Transposon-Induced Homologous Recombination at the Maize P Locus and in Transgenic Arabidopsis Yongli Xiao Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Transposon-Induced Homologous Recombination at the Maize P Locus and in Transgenic Arabidopsis Yongli Xiao Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1999 Transposon-induced homologous recombination at the maize P locus and in transgenic Arabidopsis Yongli Xiao Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons, and the Molecular Biology Commons Recommended Citation Xiao, Yongli, "Transposon-induced homologous recombination at the maize P locus and in transgenic Arabidopsis " (1999). Retrospective Theses and Dissertations. 12626. https://lib.dr.iastate.edu/rtd/12626 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the text directly fix)m the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter &ce, while others may be fi^m any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photogr^hs, print bleedthrough, substandard margins, and improper alignment can adverse^ affect reproduction. In the unlikely event that the author did not said UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, b^inning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photogr^hed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. EBgher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contsict UMI directly to order. UMI A Bell & Howell lofijrmation Company 300 North Zeeb Road, Ann Aiiwr MI 48106-1346 USA 313/761-4700 800/521-0600 Transposon-induced homologous recombination at the maize P locus and in transgenic Arabidopsis by Yongli Xiao A dissertation submitted to the graduate faculty in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major Genetics Major Professon Thomas A. Peterson Iowa State University Ames, Iowa 1999 DMJ Ntunber: 9924780 UMI Microform 9924780 Copyriglit 1999, by UMI Company. AU rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ami Arbor, MI 48103 Graduate College Iowa State University This is to certify the Doctoral dissertation of YongliXiao Has met the dissertation requirement of Iowa State University Signature was redacted for privacy. Major Professor Signature was redacted for privacy. For the Major Program Signature was redacted for privacy. iii TABLE OF CONTENTS CHAPTER 1. INTRODUCTION 1 Dissertation Organization I Literature Review 2 References 32 CHAPTER 2. Ac INSERTION SITE AFFECTS THE FREQUENCY OF TRANSPOSON- INDUCED HOMOLOGOUS RECOMBINATION AT THE MAIZE P LOCUS 51 Abstract 51 Introduction 52 Materials and Methods 55 Results 57 Discussion 61 References 66 CHAPTER 3. INTRACHROMOSOMAL HOMOLOGOUS RECOMBINATION IN ARABIDOPSIS INDUCED BY A MAIZE TRANSPOSON 81 Abstract 81 Results and Discussion 82 Methods 87 References 89 Acknowledgements 91 CHAPTER 4. GENERAL SUMMARY 99 References 103 ACKNOWLEDGEMENTS 107 1 CHAPTER 1. GENERAL INTRODUCTION Dissertation Organization This dissertation is organized in an alternative formaL It contains four chapters including general introduction and general sununary. References are placed at the end of each chapter. Two chapters include papers: Chapter 3 is paper reviewed by Nature Genetics, and Chapter 2 is in preparation for submission to Genetics for formal publication. Chapter 2 presents an analysis of the effects of a maize transposable element (transposon). Activator (Ac), on homologous recombination at maize P locus. The results show that the insertion position of the Ac transposon relative to two homologous direct repeats at the P locus can affect the frequency of the homologous recombination, whereas the orientation of the transposon insertion may not have a significant effect on recombination. The possible mechanism is discussed. This is the first report to demonstrate that a transposon insertion position can affect the frequency of homologous recombination in plants. Chapter 3 demonstrates that transposon-induced homologous recombination can occur on an artificial construct in transgenic Arabidopsis, a dicotyledonous model plant. Here, the maize transposon (Ac/Ds system) increases homologous recombination frequency over 1000 fold in plants with an active transposon than in control plants with the same reporter construct but lacking an active transposon. In Arabidopsis, transposon-induced recombination was observed in different organs during different developmental stages, and several germinally transmitted events were recovered. Therefore, transposon-induced 2 homologous recombination appears to be a general phenomenon in plants and may play an important role in genome evolution. Literature Review Transposable elements are segments of DNA that can promote their own insertion into new locations via element-encoded transposase proteins. Transposable elements are widespread among different organisms and play an important role in genome evolution. (Ginzburg era/. 