Morphology and Composition of Chromite in Komatiites

Total Page:16

File Type:pdf, Size:1020Kb

Morphology and Composition of Chromite in Komatiites Canadian Mineralogist Vol. 30, pp. 303-317(1992) MORPHOLOGYAND COMPOSITIONOF CHROMITEIN KOMATIITES FROMTHE BELINGWEGREENSTONE BELT, ZIMBABWE MEI.FU ZHOU ANDROBERT KERRICH Department of Geological Sciences,IJniversity of Saskatchewan,Saskatoon, Saskatchewan S7N 0W0 ABSTRACT Chromite grains in nearly fresh Archean komatiites from the late Archean Belingwegreenstone belt (ca. 2.7 Ga), in Zimbabwe, have diversemorphologies: skeletal and dendritic chromite is restricted to spinifex zones, whereas euhedralgrains occur throughout the flows. Systematicdifferences in chromite compositionsate presentbetween the spinifex (iop) and cumulate (base)zones of the flows and betweenskeletal and euhedral chromite. Two stagesof crystallizationhave beenidentified: an early euhedralcore is mantled later by skeletalchromite. The core is enriched in Mg and Cr, but depleted in Fe, Ti and Mn relative to the skeletal rim, in a manner similar to variations in compositionsof euhedralchromite from the top to the base of the flows. Accordingly, the euhedralchromite and the core of skeletalchromite in the spinifex zonescould have formed at an early stage,in equilibrium with a large volume of magma, whereasthe skeletalmantle could have formed rapidly from a small volume of evolvedresidual liquid after eruption of the magma.Thermometry based on the pair chromite-olivine may provide an estimateof the ambient conditions of the komatiitic liquids, Chromite in komatiites has uniform Al contents and characteristic compositional trends, distinct from chromite in mafic-ultramafic rocks from other geodynamicsettings, thereby providing an independentmeans of discriminatingits origin. Keywords:chromite, morphology, chemicalcomposition, late Archean, komatiite, geodynamicsetting, Zimbabwe. Sountetne Dans les komatiites de la ceinture de rochesvertes de Belingwe,au Zimbabwe, presquefraiches malgr6 leur 6ge arch$entardif (environ 2.7 Ga), les grains de chromite possbdentdes morphologiesdiverses. Les grains skelettiques et dendritiquessont limit6s aux zonesir spinifex, tandis que les grainsidiomorphes sont r6pandusi traversles coul6es. Nous remarquonsdes diff6rencessyst6matiques dans la composition entre la chromite des zones ir spinifex et des cumulats, situ6evers le haut et i la basedes coul6es,respectivement, et entre les grains skelettiqueset idiomorphes. Deux 6tapesde cristallisationsont envisag6es:un coeut idiomorphe est recouvertpar des surcroissancesskelettiques. Le coeurmonlre un enrichissementen Mg et Cr, et un appauvrissementen Fe, Ti et Mn par rapport aux surcroissances skelettiques,de fagon paralldleaux variations compositionnellesddcel6es dans la chromite idiomorphe entre le haut et la basedes coul6es. Les grains idiomorpheset le coeur desgrains skelettiquesdes zones ir spinifex seseraient form6s ir un stadepr6coce, en 6quilibre avecun volume important de magma, tandis que les surcroissancesskelettiques ont cristallis6rapidement, d partir de volumesrestreints de liquides plus 6volu6s,suite ir l'6panchementdu magma. Une analysethermom6trique fond6e sur la chromite et l'olivine en €quilibre permetde caract6riserles conditionsambiantes des liquides komatiitiques. La chromite des komatiites possddeune teneur uniforme en Al et des compositions caractaristiquesqui la distinguentde la chromite desroches mafiques et ultramafiquesd'autres milieux 96odynamiques. Ceci permet une discrimination de son mode d'origine par une mdthodeinddpendante. (Traduit par la Rddaction) Mots-clAsichromile, morphologie,composition chimique, arch6en tardif, komatiite, milieu g6odynamique,Zimbabwe. INTRODUCTIoN documented(e.g., Fleet & MacRae 1975, Arndt et al.1977, Donaldson1982, Donaldson et ol.1986). Chromite is a sensitiveindicator of magmatic This may