Regulation of Genetic Flux Between Bacteria by Restriction–Modification Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mobile Genetic Elements in Streptococci
Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G. -
Homologous Recombination Between a Defective Virus and a Chromosomal Sequence in Mammalian Cells (DNA Integation/Simian Virus 40) YOSEF SHAUL*, ORGAD Laubt, MICHAEL D
Proc. Nad. Acad. Sci. USA Vol. 82, pp. 3781-3784, June 1985 Genetics Homologous recombination between a defective virus and a chromosomal sequence in mammalian cells (DNA integation/simian virus 40) YOSEF SHAUL*, ORGAD LAUBt, MICHAEL D. WALKERt, AND WILLIAM J. RUTTER* Departments of *Virology and tGenetics, The Weizmann Institute of Science, Rehovot, Israel; and *Hormone Research Laboratory, University of California, San Francisco, CA 94143 Contributed by William J. Rutter, February 14, 1985 ABSTRACT Replacement of the early region of simian vi- M 2 3 4 5 6 7 8 9 10 11 12 M rus 40 results in virus that cannot replicate in a normal host, kb 231 - CV-1 cells, but can replicate in COS cells, a derivative of CV-1 9.4 - cells that constitutively express simian virus 40 tumor antigen 6.6 - (T antigen). However, passage of such an early replacement 44 --I _ simian virus 40 mutant in COS cells results in the emergence of _ _ virus that can propagate in CV-1 cells. Analysis of this virus 2.3- revealed that the mutant rescued the integrated T-antigen gene 2.0 - from the COS cell genome. Comparison of the sequence of the recovered virus with that of the viral DNA resident in COS 135- cells (strain 776) and the mutant used in our studies (derived 108 -- from strain 777) proves that the mutant virus acquired the T- .87- _ antigen gene from the COS cell chromosome via homologous ,_ . 1 recombination. Most probably this process was mediated by a .60- direct genetic exchange. -
Helicase Mechanisms During Homologous Recombination in Saccharomyces Cerevisiae
BB48CH11_Greene ARjats.cls April 18, 2019 12:24 Annual Review of Biophysics Helicase Mechanisms During Homologous Recombination in Saccharomyces cerevisiae J. Brooks Crickard and Eric C. Greene Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; email: [email protected], [email protected] Annu. Rev. Biophys. 2019. 48:255–73 Keywords First published as a Review in Advance on homologous recombination, helicase, Srs2, Sgs1, Rad54 March 11, 2019 Access provided by 68.175.70.229 on 06/02/20. For personal use only. The Annual Review of Biophysics is online at Abstract Annu. Rev. Biophys. 2019.48:255-273. Downloaded from www.annualreviews.org biophys.annualreviews.org Helicases are enzymes that move, manage, and manipulate nucleic acids. https://doi.org/10.1146/annurev-biophys-052118- They can be subdivided into six super families and are required for all aspects 115418 of nucleic acid metabolism. In general, all helicases function by converting Copyright © 2019 by Annual Reviews. the chemical energy stored in the bond between the gamma and beta phos- All rights reserved phates of adenosine triphosphate into mechanical work, which results in the unidirectional movement of the helicase protein along one strand of a nu- cleic acid. The results of this translocation activity can range from separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. In this review, we focus on describing key heli- cases from the model organism Saccharomyces cerevisiae that contribute to the regulation of homologous recombination, which is an essential DNA repair pathway for fxing damaged chromosomes. -
Rickettsia Prowazekii Common Human Exposure Routes
APPENDIX 2 Rickettsia prowazekii Common Human Exposure Routes: Disease Agent: • Exposure to the feces of infected body lice. The lice are infected by a human blood meal. The rickettsiae • Rickettsia prowazekii reproduce in the louse gut epithelium. Infection occurs when louse feces are scratched into the skin, Disease Agent Characteristics: inoculated onto mucous membrane or inhaled. • As a bioweapon, the agent can be aerosolized, with • Rickettsiae are obligate intracellular Gram-negative intent of infection through inhalation. bacteria. • Sporadic cases occur after exposure to flying squir- • Order: Rickettsiales; Family: Rickettsiaceae rels, most likely as a result of exposure to squirrel flea • Size: 0.3 ¥ 1.0 mm intracellular bacteria that take up feces. The organism has also been identified in ticks Gram stain poorly feeding on livestock in Africa. • Nucleic acid: Rickettsial genomes are among the Likelihood of Secondary Transmission: smallest of bacteria at 1000-1600 kb. The R. prowazekii genome is 1100 kb. • No evidence of direct person-to-person transmission • Physicochemical properties: Susceptible to 1% • Under crowded conditions, where bathing and sodium hypochlorite, 70% ethanol, glutaraldehyde, washing clothes are difficult, and where lice are formaldehyde and quaternary ammonium disinfec- present, typhus can spread explosively. tants. Sensitive to moist heat (121°C for at least • Recent outbreaks have occurred in a number of areas 15 min) and dry heat (160-170°C for at least 1 hour). in the world under conditions of war and population The organism is stable in tick tissues or blood under displacement. ambient environmental conditions, surviving up to 1 year; sensitive to drying (feces of infected ticks At-Risk Populations: quickly lose their infectivity on drying). -
Evolution with Recombination Affects the Stability of Mobile Genetic Element Insertions Within Gene Families of Salmonella