1984; Mackay 1986; Finnegan 1989; Kidwell and Lisch 1997). Transposable elements in bacteria In bacteria, there are three type of transposable elements: Insertion seguenceJlS) elements, transposons (Tn) and Mu bacteriophage. IS elements were discovered during the study of mutations in the galactose and lactose operons (Jordan et aL 1968; Malamy 1966, 1970; Shapiro 1969) and in the early genes of bacteriophage k (Brachet etal. 1970). Electron microscopic analysis of DNA/DNA heteroduplexes indicated that many of these mutations carried distinct DNA segment insertions; hence they are called insertion sequences (Fiandt et al, 1972; Hirsch et aL 1972; Malamy et al. 1972). After the initial discovery of IS elements (ISl, IS2, IS3, IS4), many others were found in the genomes, plasmids and bacteriophages of a wide range of bacterial genera and species. The length of IS elements are from 800 to 2500 bp, and their copy number is from 0 to a few hundred per genome. All IS elements have perfect or nearly perfect terminal inverted repeats (IRs) of about 9-41 bp. These are recognition sites for transposase, which is the enzyme for transposition produced by the transposable element Upon insertion into a new position, an IS element generates small (2 to 3 13bp) directly repeated duplications of the target DNA at the insertion point This sequence is called target site duplication (TSD). The original IS element remains in place (Ohtsubo and Sekine 1996). Prokaryotic transposons (Tn), like IS elements, encode transposase, have inverted terminal repeats and generate target site duplications. Unlike IS element, Tns usually contain other genes, such as drug resistance genes. In addition, Tns can be classified into two groups: 1) Composite transposons are complex transposons with a central region containing genes (including drug resistance genes) flanked by IS elements on both sides. For example, TnlO has two IS 10 elements located in opposite orientation at both ends. Between the IS 10 elements, there is -6.7 kb of unique sequence including a tetracycline resistance gene. TnlO generates a 9 bp target site duplication after transposition (Kleckner 1979, 1989). 2) Noncomposite transposons also carry drug resistance genes like composite transposons, but they do not terminate with IS elements. They have their own terminal inverted repeats required for transposition. Tn3 is one example of a noncomposite transposon; it contains an ampicillin resistance gene and it is the first described transposon carrying an antibiotic resistance gene (Hedges and Jacob, 1974). Tn3 is 4957 bp and has 38 bp terminal inverted repeats. In addition to the ampicillin resistance gene, Tn3 contains the tnpA and tnpB genes encoding the transposase and resolvase for Tn3 transposition in the central region. Tn3 produces a 3 bp target site duplication (Heffron et al. 1979; Grindley 1983). There are two types of transposition mechanisms used by bacterial transposons. 1) Replicative transposition involves the fusion of the donor DNA carrying the transposon and the recipient DNA into a single molecule known as a co-integrate. The transposon becomes duplicated with one copy located at each junction between donor and recipient DNA 4 Subsequently, the co-integrate resolves into two products, each containing one copy of the transposon. 2) In nonreplicative transposition (or simple insertion), the transposon moves from one location to another without replication. The element is lost fr-om the original position. DiSerent transposons can use different mechanisms; for example, Tn3 uses replicative transposition, while TnlO transposes by a nonreplicative mechanism. Most
Recommended publications
  • Mobile Genetic Elements in Streptococci
    Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G.
    [Show full text]
  • Homologous Recombination Between a Defective Virus and a Chromosomal Sequence in Mammalian Cells (DNA Integation/Simian Virus 40) YOSEF SHAUL*, ORGAD Laubt, MICHAEL D
    Proc. Nad. Acad. Sci. USA Vol. 82, pp. 3781-3784, June 1985 Genetics Homologous recombination between a defective virus and a chromosomal sequence in mammalian cells (DNA integation/simian virus 40) YOSEF SHAUL*, ORGAD LAUBt, MICHAEL D. WALKERt, AND WILLIAM J. RUTTER* Departments of *Virology and tGenetics, The Weizmann Institute of Science, Rehovot, Israel; and *Hormone Research Laboratory, University of California, San Francisco, CA 94143 Contributed by William J. Rutter, February 14, 1985 ABSTRACT Replacement of the early region of simian vi- M 2 3 4 5 6 7 8 9 10 11 12 M rus 40 results in virus that cannot replicate in a normal host, kb 231 - CV-1 cells, but can replicate in COS cells, a derivative of CV-1 9.4 - cells that constitutively express simian virus 40 tumor antigen 6.6 - (T antigen). However, passage of such an early replacement 44 --I _ simian virus 40 mutant in COS cells results in the emergence of _ _ virus that can propagate in CV-1 cells. Analysis of this virus 2.3- revealed that the mutant rescued the integrated T-antigen gene 2.0 - from the COS cell genome. Comparison of the sequence of the recovered virus with that of the viral DNA resident in COS 135- cells (strain 776) and the mutant used in our studies (derived 108 -- from strain 777) proves that the mutant virus acquired the T- .87- _ antigen gene from the COS cell chromosome via homologous ,_ . 1 recombination. Most probably this process was mediated by a .60- direct genetic exchange.
