The Stillwater Complex Chromitites: the Response of Chromite Crystal Chemistry to Magma Injection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of New Mineral Names: with an Index of Authors
415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
The Original Lithologies and Their Metamorphism
BASIC PLUTONIC INTRUSIONS OF THE RISÖR SÖNDELED AREA, SOUTH NORWAY: THE ORIGINAL LITHOLOGIES AND THEIR METAMORPHISM IAN C. STARMER Department of Geology, University of Nottingham, England Present address: Dept. of Geo/ogy, Queen Mary College, London, E. l STARMER, I. C.: Basic plutonic intrusions of the Risör-Sändeled area South Norway: The original Jithologies and their metamorphism Norsk Geologisk Tidsskri/1, Vol. 49, pp. 403-431. Oslo 1969. The emplacement of Pre-Cambrian basic intrusions is shown to have been a polyphase process and to have occurred Jargely between two major periods of metamorphism. The original igneous lithologies are discussed and a regional differentiation series is demonstrated, with changes in rock-type accompanied by some cryptic variation in the component minerals. Metamorphism after consolidation converted the intrusives to coronites and eaused partial amphibolitisation. Corona growths are described and attributed to essentially isochemical recrystal lisations in the solid-state, promoted by the diffusion of ions in inter granular fluids. The amphibolitisation of the bodies is briefly outlined, and it is concluded that the formation of amphibolite involved the intro duction of considerable amounts of extraneous water. The criterion for demoostrating the onset of amphibolitisation is thought to be the intemal replacement of pyroxene by homblende, contrasting with the replacement of plagioclase by various amphiboles during corona growth. Both amphibolites and coronites have been scapolitised, and this may have been an extended process which certainly continued after amphi bolitisation. Regional implications are considered and it is suggested that a !arge mass of differentiating magma may have underlain the whole region in Pre-Cambrian times. -
Petrology of the Noritic and Gabbronoritic Rocks Below the J-M Reef in the Mountain View Area, Stillwater Complex, Montana
Petrology of the Noritic and Gabbronoritic Rocks below the J-M Reef in the Mountain View Area, Stillwater Complex, Montana U.S. GEOLOGICAL SURVEY BULLETIN 1674-C Chapter C Petrology of the Noritic and Gabbronoritic Rocks below the J-M Reef in the Mountain View Area, Stillwater Complex, Montana By NORMAN J PAGE and BARRY C. MORING U.S. GEOLOGICAL SURVEY BULLETIN 1674 CONTRIBUTIONS ON ORE DEPOSITS IN THE EARLY MAGMATIC ENVIRONMENT DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1990 For sale by the Books and Open-File Reports Section, U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Page, Norman, J Petrology of the noritic and gabbronoritic rocks below the J-M Reef in the Mountain View area, Stillwater Complex, Montana / by Norman J Page and Barry C. Moring. p. cm. (U.S. Geological Survey bulletin ; 1674-C) (Contributions on ore deposits in the early magmatic environment Includes bibliographical references. Supt. of Docs, no.: I 19.3: 1674-C 1. Petrology Beartooth Mountains Region (Mont, and Wyo.) 2. Geolo gy Beartooth Mountains Region (Mont, and Wyo.) I. Moring, Barry C. II. Title. III. Title: Stillwater Complex, Montana. IV. Series. V. Series: Contri butions on ore deposits in the early magmatic environment ; ch. -
Wang Et Al., 2001