stem from the fact that komatiites environments(e.9., Irvine 7965, 1967, Dick & predominantly occur in Archean greenstonese- Bullen 1984). Studiesof chromite compositions quences, where they have experiencedvariable Alpine ultramafic rocks intensities of hydrothermal alteration and havebeen mainly limited to ' and layered intrusions. No systematicanalyses of metamorphisminto assemblagesof serpentine,talc chromite from komatiites have been conducted, and chlorite; fresh primary chromite rarely is although its occurrencein theserocks has been preserved. Komatiites formed from distinctive 303 304 THE CANADIAN MINERALOGIST high-Mg magmas that have had histories of well-preservedsuccession of Archean lavas and crystallization,cooling, alteration and metamor- sedimentaryrocks, which were depositedon an phism quite different from those of mafic and older tonalitic crust (Bickle et al. 1975.Nisbet er ultramafic magmasemplaced in plutonic or upper ql. 1977,Nisbet 1987).The volcanic-sedimentary mantle environments.Accordingly, fresh chromite sequencehas been divided into two groups: the in komatiites may provide critical information lower or MtshingweGroup (2.8-2.9Ga) and upper about their conditionsof crystallization. or NgezGroup (2.7 Ga) (Bickleer a/. 1975,Nisbet Samplesof relativelyunaltered komatiite, com- et al. 1977,Nisbet 1987).The lower group occurs posed almost totally of primary minerals and in the western, southwestern,and southeastern slightly devitrified glass,have been obtained from parts of the area, and is uncomformablyoverlain the Belingwegreenstone belt and are the freshest by the upper group, which consistsof the Manjeri Archeansamples yet found (Nisbetet al. 1987).In (thin sedimentaryrocks), Reliance(komatiites and the present investigation, a detailed petrographic komatiitic basalts), Zeederbergs (basalts) and and electron-microprobestudy of the different Cheshire(mainly shallow-water sedimentary rocks) texturalvarieties of chromitehas beenperformed. formations(Fig. lA). Komatiitesoccur in the Bend On the basisof their chemicalcomposition, these and Brooklandsformations in the lowergroup, and varieties can be compared with chromite from in the RelianceFormation in the uppergroup. The "normal" ultramafic rocks; differencesbetween RelianceFormation hasbeen studied in the greatest them are discussedin termsof the implicationsfor detail (Nisbet et al. 1977, Nisbet 1987). This the conditionsof their crystallization. formation, which is 0.5-1.0 km thick, consists principally of komatiitic basalts,komatiites and GEoLocrcnl SrtrrNc oF KoMATTTTES komatiitic basaltsfrom stratigraphicbase to top. Komatiitic flows in this formation are the freshest The Belingwe greenstonebelt, a late Archean that have been observedin an Archean lerrane, granite-greenstoneterrane with ca. 2.7 Ga isotopic particularlyas found along the SASKMAR I drill ages, is located in the southeasternpart of the hole. which intersectsseveral flows (Nisbetet a/. Zimbabwe Archean craton (Nisbet et al. 1977, 1987)(Fig. 1B); the samplesfor this study have Nisbet 1987).This supracrustalbelt consistsof a beenchosen from rhis section. 0m 50m 'toom Driilsir\ ?j Anderson's 661 Cheshire l-l ZeedeferOs Randomspinifox - Formation H Formation ffi]4 tFI Reliancg I Manjeri ffi Orienredspinifex Formailon Formation Ftc;.l. (A) Simplifiedgeological map of rheupper group, Belingwegreensrone belt, south-centralZimbabwe, illustraring the locationof the SASKMAR drill core, which penetratedthe RelianceFormarion. Modified after Nisbet et al. (1987). (B) Stratigraphicsection of the SASKMAR drill coreshowing rhar rhe sequence of komariiticflows intersectedin the core correspondswith surfaceoutcrop in the area [after Renneret ol. (1992)]. CHROMITE IN KOMATIITES. ZIMBABWE 305 142 I qE- nrF _aet E ErgrqEo S I '$5 el H+152 9L tt I ia I AE 2.) oo ?t ET162 I utt2t tt o lit 8 s 6 I 100M9/(Mg+Fe) 172 It t