    [Show full text]
  • Helicase Mechanisms During Homologous Recombination in Saccharomyces Cerevisiae
    BB48CH11_Greene ARjats.cls April 18, 2019 12:24 Annual Review of Biophysics Helicase Mechanisms During Homologous Recombination in Saccharomyces cerevisiae J. Brooks Crickard and Eric C. Greene Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; email: [email protected], [email protected] Annu. Rev. Biophys. 2019. 48:255–73 Keywords First published as a Review in Advance on homologous recombination, helicase, Srs2, Sgs1, Rad54 March 11, 2019 Access provided by 68.175.70.229 on 06/02/20. For personal use only. The Annual Review of Biophysics is online at Abstract Annu. Rev. Biophys. 2019.48:255-273. Downloaded from www.annualreviews.org biophys.annualreviews.org Helicases are enzymes that move, manage, and manipulate nucleic acids. https://doi.org/10.1146/annurev-biophys-052118- They can be subdivided into six super families and are required for all aspects 115418 of nucleic acid metabolism. In general, all helicases function by converting Copyright © 2019 by Annual Reviews. the chemical energy stored in the bond between the gamma and beta phos- All rights reserved phates of adenosine triphosphate into mechanical work, which results in the unidirectional movement of the helicase protein along one strand of a nu- cleic acid. The results of this translocation activity can range from separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. In this review, we focus on describing key heli- cases from the model organism Saccharomyces cerevisiae that contribute to the regulation of homologous recombination, which is an essential DNA repair pathway for fxing damaged chromosomes.
    [Show full text]
  • Evolution with Recombination Affects the Stability of Mobile Genetic Element Insertions Within Gene Families of Salmonella
    Molecular Microbiology (2018) 108(6), 697–710 ᭿ doi:10.1111/mmi.13959 First published online 25 April 2018 Co-evolution with recombination affects the stability of mobile genetic element insertions within gene families of Salmonella Gerrit Brandis ,† Sha Cao† and Introduction Diarmaid Hughes * Department of Medical Biochemistry and Gene families with multiple copies of the same gene Microbiology, Box 582 Biomedical Center, Uppsala separately located on the chromosome are a frequent University, Uppsala, Sweden. feature in prokaryotic and eukaryotic genomes. One common gene family in bacteria are the genes for trans- lation elongation factor EF-Tu, tufA and tufB. The dupli- cation of the tuf gene, that led to the creation of this gene family, most likely occurred early in the evolution Summary of the eubacterial taxon (Sela et al., 1989; Lathe and Bork, 2001). Despite the ancient origin of the duplica- Bacteria can have multiple copies of a gene at sepa- tion, the tuf genes of Salmonella enterica serovar Typhi- rate locations on the same chromosome. Some of murium strain LT2 differ at only 13 of 1185 nucleotides these gene families, including tuf (translation elonga- (Abdulkarim and Hughes, 1996). This high degree of tion factor EF-Tu) and rrl (ribosomal RNA), encode nucleotide identity indicates that the tuf genes evolve in functions critically important for bacterial fitness. concert. It has been shown that homologous recombina- Genes within these families are known to evolve in tion between the genes leads to the exchange of concert using homologous recombination to transfer genetic information, which facilitates this co-evolution genetic information from one gene to another.
