Redalyc.Catalytic Synthesis of 1,3,5-Triphenylbenzenes, B

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Catalytic Synthesis of 1,3,5-Triphenylbenzenes, B Journal of the Mexican Chemical Society ISSN: 1870-249X [email protected] Sociedad Química de México México Ruíz-Guerrero, Rosario; Cárdenas, Jorge; Bautista, Lorena; Vargas, Marina; Vázquez-Labastida, Eloy; Salmón, Manuel Catalytic Synthesis of 1,3,5-Triphenylbenzenes, B-Methylchalcones and 2,4,6-Triphenyl Pyrylium Salts, Promoted by a Super Acid Triflouromethane Sulfonic Clay from Acetophenones Journal of the Mexican Chemical Society, vol. 50, núm. 3, 2006, pp. 114-118 Sociedad Química de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=47550310 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative J. Mex. Chem. Soc. 2006, 50(3), 114-118 Article © 2006, Sociedad Química de México ISSN 1870-249X Catalytic Synthesis of 1,3,5-Triphenylbenzenes, β-Methylchalcones and 2,4,6-Triphenyl Pyrylium Salts, Promoted by a Super Acid Triflouromethane Sulfonic Clay from Acetophenones Rosario Ruíz-Guerrero,1 Jorge Cárdenas,1 Lorena Bautista,1 Marina Vargas,1,3 Eloy Vázquez-Labastida2 and Manuel Salmón*1 1 Instituto de Química de la Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, México D. F. [email protected] 2 Escuela Superior de Ingeniería Química e Industrias Extractivas del Instituto Politécnico Nacional, Edificio 7, Unidad Profesional, Zacatenco, Col. La Escalera, México 07038, D. F. 3 Departamento de Química, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México 54740. Dedicated to Professor Pedro Joseph-Nathan on the occasion of his 65th birthday. Recibido el 9 de marzo del 2006; aceptado el 31 de mayo del 2006 Abstract. A montmorillonite clay from the State of Durango, Resumen. Una arcilla de montmorilonita del estado de Durango se Mexico, was used as catalyst. The clay was activated with trifluo- empleó como catalizador. La arcilla fue activada con ácido trifluoro- romethane sulfonic acid and used to study the condensation of differ- metansulfónico y usada para estudiar la condensación de diferentes ent acetophenones in refluxing benzene to produce triphenylben- acetofenonas en benceno a reflujo para producir trifenilbencenos, β- zenes, β-methylchalcones and pyrylium salts. This catalytic proce- metilchalconas y sales de pirilio. Este proceso catalítico produjo un dure afforded a new simple one-step method for the synthesis of com- nuevo método en una sola etapa para la síntesis de moléculas comple- plex organic molecules through the C-C bonds formation and the jas a través de la formación de enlaces C-C con el contraión del ácido counter ion for the pyrylium salt. A proposed mechanism of the iso- en el pirilio. Se discute la propuesta mecanística para la formación de lated compounds is discussed as well as their identification by spec- los compuestos aislados, así como su identificación por métodos troscopic methods and by comparison with reported data, acquired espectroscópicos y por comparación con datos informados, adquiri- from the previously synthesized derivatives by other synthetic meth- dos por derivados previamente sintetizados por otros métodos. ods. Palabras clave. Catálisis heterogénea, arcilla trifluorometansulfóni- Keywords. Heterogeneous Catalysis, Trifluoromethane sulfonic ca, acetofenonas, trifenilbencenos, β-metilchalconas, sales de pirilio Clays, Acetophenones, Triphenylbenzenes, β-Methylchalcones, Pyrylium salts. – Introduction the CF3SO3 anion, afforded an excellent yield for the synthe- ses of pyrylium salts [4]. The properties of Mexican modified clays as catalytic induc- It is appropriate to mention that commercial acidified tors of organic reactions have been systematically studied. Mexican clays have also been used previously as heteroge- Recently, it was found that the acidified clays are valuable and neous catalysts to promote several organic reactions with environmentally safe catalysts that induce numerous reactions excellent innovative results [1,5]. In addition, there are some such as, halogenation, oligomerisation, ether, heterocyclic and methods reported on the synthesis of substituted triphenylben- macrocyclic