t- n 50 60 70 75 Edgeofzoned Chr ffi**^* FgHB-lsubzoneE in spinifexzone Euhedralu Core J,Tilspioir"*,-"[I Hmff"t tI Chrin spinifexzone Frc. 2. Stratigraphicsection and variationsof lO0Mg/(Mg+ Fe) in chromite(Chr) throughthe SASKMAR drill core from 142to 112m, includingthree flows, of which the uppermostflow is best developedand containsthe random olivine spinifexand platy olivinespinifex (A), hopperolivine (B*l) and equantolivine (82-4) subzonesfrom top to base. These sampleswere taken from the 142-172-m cumulatezone are mostly pristine,although some depth interval, and come from three flows, serpentineand magnetiteoccurs along fractures. including Onias'sand Cemuson's(Fig. lB), each The cumulatezone also containsmatrix together of whichcontains spinifex-A and cumulate-Bzones with minor skeletalolivine. (Fig. 2). Onias's flow has all subzonesnormally associatedwith komatiiticflows (Donaldson1982), OccURRENCEeNo MonpHolocY oF Cunonatrr and contains random spinifex and platy olivine spinifexsubzones in zoneA, and an uppermostB-l Chromiteis ubiquitousas an accessorymineral subzonein zoneB (Fig. 2). throughout the spinifex and cumulate zones of The groundmassof the rocks from the spinifex these flows. Distinct morphologicalvarieties of zonehas beendevitrified to a variableextent and chromitehave beenidentified in the spinifexand has been partly replaced by greenschist-faciescumulate zones (Fig. 3). Their distribution is assemblages,as have someolivine crystals,which systematicallyrelated to position in each of the show a euhedralor skeletalhabit. The matrix of three flows studied.Most of the chromitein the thespinifex zone also contains minor clinopyroxene cumulate zones and some in the spinifex zones and featherytremolite. Someof the hopper crystals occursas euhedral,octahedral or subhedralcrys- includepigeonite, and typicallyhave a lanternor, tals, l5 to 100pm in diameter,either disseminated rarely,
Recommended publications
  • Chromian Andradite and Olivine-Chromite Relations in A
    Canadian Mineralogist Yol.22, pp. 341-345(1984) CHROMIANANDRADITE AND OLIVINE-CHROMITERELATIONS IN A CHROMITITELAYER FROM THE JIJAL COMPLEX.NORTHWESTERN PAKISTAI\I M. QASIM JAN National Centreof Excellenceand Departmentof Geology, Universityof Peshowar,Peshawar, Pakistan BRIAN F. WINDLEY AND ROBERT N. WILSON Departmentof Geology,The University,Leicester, England LEI 7RH AssrRAcr alpine'ultramafic rocks up to 4 km thick. The Green chromianandradite occurs associatedwith granulites are ultrabasic to intermediate, with garnet chrysotilein a chromititelayer within the duniteof the Ji- + clinopyroxene+ plagioclase* quartz + rutile jal alpine ultramafic complex(northern Pakistan). The .-.r hornblende + epidote as the most common garnetcontains, on average,10.1 wt. tlo Cr2O3(range 9,2 assemblage.Jan & Howie suggestedthat the - tt.6qo) andhas a formulacar.*(cro.urrier+,.r*eb.r) granuliteswere metamorphosedal 690-770"C and Si2.9sOl2.The garnet formed during retrograde 12-14 kbar. Retrograde paragonite (with 100 greenschist-faciesmetamorphism of the Jijal complex. Na/(Na+K) up to 98.7)formed during the uplift of the granulitesat 510-550"C, 8-9.5 kbar (Jan et al. Keywords; chromianandradite, dunite, Jijal complex, 1982). Pakistan,retrograde metamorphism. The alpineultramafic rocks consistof diopsidite, SoMlaarne peridotite, dunite and websterite, all devoid of plagioclaseand garnet. Estimatesof temperature On d6crit une andraditeverte chromiflre associ6eau (800-850"C) and pressure (8-12 kbar) suggsst chrysotiledans un niveaude chromitite situ6 dans la dunite metamorphism under granulite-faciesconditions. du complexeultramafique alpin de Jijal (Nord-Ouestdu Field and geochemical data indicate that the Pakistan). grenat (enpoids) Le contientde 9.2 d ll.69o ultramafic rocks are not comagmaticwith the garnet deCr2O3 (!0.190 en moyenne),.et sa composition globale granulites.