American Mineralogist, Volume 86, pages 790–806, 2001 Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy ALIAN WANG,* BRAD L. JOLLIFF, LARRY A. HASKIN, KARLA E. KUEBLER, AND KAREN M. VISKUPIC Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri 63130, U.S.A. ABSTRACT This study reports the use of Raman spectral features to characterize the structural and composi- tional characteristics of different types of pyroxene from rocks as might be carried out using a por- table field spectrometer or by planetary on-surface exploration. Samples studied include lunar rocks, martian meteorites, and terrestrial rocks. The major structural types of quadrilateral pyroxene can be identified using their Raman spectral pattern and peak positions. Values of Mg/(Mg + Fe + Ca) of pyroxene in the (Mg, Fe, Ca) quadrilateral can be determined within an accuracy of ±0.1. The preci- sion for Ca/(Mg + Fe + Ca) values derived from Raman data is about the same, except that correc- tions must be made for very low-Ca and very high-Ca samples. Pyroxenes from basalts can be distinguished from those in plutonic equivalents from the distribution of their Mg′ [Mg/(Mg + Fe)] and Wo values, and this can be readily done using point-counting Raman measurements on unpre- pared rock samples. The correlation of Raman peak positions and spectral pattern provides criteria to distinguish pyroxenes with high proportions of non-quadrilateral components from (Mg, Fe, Ca) quadrilateral pyroxenes. INTRODUCTION pyroxene group of minerals is amenable to such identification Laser Raman spectroscopy is well suited for characteriza- and characterization. -
Chromian Andradite and Olivine-Chromite Relations in A
Canadian Mineralogist Yol.22, pp. 341-345(1984) CHROMIANANDRADITE AND OLIVINE-CHROMITERELATIONS IN A CHROMITITELAYER FROM THE JIJAL COMPLEX.NORTHWESTERN PAKISTAI\I M. QASIM JAN National Centreof Excellenceand Departmentof Geology, Universityof Peshowar,Peshawar, Pakistan BRIAN F. WINDLEY AND ROBERT N. WILSON Departmentof Geology,The University,Leicester, England LEI 7RH AssrRAcr alpine'ultramafic rocks up to 4 km thick. The Green chromianandradite occurs associatedwith granulites are ultrabasic to intermediate, with garnet chrysotilein a chromititelayer within the duniteof the Ji- + clinopyroxene+ plagioclase* quartz + rutile jal alpine ultramafic complex(northern Pakistan). The .-.r hornblende + epidote as the most common garnetcontains, on average,10.1 wt. tlo Cr2O3(range 9,2 assemblage.Jan & Howie suggestedthat the - tt.6qo) andhas a formulacar.*(cro.urrier+,.r*eb.r) granuliteswere metamorphosedal 690-770"C and Si2.9sOl2.The garnet formed during retrograde 12-14 kbar. Retrograde paragonite (with 100 greenschist-faciesmetamorphism of the Jijal complex. Na/(Na+K) up to 98.7)formed during the uplift of the granulitesat 510-550"C, 8-9.5 kbar (Jan et al. Keywords; chromianandradite, dunite, Jijal complex, 1982). Pakistan,retrograde metamorphism. The alpineultramafic rocks consistof diopsidite, SoMlaarne peridotite, dunite and websterite, all devoid of plagioclaseand garnet. Estimatesof temperature On d6crit une andraditeverte chromiflre associ6eau (800-850"C) and pressure (8-12 kbar) suggsst chrysotiledans un niveaude chromitite situ6 dans la dunite metamorphism under granulite-faciesconditions. du complexeultramafique alpin de Jijal (Nord-Ouestdu Field and geochemical data indicate that the Pakistan). grenat (enpoids) Le contientde 9.2 d ll.69o ultramafic rocks are not comagmaticwith the garnet deCr2O3 (!0.190 en moyenne),.et sa composition globale granulites. -
Composition of Chromite in the Upper Chromitite of the Muskox Intrusion, in the Northwest Territories, Have Been Studied in Two O.S-Meter Sections of Drill Core
tl7 Thc Carwdian M ine ralo g ist Vol.36,pp. 117-135(1998) COMPOSITIONOF CHROMITE IN THEUPPER CHROMITITE, MUSKOX LAYERED INTRUSION,NORTHWEST TERRITORIES THOMAS A. ROACH ANDPETER L. ROEDER' Department of Geological Sciences, Queen\ Uni,versity,Kingston, Ontario K7L 3N6 LARRYJ. HULBERT Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario KIA 088 Arsrnacr The texture, mineralogy and composition of chromite in the upper chromitite of the Muskox intrusion, in the Northwest Territories, have been studied in two O.s-meter sections of drill core. The principal rock-type is an onhopyroxenite that conrrins crrmulus olivine, orthopyroxene and chromite, and the intercumulu5 minerals clinopyroxene and plagioclase.The minor minerals ilmenite and biotite are found, together