compound formation, of scientific and industrial zenes, and β-methylchalcones, due to the interest in their syn- interest with high selectivity [1]. In the present work, it is thetic application of: i) polyaromatic and heterocyclic precur- reported the first catalytic study with clays to prepare directly sors with industrial importance [6], ii) as compounds of phar- from a simple reagent, complex derivatives using a bentonitic maceutical interest [7]. In the other hand, the pyrylium salts clay acidified with trifluoromethane sulfonic acid, with a belong to a class of other interesting compounds possessing Hammett function of Ho ≤ 12.75. very diverse applications. i) As a laser days [8], ii) Q switches The catalyst was evaluated in the course of a one pot con- in lasers [9], iii) liquid crystalline materials [10], iv) photother- densation reaction of substituted acetophenones to yield 1,3,5- apeutic agents [11] and v) sensitizes in photoinduced electron triphenylbenzenes, β-methylchalcones and 2,4,6-triarylpyryli- transfer reactions [12]. It is suitable to emphasize the extraor- um trifluoromethanesulfonate salts. Usually, this type of com- dinary importance of the 2,4,6-Triphenyl pyrylium salts that pounds are synthesized by condensation of acetophenones and display a particular interest due to its peculiar photophysical substituted benzaldehydes in acid medium [2-4]. Particularly, properties [13]; since their fluorescence quantum yield the yields of pyrylium salts depend on various factors, special- increase slightly when the solvent viscosity increase. In this + + work, four different trifluoromethane sulfonic pyrylium struc- ly the hard or soft cations such as H or Ph3C . Additionally, Catalytic Synthesis of 1,3,5-Triphenylbenzenes, β-Methylchalcones... 115 tures were synthesized, all of them possess diverse color and derivatives in presence of the clay, yield different pyrylium fluorescent properties provided by the substituents. salts (Scheme 3). The pyrylium salts 4a and 4b were previ- ously synthesized by a more elaborated synthetic method using PhCOCH:CPhCH2COPh (1,3,5-triphenyl-2-pentene- Results and discussion 1,5 dione) in presence of CF3SO3H acid [15]. Further, Bockman synthesize these compounds by a reversible reduc- General condensation reactions of acetophenones 1a-e cat- tion and electron-transfer equilibrium from pyrazolyl- alyzed with the trifluoromethane sulfonic clay (SASC) afford- hydroborate salts [17]. Notwithstanding, using the catalytic ed a mixture of three products: 1,3,5-Triphenylbenzenes 2a-e, procedure reported in this work, pyrylium salts 4c and 4d β-Methylchalcones 3a-e and the 2,4,6 Triarylpyrylium trifluo- where synthesized in one step and characterized for the first romethanesulfonate salts 4a-d are summarized in scheme 1. time. In our consideration it is particularly interesting to The proposed mechanism for all the products follow a mention that the catalytic reaction with the 2-Bromo-4’- typical condensation of acetophenones, yielding the β- phenylacetophenone exclusively produces the 2,4,6-tris methylchalcones (3a to 3e) precursors of the pyrylium salts (phenyl, 4’phenyl) pyrylium salt (4c). (4a-4d) in addition to the 1,3,5-triphenylbenzenes (2a to 2e), In conclusion, using an acidified bentonite clay we were which are formed with the condensation of three molecules of able to synthesize for the first time four promising dyes with acetophenone [14]. The better yields obtained for the 1,3,5- photo physical properties, four β-Methylchalcones and four triphenylbenzenes formation were achieved with the substrates 1,3,5-triphenylbenzenes with high efficiency by a catalytic 1a, 1d, whereas 1e, 1b and 1c have the enhanced formation for method. Additionally two new pyrylium salts were specifically the pyrylium salts. synthesized. The simple one step reaction was made in hetero- It was reported that pyrylium salts could be formed from geneous phase by refluxing (in toluene) the super acid sulfonic acetophenones (I) in presence of a Lewis acid [2] or with clay (SASC) and the respective substituted acetophenone. strong mineral acids [4,15]. However, pyrylium salts are also