    [Show full text]
  • Composition of Chromite in the Upper Chromitite of the Muskox Intrusion, in the Northwest Territories, Have Been Studied in Two O.S-Meter Sections of Drill Core
    tl7 Thc Carwdian M ine ralo g ist Vol.36,pp. 117-135(1998) COMPOSITIONOF CHROMITE IN THEUPPER CHROMITITE, MUSKOX LAYERED INTRUSION,NORTHWEST TERRITORIES THOMAS A. ROACH ANDPETER L. ROEDER' Department of Geological Sciences, Queen\ Uni,versity,Kingston, Ontario K7L 3N6 LARRYJ. HULBERT Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario KIA 088 Arsrnacr The texture, mineralogy and composition of chromite in the upper chromitite of the Muskox intrusion, in the Northwest Territories, have been studied in two O.s-meter sections of drill core. The principal rock-type is an onhopyroxenite that conrrins crrmulus olivine, orthopyroxene and chromite, and the intercumulu5 minerals clinopyroxene and plagioclase.The minor minerals ilmenite and biotite are found, together with a number of accessory minerals, in pockets that are interpreted as sites of late intercumulus melt. The chromitite seam is up to 10 cm thick and contains chromite with a narrow range in composition: 0.64 <Cr/(Cr+Al)<0.74,0.62<Fe2+l(Fe2*+Mg)<0.69,and0.18<Fe3+/(Fe3*+Al+Cr)<0.26.Theaveragecompositionof chromite in the chromitite, and the olivine and orthopyroxene in the orthopyroxenite, were used to calculate a temperature of 1146'C and logflO) = -9.1. The disseminatedchromite in the orthopyroxenite shows a much gteater range in composition, and increases in Fe2+/(Fe2++ Mg), Fe:*/(Fe3" + Al + Cr), Ti and Ni with stratigraphic height above the maisive chromitite. The chromite in the Muskox chromitite is significantly higher in Fe3+,Ti and Fez+l(Fe2++ Mg) than chromite in the Bushveld, Stillwater and Great Dyke chromitites; furthermore, the Muskox chromitites formed much higher in the stratigraphic section of the layered series than in tlese other intrusions.
    [Show full text]
  • Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
    Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________
    [Show full text]
  • Platinum-Group Minerals in Chromitites of the Niquelândia
    Minerals 2012, 2, 365-384; doi:10.3390/min2040365 OPEN ACCESS minerals ISSN 2075-163X www.mdpi.com/journal/minerals Article Platinum-Group Minerals in Chromitites of the Niquelândia Layered Intrusion (Central Goias, Brazil): Their Magmatic Origin and Low-Temperature Reworking during Serpentinization and Lateritic Weathering Giorgio Garuti 1,*, Federica Zaccarini 1, Joaquin A. Proenza 2, Oskar A. R. Thalhammer 1 and Nelson Angeli 3 1 Department of Applied Geosciences and Geophysics, Montan Universität Leoben, Leoben 8700, Austria; E-Mails: [email protected] (F.Z.); [email protected] (O.A.R.T.) 2 Departament of Crystallography, Mineralogy and Ore Deposits, Faculty of Geology, Universitat de Barcelona, Barcelona 08028, Spain; E-Mail: [email protected] 3 Departament of Petrology and Metallogeny, Universidade Estadual Paulista, Rio Claro 13500, SP, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +43-3842-402-6218; Fax: +43-3842-402-6202. Received: 3 September 2012; in revised form: 19 October 2012 / Accepted: 19 October 2012 / Published: 30 October 2012 Abstract: A variety of platinum-group-minerals (PGM) have been found to occur associated with the chromitite and dunite layers in the Niquelândia igneous complex. Two genetically distinct populations of PGM have been identified corresponding to phases crystallized at high temperatures (primary), and others formed or modified during post-magmatic serpentinization and lateritic
    [Show full text]
  • Mineralisation in Layered Mafic-Ultramafic Intrusions
    1 Mineralisation in Layered Mafic-Ultramafic Intrusions 2 3 Hannah S. R. Hughes1, Jens C. Ø. Andersen1, Brian O’Driscoll2 4 1Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University 5 of Exeter, Tremough Campus, Penryn, Cornwall, TR10 9FE, UK 6 2Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, 7 Manchester, M13 9PL, UK 8 9 10 See Also: Economic Geology, Layered Intrusions, Igneous Rocks, Igneous Processes, Mining Geology, 11 Mantle, Mantle Plumes, Minerals: Sulphides. 12 13 1 14 1. Introduction 15 Mineral deposits form in mafic-ultramafic layered intrusions (LMI) through a variety of magmatic 16 processes. Chromium, platinum-group elements (PGE) and nickel (Ni) are almost exclusively extracted 17 from mafic-ultramafic rocks (Table 1). LMI also host metals such as gold (Au), copper (Cu), cobalt (Co), 18 vanadium (V), titanium (Ti) and scandium (Sc). Mafic-ultramafic rocks are major sources of dimension 19 stone and aggregate, and increasingly, carbon capture and storage may generate significant demands 20 for Mg-silicate (olivine and associated minerals). 21 Chromium, Ti and V are extracted from the oxide minerals chromite, ilmenite and titanomagnetite. 22 Economic concentrations require several tens of percent of the host minerals, and exploration can 23 therefore utilize remote sensing. Chromite is the only naturally-occurring source of Cr that can be 24 economically extracted (Table 1). Vanadium is extracted from titanomagnetite and titanium from 25 ilmenite (Table 1). In some mines, Fe is recovered as a by-product. Chromite forms exclusively in 26 primitive mafic-ultramafic rocks, while titanomagnetite and ilmenite are more common in the evolved 27 parts of LMI.