with a number of accessory minerals, in pockets that are interpreted as sites of late intercumulus melt. The chromitite seam is up to 10 cm thick and contains chromite with a narrow range in composition: 0.64 <Cr/(Cr+Al)<0.74,0.62<Fe2+l(Fe2*+Mg)<0.69,and0.18<Fe3+/(Fe3*+Al+Cr)<0.26.Theaveragecompositionof chromite in the chromitite, and the olivine and orthopyroxene in the orthopyroxenite, were used to calculate a temperature of 1146'C and logflO) = -9.1. The disseminatedchromite in the orthopyroxenite shows a much gteater range in composition, and increases in Fe2+/(Fe2++ Mg), Fe:*/(Fe3" + Al + Cr), Ti and Ni with stratigraphic height above the maisive chromitite. The chromite in the Muskox chromitite is significantly higher in Fe3+,Ti and Fez+l(Fe2++ Mg) than chromite in the Bushveld, Stillwater and Great Dyke chromitites; furthermore, the Muskox chromitites formed much higher in the stratigraphic section of the layered series than in tlese other intrusions. -
Monographs of the USGS Vol. XXXVI – Part I – Page 127 of 133 PLATE XXXVI
PLATE XXXIV. PLATE XXXV. FIG. A. FIG. A. (Sp. No. 23746. Without analyzer, x 17.) (Sp. No. 26059. Without analyzer, x 18.) Contact product of a granite. This muscovite-biotite-gneiss (?) Photomicrograph showing an eruptive contact between granite is the result of contact action of a granite upon a graywacke. and metamorphosed sedimentary rock. As a result of this Complete recrystallization of the sedimentary rock has taken contact the elements of the granite have become partly place, with the production of a porphyritic schistose structure. automorphic. The center of the figure is occupied by a quartz The large porphyritic muscovite plates seen as white areas in phenocryst which is partly surrounded by the schistose the photomicrograph evidently represent the last products of metamorphic product. It contains, near the edge, grains of recrystallization, as they include all of the minerals which have feldspar and flakes of mica, and thus an imperfect poikilitic been previously formed. They are possibly to be looked upon zone is produced. The mineral constituents of the as the product of mineralizers, to whose action may also be metamorphosed sedimentary are arranged parallel to the referred the presence of tourmaline, which occurs in the contours of the phenocrysts. (Described, p. 198.) section. The irregular white areas represent quartz and FIG. B. feldspar. Dark greenish-brown biotite is included in the muscovite, and with iron oxides occupies the areas which in (Sp. No. 26059. With analyzer, x 18.) the figure are dark. (Described, p. 197.) The same section as the above, viewed between crossed FIG. B. nicols. (Described, p. -
Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________ -
Differentiated Mafic-Ultramafic Sills in the Archean Vermilion District
DIFFERENTIATED !-'1..1"\.FIC-ULTRAMAFIC SILLS IN THE ARCHEAN VERMILION DISTRICT, NORTHEASTERN .MINNESOTA A THESIS SUBMITTED TO THE FACULTY OF THE SCEOCL OF THE OF 1'1INNESOTl:. BY SCI·JULZ IN PARTIAL FULF'ILU--1EN'l1 OF TEE REQun;.EMEN'i.'S FOR THE DEGREE OF :MAS'rER OF SCIENCE FEBRUARY 1, 1974 i . ABSTRACT Detailed mapping of part of the Newton Lake Forma- tion north of Ely, Minnesota has shown the presence of numerous sill-like mafic-ultramafic intrusions in the Archean volcanic sequence. Three types of intrusions have been found: layered, differentiated mafic-ultra- mafic sills ranging from 400 to 1500 feet thick and at least 4 miles long; gabbroic sills of variable thickness and e x tent; and ultrarnafic lenses ranging from 75 to 300 feet thick and up to .3000 feet long. The layered sills were studied in detail. They have a wel1-developed internal stratigraphy which consists of a lower chilled-margin, peridotite, pyroxenite, bron- zite gabbro, and gabbro units and an upper chilled-margin. Petrographic studies indicate that the units formed by gravitational accumulation of mineral grains, The ::;tr at- igrap.hic succession reflects the general