Furthermore, all the products represent important materials for formed from β-methylchalcones (II) in acid media, according several uses in pharmaceutical, biological or photo-physical with the mechanism proposed and depicted in scheme 2 [2,16]. application. The essential characteristic of this mechanism is the genera- tion of the benzoyl cation as acylating agent and the active participation of the enolic β-methylchalcone (III) formed after Experimental the acylation step reaction. However, the new catalytic con- densation reaction carried out by first time with a super acid General methods. Reagent-grade solvents and chemicals trifluoromethane sulfonic clay, differs from other synthetic were used as received from commercial suppliers unless methods described in literature. Nevertheless, similarly to the otherwise noted. Acetone, Ethyl acetate, Methanol and previously reported 2,4,6-triphenylpyrylium salt formation [2], Hexane, were purified by distillation. Acetophenone 1a, 4’- we can consider
Recommended publications
  • Pyrylium Salt Chemistry Emerging As a Powerful Approach for the Cite This: Chem
    Chemical Science View Article Online PERSPECTIVE View Journal | View Issue Over one century after discovery: pyrylium salt chemistry emerging as a powerful approach for the Cite this: Chem. Sci., 2020, 11, 12249 All publication charges for this article construction of complex macrocycles and metallo- have been paid for by the Royal Society of Chemistry supramolecules Yiming Li, ab Heng Wanga and Xiaopeng Li *a Over one century after its discovery, pyrylium salt chemistry has been extensively applied in preparing light emitters, photocatalysts, and sensitizers. In most of these studies, pyrylium salts acted as versatile precursors for the preparation of small molecules (such as furan, pyridines, phosphines, pyridinium salts, thiopyryliums and betaine dyes) and poly(pyridinium salt)s. In recent decades, pyrylium salt chemistry has emerged as a powerful approach for constructing complex macrocycles and metallo-supramolecules. In this perspective, we attempt to summarize the representative efforts of synthesizing and self-assembling Received 20th August 2020 large, complex architectures using pyrylium salt chemistry. We believe that this perspective not only Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Accepted 13th October 2020 highlights the recent achievements in pyrylium salt chemistry, but also inspires us to revisit this chemistry DOI: 10.1039/d0sc04585c to design and construct macrocycles and metallo-supramolecules with increasing complexity and rsc.li/chemical-science desired function. 1. Introduction pyrylium salt with perchlorate as the counterion was reported in 1911 by Baeyer;7 however, since the discovery of pyrylium salts, Pyrylium salts are a type of six-membered cationic heterocycles such salts have been underappreciated for about a half-century.
    [Show full text]
  • Direct, Catalytic, Intermolecular Anti
    DIRECT, CATALYTIC, INTERMOLECULAR ANTI-MARKOVNIKOV HYDROACETOXYLATIONS OF ALKENES ENABLED VIA PHOTOREDOX CATALYSIS, AND INVESTIGATIONS INTO THE MECHANISM OF THE POLYMERIZATION OF 4-METHOXYSTYRENE INITIATED BY PYRYLIUM SALTS Andrew Perkowski A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2014 Approved by: David A Nicewicz Erik Alexanian Marcey Waters Maurice Brookhart Joseph Templeton © 2014 Andrew Perkowski ALL RIGHTS RESERVED ii ABSTRACT Andrew Perkowski: Direct, Catalytic, Intermolecular Anti-Markovnikov Hydroacetoxylations of Alkenes Enabled via Photoredox Catalysis, and Investigations into the Mechanism of the Polymerization of 4-Methoxystyrene Initiated by Pyrylium Salts (Under the Direction of David A. Nicewicz) I. Intermolecular Anti-Markovnikov Addition of Oxygen Nucleophiles to Alkenes: Direct and Indirect Catalytic Methods to Address a Fundamental Challenge Markovnikov versus anti-Markovnikov functionalization of alkenes is discussed, as well as the inherent challenge in overcoming Markovnikov selectivity. Stoichiometric and catalytic methods for anti-Markovnikov functionalization are discussed and appraised. II. Anti-Markovnikov Addition of Oxygen Nucleophiles to Alkene Cation Radical Intermediates The formation of alkene cation radicals is disccused, as well as examples of anti- Markovnikov nucleophilic addition to alkene cation radicals. III. The Direct Anti-Markovnikov
