUMINESCENT PYRYLIUM TOSYLATES by Jung Jae Koh Bachelor of Biochemistry University of Nevada, Las Vegas 2011 A thesis submitted in partial fulfillment of the requirements for the Master of Science - Chemistry Department of Chemistry and Biochemistry College of Science The Graduate College University of Nevada, Las Vegas August 2015 Copyright by Jung Jae Koh, 2015 All Rights Reserved Thesis Approval The Graduate College The University of Nevada, Las Vegas July 21, 2015 This thesis prepared by Jung Jae Koh entitled Versatile Synthetic Methods for Photoluminescent Pyrylium Tosylates is approved in partial fulfillment of the requirements for the degree of Master of Science – Chemistry Department of Chemistry and Biochemistry Pradip K. Bhowmik, Ph.D. Kathryn Hausbeck Korgan, Ph.D. Examination Committee Co-Chair Graduate College Interim Dean Vernon F. Hodge, Ph.D. Examination Committee Co-Chair Dong-Chan Lee, Ph.D.
    [Show full text]
  • Pyrylium Salts with Long Alkyl Substituents, II
    Pyrylium Salts with Long Alkyl Substituents, II [1] 2,4-Dimethyl-6-undecylpyrylium Perchlorate and Derived Pyridinium Salts Mariana Bogatian, Calin Deleanu, Gheorghe Mihai, and Teodor Silviu Balaban* Center of Organic Chemistry of the Roumanian Academy Splaiul Independentei 202 B, 71141 Bucharest, PO 15/258, Roumania Z. Naturforsch. 47b, 1011-1015 (1992); received September 25, 1991/January 10, 1992 Pyrylium Salts, Pyridinium Salts, Synthetic Amphiphiles, NMR Spectra The crystalline title pyrylium salt was obtained by SnCl4 catalysed acylation of mesityl oxide with lauroyl chloride followed by treatment with perchloric acid and column chromatography. This new pyrylium salt was converted in high yields into the corresponding pyridine and N-substituted pyridinium salts (N-methyl, N-phenyl, N-(4-«-butylphenyl), and N-dodecyl) whose proton (300 MHz) and carbon-13 (75 MHz) NMR spectra are presented. Introduction eleven carbon a-alkyl side-chain and pyridinium One long aliphatic (lipophilic) chain attached to salts derived therefrom. strongly polar (hydrophilic) groups leads to com­ pounds with tensioactive properties. These are due either to micelar aggregates or to membranes. Two Results and Discussion long lipophilic chains attached to one polar group The acylation of mesityl oxide (1) was effected lead to amphiphiles, which can form bilayer mem­ with lauroyl chloride of comercial source, by branes [2]. Some such synthetic analogs of bio­ known methods [ 8], When A1C1 3 was used as acy- membranes have been prepared and their catalytic lating catalyst, the yields were low (<5% ) due to activity has been investigated and compared with the poor isolation of the desired title salt 2, while that of phospholipids and lecithins [3].
    [Show full text]
  • Cyclometalation of Phosphinines Via C-H Activation : Towards Functional Coordination Compounds
    Cyclometalation of phosphinines via C-H activation : towards functional coordination compounds Citation for published version (APA): Broeckx, L. E. E. (2013). Cyclometalation of phosphinines via C-H activation : towards functional coordination compounds. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR760622 DOI: 10.6100/IR760622 Document status and date: Published: 04/12/2013 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Synthetic Studies on a Series of Functionalized Pyrylium Salts, 4-Chloro- and 4-Bromophosphinines
    Tetrahedron 74 (2018) 1880e1887 Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet Synthetic studies on a series of functionalized pyrylium salts, 4-chloro- and 4-bromophosphinines * Noriyoshi Nagahora , Hiroshi Tokumaru, Shinpei Ikaga, Takuya Hanada, Kosei Shioji, Kentaro Okuma Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-ku, Fukuoka, 814-0180, Japan article info abstract Article history: A series of new pyrylium salts that bear sulfonate and phosphonate groups were obtained from the Received 23 January 2018 reactions between 2,6-diphenyl-4H-pyran-4-one, sulfonic anhydride, and chlorophosphates, and Received in revised form analyzed spectroscopically. Furthermore, treatment of 2,6-diphenyl-4H-pyran-4-one with phosphoryl 19 February 2018 chloride or bromide afforded the corresponding 4-chloro- and 4-bromopyrylium tetrafluoroborates in Accepted 21 February 2018 good yield. Subsequently, the synthesis of the corresponding 4-chloro- and 4-bromophosphinines was Available online 25 February 2018 accomplished by treating the respective chloro- and bromopyrylium tetrafluoroborates with tris(- trimethylsilyl)phosphine. Keywords: © Pyrylium salt 2018 Elsevier Ltd. All rights reserved. Phosphinine Chlorination Bromination Tris(trimethylsilyl)phosphine 1. Introduction dehydrobromination.5 Thereafter, the synthesis of other 2- bromophosphinines has also been achieved.6 Keglevich and co- Since the pioneering synthesis of 2,4,6-triphenylphosphinine as workers reported the synthesis
    [Show full text]
  • Redalyc.Catalytic Synthesis of 1,3,5-Triphenylbenzenes, B
    Journal of the Mexican Chemical Society ISSN: 1870-249X [email protected] Sociedad Química de México México Ruíz-Guerrero, Rosario; Cárdenas, Jorge; Bautista, Lorena; Vargas, Marina; Vázquez-Labastida, Eloy; Salmón, Manuel Catalytic Synthesis of 1,3,5-Triphenylbenzenes, B-Methylchalcones and 2,4,6-Triphenyl Pyrylium Salts, Promoted by a Super Acid Triflouromethane Sulfonic Clay from Acetophenones Journal of the Mexican Chemical Society, vol. 50, núm. 3, 2006, pp. 114-118 Sociedad Química de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=47550310 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative J. Mex. Chem. Soc. 2006, 50(3), 114-118 Article © 2006, Sociedad Química de México ISSN 1870-249X Catalytic Synthesis of 1,3,5-Triphenylbenzenes, β-Methylchalcones and 2,4,6-Triphenyl Pyrylium Salts, Promoted by a Super Acid Triflouromethane Sulfonic Clay from Acetophenones Rosario Ruíz-Guerrero,1 Jorge Cárdenas,1 Lorena Bautista,1 Marina Vargas,1,3 Eloy Vázquez-Labastida2 and Manuel Salmón*1 1 Instituto de Química de la Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, México D. F. [email protected] 2 Escuela Superior de Ingeniería Química e Industrias Extractivas del Instituto Politécnico Nacional, Edificio 7, Unidad Profesional, Zacatenco, Col. La Escalera, México 07038, D. F. 3 Departamento de Química, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México 54740.