    [Show full text]
  • A Short Geological Review of the Bushveld Complex by R
    A Short Geological Review of the Bushveld Complex By R. P. Schouwstra and E. D. Kinloch Amplats Research Centre, PO Box 6540, Homestead, 1412, South Africa and C. A. Lee Amplats Geological Services, PO Box 62179, Marshalltown, Johannesburg, 2107, South Africa At present most of the worldwide supply of cooled slowly from molten magma, deep within platinum and palladium and the associated ele- the earth. Silicate minerals in fixed proportions ments is obtained from mines within four major crystallised and aggregated to form the final layered igneous intrusions. These are the Bushveld igneous rocks. The composition of the minerals Complex in South Africa, the Stillwater Complex changed with the slow drop in temperature in the in the U.S.A., the Great Dyke in Zimbabwe, and magma brought about by cooling. The first silicate the Noril’sk/Talnakh Complexes in Russia (1). minerals which crystallised and settled out are rich These layered intrusions consist of rocks which in magnesium and iron (the ‘mafic’ parts of the The location ofplatinum mines are as follows: A is RPM Amandelbult, U is RPM Union, R is RPM Rustenburg, L is Lebowa. P is PPRust, N is Northam, I is Impala and W/E is Western & Eastern Plats Fig. I Simplified geological map of the Bushveld Complex (2). The green shades represent the Bushveld rocks, the rose shades are the granitic cover rocks, the blue and brown shades represent the pre- and post-Bushveld rock^, respectively. The red circular shape near Rustenburg is the Pilanesberg alkali complex. E = eastern limb, W = western limb, N = northern or Potgietersrus limb;f are faults Plutinum MhLr Reu, 2000, 44, (1).
    [Show full text]
  • The Stillwater Complex Chromitites: the Response of Chromite Crystal Chemistry to Magma Injection
    Geologica Acta, Vol.10, Nº 1, March 2012, 33-41 DOI: 10.1344/105.000001706 Available online at www.geologica-acta.com The Stillwater Complex chromitites: The response of chromite crystal chemistry to magma injection 1 2 2 3 1 D. LENAZ G. GARUTI F. ZACCARINI R.W. COOPER F. PRINCIVALLE 1 Department of Mathematics and Geosciences Via Weiss 8, 34127 Trieste, Italy. Lenaz E-mail: [email protected] 2 Department of Applied Geosciences and Geophysics Peter Tunner Strasse 5, 8700 Leoben, Austria 3 Department of Geology Lamar University, 77710 Beaumont TX, USA ABS TRACT Nineteen chromite crystals from the A, B, E, G, H, J and K chromitite layers of the Peridotite Zone of the Stillwater Complex (Montana, USA) have been studied by means of X-ray single crystal diffraction and microprobe analyses. The results show that samples from the basal A layer are quite different from the others showing very high oxygen positional parameter u (0.2633-0.2635) and Ti- contents (0.059-0.067apfu). Mg# values are within the range 0.21-0.23 while for the other chromites it is in the range 0.45-0.47. Moreover, for the other samples, according to the structural parameters, two groups have been identified. The first one comprises samples of layers B, E and G, the second includes H, J and K layer samples. It is supposed that high Fe2+ and Ti contents of A layer samples are due to the post-crystallization reaction with interstitial liquid. This fact allowed a very slow cooling rate as evidenced by the high u values.