    [Show full text]
  • Homology Requirements for Targeting Heterologous Sequences During P-Induced Gap Repair in Drosophila Melanogastd
    Copyright 0 1997 by the Genetics Society of America Homology Requirements for Targeting Heterologous Sequences During P-Induced Gap Repair in Drosophila melanogastd Tammy Dray and Gregory B. Gloor Department of Biochemistry, University of Western Ontario, London, Ontario, Canada Manuscript received January 23, 1997 Accepted for publication June 26, 1997 ABSTRACT The effect of homology on gene targeting was studied in the context of P-element-induced double- strand breaks at the white locus of Lkosophila melanogaster. Double-strand breaks were made by excision of F'-Whd, a P-element insertion in the white gene. A nested set of repair templates was generated that contained the 8 kilobase (kb) yellow gene embedded within varying amounts of white gene sequence. Repair with unlimited homology was also analyzed. Flies were scored phenotypically for conversion of the yellow gene to thewhite locus. Targeting of the yellow gene was abolished when all of the 3' homology was removed. Increases in template homology up to 51 base pairs (bp) did not significantly promote targeting. Maximum conversion was observed with a construct containing493 bp of homology, without a significant increase in frequency when homology extended to the tips of the chromosome. These results demonstrate that the homology requirements for targeting a large heterologous insertion are quite different than those for a point mutation. Furthermore, heterologous insertions strongly affect the homology requirements for the conversion of distal point mutations. Several aberrant conversion tracts, which arose from templates that contained reducedhomology, also were examined andcharacter- ized. OUBLE-STRAND breaks arise in the genome as or noncrossover event depends upon the resolution of D a direct result of ionizing radiation, transposon the Holidayjunctions on eitherside of the newly synthe- excision or site-specific nucleases, and indirectly sized DNA (SZOST~et al.
    [Show full text]
  • The Maize Transposable Element Ac Induces Recombination Between the Donor Site and an Homologous Ectopic Sequence
    (hpvright 0 1997 by the Genetics Society of America The Maize Transposable Element Ac Induces Recombination Between the Donor Site and an Homologous Ectopic Sequence Gil Shalev and Avrzlham A. Levy Department of Plant Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel Manuscript received December 9, 1996 Accepted for publication March 28, 1997 ABSTRACT The prominent repair mechanism of DNA double-strand breaks formed upon excision of the maize Ac transposable element is via nonhomologous end joining. In this work we have studied the role of homologous recombination as an additional repairpathway. To this end, we developed an assay whereby &Glucuronidase (GUS) activity is restored upon recombination between two homologous ectopic (nonal- lelic) sequences in transgenic tobacco plants. One of the recombination partners carried a deletion at the 5’ end of GUS and an Ac or a Ds element inserted at the deletion site. The other partner carried an intact 5’ end of the GUS open reading frame and had a deletion at the 3‘ end of the gene. Based on GUS reactivation data, we found that the excision of Ac induced recombination between ectopic sequences by at least two orders of magnitude. Recombination events, visualized by blue staining, were detected in seedlings, in pollen and in protoplasts. DNA fragments corresponding to recombination events were recovered exclusively in crosses with Ac-carrying plants, providing physical evidence for Ac- induced ectopic recombination.The occurrence of ectopicrecombination following double-strand breaks is a potentially important factor in plant genome evolution. HE transposable element Activator (Ac) of maize cleotide (BANGAand BOYD 1992).
    [Show full text]
  • Directed Genome Evolution Via Homologous Recombination
    DIRECTED GENOME EVOLUTION VIA HOMOLOGOUS RECOMBINATION Sean A. Lynch, Andrew Garst, Tom Mansell and Ryan T. Gill; Department of Chemical and Biological Engineering, University of Colorado at Boulder; Boulder, CO 80026; [email protected] Key words: Recombineering, Directed evolution, Genome editing Introduction. The engineering of bacterial genomes via Results. Our short cassettes for mutagenesis via homologous recombination offers a range of potential recombination incorporates mutations at 1-2% efficiency applications within the fields of synthetic biology and which is more than enough to ensure full coverage of most industrial microbiology. The development of techniques libraries; however, a large portion of the cells remaining such as TRMR (1) and MAGE (2) enable one to introduce after recombination still contain an unmodified sequence thousands of targeted mutations throughout the genome gene. In the absence of a strong selection pressure that affect cellular gene expression at the transcriptional against wild type genes or in situations where only a and translational levels. The design and development of screen for production is available a strategy that minimizes the new biological systems sought by synthetic biology will wt background would have great utility. To address this we require simple methods for introducing targeted changes incorporated design features into our oligo design that to the cell at the amino acid level as well. To effectively would enable the incorporation of a selectable marker into harness the power of directed evolution at either the our cassettes. Here, upon recombination, cells genome or protein scale, researchers must first introduce incorporating the designed mutation would also diversity within a population with mutations giving rise to incorporate a selectable marker thus facilitating the new or improved phenotypes identified following isolation of mutated cells.