    [Show full text]
  • Aromatic Compounds from Pyrylium Salts
    Aromatic Compounds from Pyrylium Salts K. DlMROTH AND K. H. WOLF Chemisettes Institut der Universitat Marburg/Lahn Introduction The readily obtainable substituted pyrylium salts lend themselves to the preparation of numerous, often difficultly accessible, aromatic com­ pounds of both the heterocyclic and isocyclic series. The first known example of these reactions is the formation of pyridine and pyridinium derivatives described by Baeyer. Another reaction of this kind is the formation of thiopyrylium salts reported by Wizinger. Especially numer­ ous are the possibilities for the preparation of isocyclic aromatic com­ pounds, whereby known phenols and alkylated amines together with new nitrocompounds, ketones, carboxylic acids, nitriles, phenol carboxylic acids, aminonitriles, or hydrocarbons of the benzene, naphthalene, and phenanthrene series can be prepared in generally good yield. The use of pyrylium salts as the starting materials for the preparation of azulenes is also possible. In addition to a discussion of these reactions a survey of the methods available for the preparation of pyrylium salts will be given. Conversion of Pyrylium Salts into Heterocyclic Compounds Possessing Aromatic Character DERIVATIVES OF PYRIDINE As found by Baeyer [1], the original worker in this field, pyrylium salts can readily be converted into pyridine derivatives by warming with an aqueous ammonium carbonate solution. Following the preparation by Baeyer and Piccard [2] of collidine (2a) and 2,6-dimethyl-4-phenyl- pyridine (2b) from 2,4,6-trimethylpyrylium perchlorate (la) and 2,6- dimethyl-4-phenylpyrylium perchlorate (lb) respectively, this synthesis was extended to include other 2,4,6-tri-alkyl- and aryl-substituted pyryl­ ium salts by Dilthey [3], Gastaldi [4], and others [5], These reactions, however, served more to elucidate the constitution of the pyrylium salts, than in the preparation of specific pyridine derivatives.
    [Show full text]
  • Oxidación Catalítica De Fenol Empleando Un Subproducto De La Industria Metalmecánica Como Catalizador
    Oxidación Catalítica de Fenol Empleando un Subproducto de la Industria Metalmecánica Como Catalizador Ángela María Salazar Arias Universidad Nacional de Colombia Facultad de Ingeniería y Arquitectura, Departamento de Ingeniería Química Manizales, Colombia 2017 Catalytic Oxidation of Phenol Using a Byproduct of Metalworking Industry as Catalyst Ángela María Salazar Arias Trabajo final de maestría de profundización presentado como requisito parcial para optar al título de: Magister en Ingeniería – Ingeniería Ambiental Directora: Ph.D. Gloria Inés Giraldo Gómez Codirectora: Ph.D. Nancy Rocío Sanabria González Universidad Nacional de Colombia Facultad de Ingeniería y Arquitectura, Departamento de Ingeniería Química Manizales, Colombia 2017 ´´Nuestra recompensa se encuentra en el esfuerzo y no en el resultado. Un esfuerzo total es una victoria completa´´ Mahatma Gandhi Dedico este trabajo a quien ha guiado cada uno de mis pasos, a quien me ha ayudado a encontrarme con mi verdadero ser, a quien a pesar de todas las caídas nunca me ha dejado… al amigo que nunca falla, Dios! A mi MADRE, a mi padre, a mis hermanos, a mis sobrinos y a Lukas, quienes hacen que todo esfuerzo valga la pena y sin quienes nada de esto podría ser posible. A Guadalupe… VI Oxidación Catalítica de Fenol Empleando un Subproducto de la Industria Metalmecánica como Catalizador Agradecimientos Mis más sinceros agradecimientos a mi madre, por haber creído en mí y haberme dado la oportunidad de encontrar mi camino. A mi padre por haberme enseñado a ver el Universo en mis ojos!. A mis hermanos, quienes han inspirado cada uno de mis pasos y siempre me han apoyado y brindado el mejor ejemplo.
    [Show full text]