    [Show full text]
  • ABSTRACT Synthesis of New Chiral Pyrylium Salts, the Corresponding
    ABSTRACT Synthesis of New Chiral Pyrylium Salts, the Corresponding Phosphinine and Pyridine Derivatives and the Kinetic Studies of the Epimerization of Pyrylium Salts Nelson A. van der Velde, Ph.D. Mentor: Charles M. Garner, Ph.D. Despite the versatility of pyrylium salts as precursors to many heteroaromatic systems, chiral pyrylium salts are almost unknown in the literature. One reason for this scarcity is that pyrylium salts are often involved as intermediates rather than as isolated and characterized materials. Another is that many pyrylium salts preparations tend to result in non-characterizable black solid due to polymerization reactions. We have developed the synthesis of several new chiral pyrylium salts and their conversion to the corresponding pyridines and phosphinines. This work almost triples the number of reported chiral pyrylium salts, and also represents the first racemizable/epimerizable pyrylium salts. The derived phosphinines and pyridines represent rare alpha-chiral ligands for transition metals. Interestingly, only a few examples of chiral phosphinines have been reported in the literature. Incorporation of chirality directly (i.e., alpha to aromatic ring) onto these planar ring systems has proven to be difficult. From our pyrylium salts we have synthesized new phosphinines with the chirality as close as possible to the phosphorus center. Two known pyridinium salts were also prepared with the thiosemicarbazone moiety. The cytotoxicity and inhibition of cruzain were evaluated and found to be non-actives. Our interest in chiral pyrylium salts led us to investigate the configurational stability of chiral centers alpha to the pyrylium ring. Although no epimerizable (or even racemizable) pyrylium salts have been reported, deuterium exchange at ortho and especially para benzylic positions is well-known, suggesting that epimerization is possible.
    [Show full text]
  • Catalytic Synthesis of 1,3,5-Triphenylbenzenes, Β
    J. Mex. Chem. Soc. 2006, 50(3), 114-118 Article © 2006, Sociedad Química de México ISSN 1870-249X Catalytic Synthesis of 1,3,5-Triphenylbenzenes, β-Methylchalcones and 2,4,6-Triphenyl Pyrylium Salts, Promoted by a Super Acid Triflouromethane Sulfonic Clay from Acetophenones Rosario Ruíz-Guerrero,1 Jorge Cárdenas,1 Lorena Bautista,1 Marina Vargas,1,3 Eloy Vázquez-Labastida2 and Manuel Salmón*1 1 Instituto de Química de la Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, México D. F. [email protected] 2 Escuela Superior de Ingeniería Química e Industrias Extractivas del Instituto Politécnico Nacional, Edificio 7, Unidad Profesional, Zacatenco, Col. La Escalera, México 07038, D. F. 3 Departamento de Química, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México 54740. Dedicated to Professor Pedro Joseph-Nathan on the occasion of his 65th birthday. Recibido el 9 de marzo del 2006; aceptado el 31 de mayo del 2006 Abstract. A montmorillonite clay from the State of Durango, Resumen. Una arcilla de montmorilonita del estado de Durango se Mexico, was used as catalyst. The clay was activated with trifluo- empleó como catalizador. La arcilla fue activada con ácido trifluoro- romethane sulfonic acid and used to study the condensation of differ- metansulfónico y usada para estudiar la condensación de diferentes ent acetophenones in refluxing benzene to produce triphenylben- acetofenonas en benceno a reflujo para producir trifenilbencenos, β- zenes, β-methylchalcones and pyrylium salts. This catalytic proce- metilchalconas y sales de pirilio. Este proceso catalítico produjo un dure afforded a new simple one-step method for the synthesis of com- nuevo método en una sola etapa para la síntesis de moléculas comple- plex organic molecules through the C-C bonds formation and the jas a través de la formación de enlaces C-C con el contraión del ácido counter ion for the pyrylium salt.