order of crystal- ization: 1) chromite, 2) chromite· + olivine, 3) clino- pyroxene + orthopyroxene, 4) clinopyroxene + orthopyroxene + plagioclase, 5) clinopyroxene + plagioclase. Microprobe analyses of cumulus pyroxenes has shown crypti c variations exist between units. Th e gabbroic sills are generally similar to the upper gabbroic parts of the layered sills. The ultramafic lense s consist of a central peridotite unit surround by a com- plex chilled-margin. Textural and structural features of ii the u1tramafic lenses suggest intrusion of an olivine bearing liquid, with flowage differentiation forming . -
Review Komatiites: from Earth's Geological Settings to Planetary
Running Head: Komatiites: geological settings to astrobiological contexts Review Komatiites: From Earth’s Geological Settings to Planetary and Astrobiological Contexts Delphine Nna-Mvondo1 and Jesus Martinez-Frias1 1 Planetary Geology Laboratory, Centro de Astrobiologia (CSIC/INTA), associated to NASA Astrobiology Institute, Ctra. De Ajalvir, km 4. 28850 Torrejon de Ardoz, Madrid, Spain. Correspondence: Laboratorio de Geología Planetaria, Centro de Astrobiología (CSIC/INTA), associated to NASA Astrobiology Institute, Instituto Nacional de Técnica Aeroespacial, Ctra. De Ajalvir, km 4. 28850 Torrejón de Ardoz, Madrid, Spain. Phone: +34 915206434 Fax: +34 915201074 E-mail: [email protected] 1 ABSTRACT Komatiites are fascinating volcanic rocks. They are among the most ancient lavas of the Earth following the 3.8 Ga pillow basalts at Isua and they represent some of the oldest ultramafic magmatic rocks preserved in the Earth’s crust at 3.5 Ga. This fact, linked to their particular features (high magnesium content, high melting temperatures, low dynamic viscosities, etc.), has attracted the community of geoscientists since their discovery in the early sixties, who have tried to determine their origin and understand their meaning in the context of terrestrial mantle evolution. In addition, it has been proposed that komatiites are not restricted to our planet, but they could be found in other extraterrestrial settings in our Solar System (particularly on Mars and Io). It is important to note that komatiites may be extremely significant in the study of the origins and evolution of Life on Earth. They not only preserve essential geochemical clues of the interaction between the pristine Earth rocks and atmosphere, but also may have been potential suitable sites for biological processes to develop. -
Platinum-Group Minerals in Chromitites of the Niquelândia
Minerals 2012, 2, 365-384; doi:10.3390/min2040365 OPEN ACCESS minerals ISSN 2075-163X www.mdpi.com/journal/minerals Article Platinum-Group Minerals in Chromitites of the Niquelândia Layered Intrusion (Central Goias, Brazil): Their Magmatic Origin and Low-Temperature Reworking during Serpentinization and Lateritic Weathering Giorgio Garuti 1,*, Federica Zaccarini 1, Joaquin A. Proenza 2, Oskar A. R. Thalhammer 1 and Nelson Angeli 3 1 Department of Applied Geosciences and Geophysics, Montan Universität Leoben, Leoben 8700, Austria; E-Mails: [email protected] (F.Z.); [email protected] (O.A.R.T.) 2 Departament of Crystallography, Mineralogy and Ore Deposits, Faculty of Geology, Universitat de Barcelona, Barcelona 08028, Spain; E-Mail: [email protected] 3 Departament of Petrology and Metallogeny, Universidade Estadual Paulista, Rio Claro 13500, SP, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +43-3842-402-6218; Fax: +43-3842-402-6202. Received: 3 September 2012; in revised form: 19 October 2012 / Accepted: 19 October 2012 / Published: 30 October 2012 Abstract: A variety of platinum-group-minerals (PGM) have been found to occur associated with the chromitite and dunite layers in the Niquelândia igneous complex. Two genetically distinct populations of PGM have been identified corresponding to phases crystallized at high temperatures (primary), and others formed or modified during post-magmatic serpentinization and lateritic