    [Show full text]
  • Working with Molecular Genetics Chapter 8. Recombination of DNA CHAPTER 8 RECOMBINATION of DNA
    Working with Molecular Genetics Chapter 8. Recombination of DNA CHAPTER 8 RECOMBINATION OF DNA The previous chapter on mutation and repair of DNA dealt mainly with small changes in DNA sequence, usually single base pairs, resulting from errors in replication or damage to DNA. The DNA sequence of a chromosome can change in large segments as well, by the processes of recombination and transposition. Recombination is the production of new DNA molecule(s) from two parental DNA molecules or different segments of the same DNA molecule; this will be the topic of this chapter. Transposition is a highly specialized form of recombination in which a segment of DNA moves from one location to another, either on the same chromosome or a different chromosome; this will be discussed in the next chapter. Types and examples of recombination At least four types of naturally occurring recombination have been identified in living organisms (Fig. 8.1). General or homologous recombination occurs between DNA molecules of very similar sequence, such as homologous chromosomes in diploid organisms. General recombination can occur throughout the genome of diploid organisms, using one or a small number of common enzymatic pathways. This chapter will be concerned almost entirely with general recombination. Illegitimate or nonhomologous recombination occurs in regions where no large- scale sequence similarity is apparent, e.g. translocations between different chromosomes or deletions that remove several genes along a chromosome. However, when the DNA sequence at the breakpoints for these events is analyzed, short regions of sequence similarity are found in some cases. For instance, recombination between two similar genes that are several million bp apart can lead to deletion of the intervening genes in somatic cells.
    [Show full text]
  • Evolution of Models of Homologous Recombination APPENDIX
    APPENDIX EVOLUTION OF MODELS OF HOMOLOGOUS RECOMBINATION1 With the elucidation of the structure of DNA in 1953, it became possible to think in molecular terms about how recombination occurs and how it relates to the repair of DNA damage. Early molecular models, most notably the seminal model of Holliday in 1964, have been followed by a succession of other proposals to account for increasingly more detailed molecular biological information about the intermediates of recombina- tion and for the results of more sophisticated genetic tests. Our current picture, which is far from definitive, includes several distinct mechanisms of DNA repair and recombination in both somatic and meiotic cells, based on the idea that most recombination is initiated by double-strand breaks. 1. INTRODUCTION In people and other vertebrates, the repair of DNA damage by homolog- ous recombination is essential for life. In addition, recombination is essential for the proper segregation of chromosomes in meiosis and for the generation of genetic diversity. Moreover, defects in DNA repair by homologous recombination are strongly correlated with many types of human cancers. For all these reasons, as well as for the purely intellectual pleasure of understanding these processes, the development of molecular models to explain homologous recombination has been an exciting area of study. In this review I focus on mostly genetic results that have driven the construction of molecular models of recombination; however, these models have been increasingly influenced by our growing
    [Show full text]
  • Plant Genome Modification by Homologous Recombination
    157 Plant genome modification by homologous recombination Moez Haninà and Jerzy Paszkowskiy The mechanisms and frequencies of various types of progeny. For example, a somatic rearrangement at the homologous recombination (HR) have been studied in plants for zein locus of maize reached the gametes and was trans- several years. However, the application of techniques involving mitted meiotically to the next generation [1]. HR for precise genome modification is still not routine. The low frequency of HR remains the major obstacle but recent progress DSBs can also be repaired by non-homologous end join- in gene targeting in Arabidopsis and rice, as well as accumulating ing (NHEJ), which requires no or very limited sequence knowledge on the regulation of recombination levels, is an homology. However, NHEJ often results in sequence encouraging sign of the further development of HR-based alteration at the restored junctions [2]. Although the approaches for genome engineering in plants. mechanisms and molecular components of DSB repair seem to be evolutionarily conserved, the usage of these Addresses alternative repair pathways varies between organisms. ÃInstitut Supe´ rieur de Biotechnologie de Sfax, route M’harza, HR is prevalent in prokaryotes and yeast, whereas NHEJ 3018 Sfax., Tunisia is predominant in multicellular eukaryotes [3]. This dif- yFriedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland ference is reflected in the dissimilar outcomes of yeast e-mail: [email protected] transformation experiments compared to those in plant and animal cells. In yeast, even short stretches (approxi- mately 50 bp) of homology to chromosomal DNA within Current Opinion in Plant Biology 2003, 6:157–162 transformation vectors are able to direct the integration of This review comes from a themed issue on transforming DNA by homologous recombination.