    [Show full text]
  • Low Temperature Origin of the Ural-Alaskan Type Platinum Deposits: Geological, Mineralogical and Geochemical Evidence
    Low Temperature Origin of the Ural-Alaskan Type Platinum Deposits: Geological, Mineralogical and Geochemical Evidence Evgeny Pushkarev and Elena Anikina Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences (Russia) e-mail: [email protected] Alaskan-type mafic-ultramafic intrusions complexes constrains to assume that platinum are well known as a source of platinum placers in mineralization related with them forms in a wide the Urals, Far-East, Southeastern Alaska, time span, down to temperatures, much lower than Colombia, Australia and in other regions. More those of the main magmatic events. This paper than one hundred and fifty years ago, some of the reports the results of our investigation. biggest platinum placers in the World were discovered and operated in the Urals, yielding Geological settings, morphology and relationship about 400 tons of platinum during the first hundred with the dunite host years. The platinum placers are related with Platinum mineralization is strongly related fourteen huge intrusive massifs situated in a mafic- with chromitite within dunite. Commonly ultramafic belt, extending about 900 km from the chromitites form isolated small pods, vein-like Central to the Northern Urals, along the 60th eastern bodies or schlieren from 5 to 50-60 cm in length meridian and between the 56th and 64th northern and 1-20 cm in thickness. Two types of chromitites parallels and known among the geologists as the have bean distinguished by Zavaritsky (1928) and “Ural Platinum-bearing Belt” (UPB). Ore platinum Betekhtin (1935). The first type consists of massive deposits started to be worked in the Nizhny-Tagil ore grading into disseminated chromite toward the dunite-clinopyroxenite massif (Central Urals) since host dunite.
    [Show full text]
  • Origin of Chromitites in Layered Intrusions: Evidence from Chromite-Hosted Melt Inclusions from the Stillwater Complex
    Origin of chromitites in layered intrusions: Evidence from chromite-hosted melt inclusions from the Stillwater Complex Carl Spandler* Research School of Earth Sciences, Australian National University, Canberra 0200, Australia John Mavrogenes Research School of Earth Sciences, and Department of Earth and Marine Sciences, Australian National University, Canberra 0200, Australia Richard Arculus Department of Earth and Marine Sciences, Australian National University, Canberra 0200, Australia ABSTRACT 1993); and (5) assimilation of country rock by primitive magma (Ir- Chromitites from layered ma®c intrusions are of great eco- vine, 1975; Kinnaird et al., 2002). nomic importance, yet the origin of these deposits remains enig- The antiquity and slow cooling of most chromitite-bearing layered matic. We describe multiphase silicate inclusions trapped within intrusions have hindered our understanding of the genesis of chromi- chromite grains from the G chromitite seam of the Stillwater Com- tites and layered intrusions in general. The primary petrologic and geo- plex, Montana, United States. These inclusions are interpreted to chemical evidence that are crucial for determining the evolution of represent melt trapped during chromite growth and hence provide cumulate rocks are often removed during subsolidus reequilibration and information on chromitite formation. Most reheated inclusions subsequent hydrothermal alteration or metamorphism. Furthermore, the have variable quench textures and chemical compositions that are compositions of the parental magmas of these intrusionsÐcritical in- consistent with variable degrees of mixing between a high-Mg ba- formation for understanding chromitite formationÐremain poorly saltic parental magma and a Na-rich trondhjemitic melt. The tron- constrained. dhjemite is suggested to derive from partial melting of ma®c or Melt inclusion studies have been extensively used for investigat- ing volcanic systems, yet have largely been ignored by researchers of metasedimentary country rocks.