    [Show full text]
  • On the Impact of Excited State Antiaromaticity Relief in a Fundamental
    On the Impact of Excited State Antiaromaticity Relief in a Fundamental Benzene Photoreaction Leading to Substituted Bicyclo[3.1.0]hexenes Tomáš Slanina,1,2 Rabia Ayub,1,‡ Josene Toldo,1,‡ Johan Sundell,3 Wangchuk Rabten,1 Marco Nicaso,1 Igor Alabugin,4 Ignacio Fdez. Galván,5 Arvind K. Gupta,1 Roland Lindh,5,6 Andreas Orthaber,1 Richard J. Lewis,7 Gunnar Grönberg,7 Joakim Bergman3,* and Henrik Ottosson1,* 1 Department of Chemistry – Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden. 2 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo námĕstí 2, 16610 Prague 6, Czech Republic 3 Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden. 4 Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, 5 Department of Chemistry – BMC, Uppsala University, 751 23, Uppsala, Sweden, 6 Uppsala Center for Computational 7 Chemistry – UC3, Uppsala University, 751 23, Uppsala Sweden, Medicinal Chemistry, Research and Early Development Respiratory, Inflammation and Autoimmune, BioPharmaceutical R&D, AstraZeneca Gothenburg, Sweden. ‡ These authors contributed equally. Table of contents 1. Materials and Methods ..................................................................................................................... 3 1.1 General information .....................................................................................................................
    [Show full text]
  • Versatile Synthetic Methods for Photoluminescent Pyrylium Tosylates Jung Jae Koh University of Nevada, Las Vegas, [email protected]
    UNLV Theses, Dissertations, Professional Papers, and Capstones 8-1-2015 Versatile Synthetic Methods for Photoluminescent Pyrylium Tosylates Jung Jae Koh University of Nevada, Las Vegas, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Chemistry Commons Repository Citation Koh, Jung Jae, "Versatile Synthetic Methods for Photoluminescent Pyrylium Tosylates" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2487. https://digitalscholarship.unlv.edu/thesesdissertations/2487 This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. VERSATILE SYNTHETIC METHODS FOR PHOTOLUMINESCENT PYRYLIUM TOSYLATES by Jung Jae Koh Bachelor of Biochemistry University of Nevada, Las Vegas 2011 A thesis submitted in partial fulfillment of the requirements for the Master of Science - Chemistry Department of Chemistry and Biochemistry College of Science The Graduate College University of Nevada, Las Vegas August 2015 Copyright by Jung Jae Koh, 2015 All Rights Reserved Thesis Approval The Graduate College The University of Nevada, Las Vegas July 21, 2015 This thesis prepared by Jung Jae Koh entitled Versatile Synthetic Methods for Photoluminescent Pyrylium Tosylates is approved in partial fulfillment of the requirements for the degree of Master of Science – Chemistry Department of Chemistry and Biochemistry Pradip K. Bhowmik, Ph.D. Kathryn Hausbeck Korgan, Ph.D. Examination Committee Co-Chair Graduate College Interim Dean Vernon F. Hodge, Ph.D. Examination Committee Co-Chair Dong-Chan Lee, Ph.D.
    [Show full text]
  • Pyrylium Salts with Long Alkyl Substituents, II
    Pyrylium Salts with Long Alkyl Substituents, II [1] 2,4-Dimethyl-6-undecylpyrylium Perchlorate and Derived Pyridinium Salts Mariana Bogatian, Calin Deleanu, Gheorghe Mihai, and Teodor Silviu Balaban* Center of Organic Chemistry of the Roumanian Academy Splaiul Independentei 202 B, 71141 Bucharest, PO 15/258, Roumania Z. Naturforsch. 47b, 1011-1015 (1992); received September 25, 1991/January 10, 1992 Pyrylium Salts, Pyridinium Salts, Synthetic Amphiphiles, NMR Spectra The crystalline title pyrylium salt was obtained by SnCl4 catalysed acylation of mesityl oxide with lauroyl chloride followed by treatment with perchloric acid and column chromatography. This new pyrylium salt was converted in high yields into the corresponding pyridine and N-substituted pyridinium salts (N-methyl, N-phenyl, N-(4-«-butylphenyl), and N-dodecyl) whose proton (300 MHz) and carbon-13 (75 MHz) NMR spectra are presented. Introduction eleven carbon a-alkyl side-chain and pyridinium One long aliphatic (lipophilic) chain attached to salts derived therefrom. strongly polar (hydrophilic) groups leads to com­ pounds with tensioactive properties. These are due either to micelar aggregates or to membranes. Two Results and Discussion long lipophilic chains attached to one polar group The acylation of mesityl oxide (1) was effected lead to amphiphiles, which can form bilayer mem­ with lauroyl chloride of comercial source, by branes [2]. Some such synthetic analogs of bio­ known methods [ 8], When A1C1 3 was used as acy- membranes have been prepared and their catalytic lating catalyst, the yields were low (<5% ) due to activity has been investigated and compared with the poor isolation of the desired title salt 2, while that of phospholipids and lecithins [3].