    [Show full text]
  • Homologous Recombination and Marker Gene Excision
    Towards the ideal GMP: Homologous recombination and marker gene excision Holger Puchta* Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany Present address: Institut für Botanik II (Molekularbiologie und Biochemie der Pflanzen), Universität Karlsruhe (TH), Kaiserstraße 12, D-76128 Karlsruhe, Germany Summary A mayor aim of biotechnology is the establishment of techniques for the precise manipulation of plant genomes. Two major efforts have been undertaken over the last dozen years, one to set up techni- ques for site-specific alteration of the plant genome via homologous recombination («gene target- ing») and the other for the removal of selectable marker genes from transgenic plants. Unfortunately, despite multiple promising approaches that will be shortly described in this review no feasible gene targeting technique has been developed till now for crop plants. In contrast, several alternative pro- cedures have been established successfully to remove selectable markers from plant genomes. Intri- guingly besides techniques relying on transposons and site-specific recombinases, recent results indicate that homologous recombination might be a valuable alternative for the excision of marker genes. Key words: chimeric oligonucleotides – gene targeting – site specific recombination transformation – transposon Abbreviations: DSB = double-strand break. – NHEJ = Non-homologous end joining. – HR = homolog- ous recombination Introduction the Design of GM crops› that recommend to minimise the ‹foreign› genetic material in GM crops, and the European A major focus of plant biotechnology over the last years is the Council Directive 2001/18/EC on ‹the Deliberate Release into development of improved tools for the genetic modification of the Environment of Genetically Modified Organisms› that crop plants.
    [Show full text]
  • Mechanism of Homologous Recombination: Mediators and Helicases Take on Regulatory Functions
    REVIEWS Mechanism of homologous recombination: mediators and helicases take on regulatory functions Patrick Sung* and Hannah Klein‡ Abstract | Homologous recombination (HR) is an important mechanism for the repair of damaged chromosomes, for preventing the demise of damaged replication forks, and for several other aspects of chromosome maintenance. As such, HR is indispensable for genome integrity, but it must be regulated to avoid deleterious events. Mutations in the tumour- suppressor protein BRCA2, which has a mediator function in HR, lead to cancer formation. DNA helicases, such as Bloom’s syndrome protein (BLM), regulate HR at several levels, in attenuating unwanted HR events and in determining the outcome of HR. Defects in BLM are also associated with the cancer phenotype. The past several years have witnessed dramatic advances in our understanding of the mechanism and regulation of HR. Homologous recombination (HR) occurs in all life homologous chromosomes and generates chromosome- Meiosis I The successful completion of forms. HR studies were initially the domain of a few arm crossovers. These crossovers are essential for proper meiosis requires two cell aficionados who had a desire to understand how genetic chromosome segregation at the first meiotic division2,4. divisions. Meiosis I refers to the information is transferred and exchanged between Mitotic HR differs from meiotic HR in that few events are first division in which the pairs chromosomes. The isolation and characterization of associated with crossover and indeed, crossover formation of homologous chromosomes 1 DNA helicases are segregated into the two relevant mutants in Escherichia coli , and later in the is actively suppressed by specialized (see daughter cells.
    [Show full text]