    [Show full text]
  • Stillwater Complex, Montana Structure, Mineralogy, and Petrology of the Basal Zone with Emphasis on the Occurrence of Sulfides
    Stillwater Complex, Montana Structure, Mineralogy, and Petrology of the Basal Zone with emphasis on the Occurrence of Sulfides By NORMAN JPAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 1038 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Page, Norman J Stillwater Complex, Montana Structure, Mineralogy, and Petrology of the Basal Zone with emphasis on the Occurrence of Sulfides (Geological Survey Professional Paper 1038) Bibliography: p. 61 Supt. of Docs. No.: I 19.16:1038 1. Rocks, Igneous. 2. Intrusions (Geology) Montana. 3. Sulphides. 4. Ore-deposits Montana. I. Title. II. Series: United States Geological Survey Professional Paper 1038 QE461.P289 552'.l'09786 77-608351 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03179-5 CONTENTS Page Page Abstract ............................................................................................ 1 Petrology and mineralogy of the Basal zone Continued Introduction ...................................................................................... 1 Rocks derived by partial melting ...................................................... 34 Geologic history of the Stillwater Complex and adjacent rocks 2 Occurrence ................................................................................ 34 Previous work and acknowledgments ..............................................
    [Show full text]
  • Igneous and Tectonic Structures of the Stillwater Complex Montana
    Igneous and Tectonic Structures of the Stillwater Complex Montana By W. R. JONES, J. W. PEOPLES, and A. L. ROWLAND CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY BULLETIN 1071-H A study of the structures in a belt of upturned layered noritic and ultramafic Precambrian rocks on the northeast margin of the Beartooth Mountains -UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON t 1960 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director U For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS * Abstract____..._..__---___.._-__--..___-----_-__---_--____---__ 281 Introduction. __________-_____________--__-_-_--_-_--_--___---__-__ 282 Igneous structures.__._-_._..._._.-.--__-___-___-______--___-____._ 283 i Characteristics of layered complexes.____________________________ 283 i Geologic setting and age of the complex__-_____-_-________-_.____ 284 Stratigraphy of the complex.___________________________________ 286 Major subdivisions_____.___-_.___-_-_______--_-_-.______-- 286 » Distinctive boundaries and layers__--______---_-____-_.____ 289 Serpentinized rock_____._____-____----_______-__.__________ 291 I Characteristics of layers.-____--------_-----____-_______________ 291 Igneous lamination.___-______-_-_-_--___._-___-____-___-__ 291 Rhythmic layering..___-_-__-____._-----___--_-__-______.__ 293 Variations in mode------------------------_-------.-__ 293 Variations in texture.--------------------------.------- 294 ^ Thickness and
    [Show full text]
  • Uvarovite in Podiform Chromitite: the Moa-Baracoa Ophiolitic Massif. Cuba
    679 The Canadian Mineralogist Vol. 37, pp.679-690 (1999) UVAROVITEIN PODIFORMCHROMITITE: THEMOA-BARACOA OPHIOLITIC MASSIF. CUBA JOAQUINPROENZA Departamento d.eGeologia, Instituto Superior Minero Metalilrgico de Moa, Las Coloradas s/n, 83320 Moa, Cuba and Departament de Cristal.lografia, Mineralogia i Dipdsits Minerals, Universitat de Barcelona, C/ Marti i Franquis s/n, E-08028 Barcelona, Catalonia, Spain JESUS SOLE AND JOAN CARLES MELGAREJO$ Departament de Cristal.lograJia, Mineralogia i Dipdsits Minerals, Universitat de Barcelona, C/ Marti i Franquis s/n, E-08028 Barcelona, Catalonia, Spain Assrnlcr The chromitite pods of the Moa-Baracoa massif, in the easternophiolitic belt of Cuba, contain pre-existing gabbro sills. This association is affected by two processesof hydrothermal alteration. The chromitites and the hosting dunites and harzburgites are affected first by regional serpentinization; a second alteration, representedby chloritization accompanied with formation of ferrian chromite, is mainly located in the pods and their immediate vicinity. The altered chromitite pods and enclosedgabbro sills iue cross cut by millimeter-wide veins. The vein filling consists of a sequenceof clinochlore, uvarovite, chromian clinochlore, rutile, titanite and calcite. Uvarovite also occurs in the vicinity of veins Uvarovite is concentrically zoned, covering compositions in the uvarovite-grossular solid solution seriesbetween Uva17and Uvae:; the andradite component is very low. These composi- tions suggesta complete miscibility along the grossular-uvarovite join at relatively low temperature.On the basis of the mineral sequenceand mineral chemistry (major and trace elements), the uvarovite crystals, as well as the vein assemblage,formed by a low-temperature leaching, Ca probably from the gabbro sills, and Cr and Al from the chromite dunng the formation of ferrian chromite Cr and A1 would have been mobile only at the scale of a pod during this process.
    [Show full text]