    [Show full text]
  • Cyclometalation of Phosphinines Via C-H Activation : Towards Functional Coordination Compounds
    Cyclometalation of phosphinines via C-H activation : towards functional coordination compounds Citation for published version (APA): Broeckx, L. E. E. (2013). Cyclometalation of phosphinines via C-H activation : towards functional coordination compounds. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR760622 DOI: 10.6100/IR760622 Document status and date: Published: 04/12/2013 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Synthetic Studies on a Series of Functionalized Pyrylium Salts, 4-Chloro- and 4-Bromophosphinines
    Tetrahedron 74 (2018) 1880e1887 Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet Synthetic studies on a series of functionalized pyrylium salts, 4-chloro- and 4-bromophosphinines * Noriyoshi Nagahora , Hiroshi Tokumaru, Shinpei Ikaga, Takuya Hanada, Kosei Shioji, Kentaro Okuma Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-ku, Fukuoka, 814-0180, Japan article info abstract Article history: A series of new pyrylium salts that bear sulfonate and phosphonate groups were obtained from the Received 23 January 2018 reactions between 2,6-diphenyl-4H-pyran-4-one, sulfonic anhydride, and chlorophosphates, and Received in revised form analyzed spectroscopically. Furthermore, treatment of 2,6-diphenyl-4H-pyran-4-one with phosphoryl 19 February 2018 chloride or bromide afforded the corresponding 4-chloro- and 4-bromopyrylium tetrafluoroborates in Accepted 21 February 2018 good yield. Subsequently, the synthesis of the corresponding 4-chloro- and 4-bromophosphinines was Available online 25 February 2018 accomplished by treating the respective chloro- and bromopyrylium tetrafluoroborates with tris(- trimethylsilyl)phosphine. Keywords: © Pyrylium salt 2018 Elsevier Ltd. All rights reserved. Phosphinine Chlorination Bromination Tris(trimethylsilyl)phosphine 1. Introduction dehydrobromination.5 Thereafter, the synthesis of other 2- bromophosphinines has also been achieved.6 Keglevich and co- Since the pioneering synthesis of 2,4,6-triphenylphosphinine as workers reported the synthesis
    [Show full text]
  • Aromatic Compounds from Pyrylium Salts
    Aromatic Compounds from Pyrylium Salts K. DlMROTH AND K. H. WOLF Chemisettes Institut der Universitat Marburg/Lahn Introduction The readily obtainable substituted pyrylium salts lend themselves to the preparation of numerous, often difficultly accessible, aromatic com­ pounds of both the heterocyclic and isocyclic series. The first known example of these reactions is the formation of pyridine and pyridinium derivatives described by Baeyer. Another reaction of this kind is the formation of thiopyrylium salts reported by Wizinger. Especially numer­ ous are the possibilities for the preparation of isocyclic aromatic com­ pounds, whereby known phenols and alkylated amines together with new nitrocompounds, ketones, carboxylic acids, nitriles, phenol carboxylic acids, aminonitriles, or hydrocarbons of the benzene, naphthalene, and phenanthrene series can be prepared in generally good yield. The use of pyrylium salts as the starting materials for the preparation of azulenes is also possible. In addition to a discussion of these reactions a survey of the methods available for the preparation of pyrylium salts will be given. Conversion of Pyrylium Salts into Heterocyclic Compounds Possessing Aromatic Character DERIVATIVES OF PYRIDINE As found by Baeyer [1], the original worker in this field, pyrylium salts can readily be converted into pyridine derivatives by warming with an aqueous ammonium carbonate solution. Following the preparation by Baeyer and Piccard [2] of collidine (2a) and 2,6-dimethyl-4-phenyl- pyridine (2b) from 2,4,6-trimethylpyrylium perchlorate (la) and 2,6- dimethyl-4-phenylpyrylium perchlorate (lb) respectively, this synthesis was extended to include other 2,4,6-tri-alkyl- and aryl-substituted pyryl­ ium salts by Dilthey [3], Gastaldi [4], and others [5], These reactions, however, served more to elucidate the constitution of the pyrylium salts, than in the preparation of specific pyridine derivatives.
    [Show full text]
  • Oxidación Catalítica De Fenol Empleando Un Subproducto De La Industria Metalmecánica Como Catalizador
    Oxidación Catalítica de Fenol Empleando un Subproducto de la Industria Metalmecánica Como Catalizador Ángela María Salazar Arias Universidad Nacional de Colombia Facultad de Ingeniería y Arquitectura, Departamento de Ingeniería Química Manizales, Colombia 2017 Catalytic Oxidation of Phenol Using a Byproduct of Metalworking Industry as Catalyst Ángela María Salazar Arias Trabajo final de maestría de profundización presentado como requisito parcial para optar al título de: Magister en Ingeniería – Ingeniería Ambiental Directora: Ph.D. Gloria Inés Giraldo Gómez Codirectora: Ph.D. Nancy Rocío Sanabria González Universidad Nacional de Colombia Facultad de Ingeniería y Arquitectura, Departamento de Ingeniería Química Manizales, Colombia 2017 ´´Nuestra recompensa se encuentra en el esfuerzo y no en el resultado. Un esfuerzo total es una victoria completa´´ Mahatma Gandhi Dedico este trabajo a quien ha guiado cada uno de mis pasos, a quien me ha ayudado a encontrarme con mi verdadero ser, a quien a pesar de todas las caídas nunca me ha dejado… al amigo que nunca falla, Dios! A mi MADRE, a mi padre, a mis hermanos, a mis sobrinos y a Lukas, quienes hacen que todo esfuerzo valga la pena y sin quienes nada de esto podría ser posible. A Guadalupe… VI Oxidación Catalítica de Fenol Empleando un Subproducto de la Industria Metalmecánica como Catalizador Agradecimientos Mis más sinceros agradecimientos a mi madre, por haber creído en mí y haberme dado la oportunidad de encontrar mi camino. A mi padre por haberme enseñado a ver el Universo en mis ojos!. A mis hermanos, quienes han inspirado cada uno de mis pasos y siempre me han apoyado y brindado el mejor ejemplo.
    [Show full text]
  • Catalytic Enantioselective Reactions with (Benzo)Pyrylium Salts
    InnovatIve tools In organIc / organometallIc chemIstry CHIMIA 2020, 74, No. 11 857 doi:10.2533/chimia.2020.857 Chimia 74 (2020) 857–865 © S. Joseph, G. Khassenova, O. García Mancheño Catalytic Enantioselective Reactions with (Benzo)Pyrylium Salts Sumi Josepha, Gaukhar Khassenovaa, and Olga García Mancheño* Abstract: The use of (benzo)pyrylium salts as versatile synthetic building blocks has become an attractive plat- form for the preparation of valuable heterocyclic compounds. Besides other numerous direct applications of (benzo)pyryliums, the intrinsic electrophilic nature of these species or the dipole character of the related oxi- dopyrylium derivatives have been exploited towards the development of enantioselective transformations such as nucleophilic dearomatization and cycloaddition reactions. This review aims at providing an overview on the relevant catalytic enantioselective methodologies developed in the past years, which are presented considering the involved metal- and/or organic catalytic system, as well as the type of reaction. Keywords: Enantioselective catalysis · Metal catalysis · O-heterocycles · Organocatalysis · Pyrylium salts Prof. K.A. Jørgensen (University of Aarhus). She next moved to RWTH-Aachen for her postdoctoral research in the group of Prof. C. Bolm (2005–2008), followed by the start of her inde- pendent career at the University of Münster in 2008. In 2013, she was appointed as joint Chemistry Professor at the University of Regensburg and TUM-Campus Straubing, and since 2017 she is Professor for Organic Chemistry at the University of Münster. 1. Introduction (Benzo)pyrylium salts are privileged six-membered aromat- ic heterocycles containing a positively charged oxygen atom.[1] Important naturally occurring examples include the flavylium plant pigments,[2] while synthetic derivatives present fluores- cence[3] and photocatalytic activity,[4] among other properties S.
    [Show full text]