Molecular Microbiology (2018) 108(6), 697–710 doi:10.1111/mmi.13959 First published online 25 April 2018 Co-evolution with recombination affects the stability of mobile genetic element insertions within gene families of Salmonella Gerrit Brandis ,† Sha Cao† and Introduction Diarmaid Hughes * Department of Medical Biochemistry and Gene families with multiple copies of the same gene Microbiology, Box 582 Biomedical Center, Uppsala separately located on the chromosome are a frequent University, Uppsala, Sweden. feature in prokaryotic and eukaryotic genomes. One common gene family in bacteria are the genes for trans- lation elongation factor EF-Tu, tufA and tufB. The dupli- cation of the tuf gene, that led to the creation of this gene family, most likely occurred early in the evolution Summary of the eubacterial taxon (Sela et al., 1989; Lathe and Bork, 2001). Despite the ancient origin of the duplica- Bacteria can have multiple copies of a gene at sepa- tion, the tuf genes of Salmonella enterica serovar Typhi- rate locations on the same chromosome. Some of murium strain LT2 differ at only 13 of 1185 nucleotides these gene families, including tuf (translation elonga- (Abdulkarim and Hughes, 1996). This high degree of tion factor EF-Tu) and rrl (ribosomal RNA), encode nucleotide identity indicates that the tuf genes evolve in functions critically important for bacterial fitness. concert. It has been shown that homologous recombina- Genes within these families are known to evolve in tion between the genes leads to the exchange of concert using homologous recombination to transfer genetic information, which facilitates this co-evolution genetic information from one gene to another. -
Homology Requirements for Targeting Heterologous Sequences During P-Induced Gap Repair in Drosophila Melanogastd
Copyright 0 1997 by the Genetics Society of America Homology Requirements for Targeting Heterologous Sequences During P-Induced Gap Repair in Drosophila melanogastd Tammy Dray and Gregory B. Gloor Department of Biochemistry, University of Western Ontario, London, Ontario, Canada Manuscript received January 23, 1997 Accepted for publication June 26, 1997 ABSTRACT The effect of homology on gene targeting was studied in the context of P-element-induced double- strand breaks at the white locus of Lkosophila melanogaster. Double-strand breaks were made by excision of F'-Whd, a P-element insertion in the white gene. A nested set of repair templates was generated that contained the 8 kilobase (kb) yellow gene embedded within varying amounts of white gene sequence. Repair with unlimited homology was also analyzed. Flies were scored phenotypically for conversion of the yellow gene to thewhite locus. Targeting of the yellow gene was abolished when all of the 3' homology was removed. Increases in template homology up to 51 base pairs (bp) did not significantly promote targeting. Maximum conversion was observed with a construct containing493 bp of homology, without a significant increase in frequency when homology extended to the tips of the chromosome. These results demonstrate that the homology requirements for targeting a large heterologous insertion are quite different than those for a point mutation. Furthermore, heterologous insertions strongly affect the homology requirements for the conversion of distal point mutations. Several aberrant conversion tracts, which arose from templates that contained reducedhomology, also were examined andcharacter- ized. OUBLE-STRAND breaks arise in the genome as or noncrossover event depends upon the resolution of D a direct result of ionizing radiation, transposon the Holidayjunctions on eitherside of the newly synthe- excision or site-specific nucleases, and indirectly sized DNA (SZOST~et al. -
Typhus Fever, Organism Inapparently
Rickettsia Importance Rickettsia prowazekii is a prokaryotic organism that is primarily maintained in prowazekii human populations, and spreads between people via human body lice. Infected people develop an acute, mild to severe illness that is sometimes complicated by neurological Infections signs, shock, gangrene of the fingers and toes, and other serious signs. Approximately 10-30% of untreated clinical cases are fatal, with even higher mortality rates in Epidemic typhus, debilitated populations and the elderly. People who recover can continue to harbor the Typhus fever, organism inapparently. It may re-emerge years later and cause a similar, though Louse–borne typhus fever, generally milder, illness called Brill-Zinsser disease. At one time, R. prowazekii Typhus exanthematicus, regularly caused extensive outbreaks, killing thousands or even millions of people. This gave rise to the most common name for the disease, epidemic typhus. Epidemic typhus Classical typhus fever, no longer occurs in developed countries, except as a sporadic illness in people who Sylvatic typhus, have acquired it while traveling, or who have carried the organism for years without European typhus, clinical signs. In North America, R. prowazekii is also maintained in southern flying Brill–Zinsser disease, Jail fever squirrels (Glaucomys volans), resulting in sporadic zoonotic cases. However, serious outbreaks still occur in some resource-poor countries, especially where people are in close contact under conditions of poor hygiene. Epidemics have the potential to emerge anywhere social conditions disintegrate and human body lice spread unchecked. Last Updated: February 2017 Etiology Rickettsia prowazekii is a pleomorphic, obligate intracellular, Gram negative coccobacillus in the family Rickettsiaceae and order Rickettsiales of the α- Proteobacteria. -
The Maize Transposable Element Ac Induces Recombination Between the Donor Site and an Homologous Ectopic Sequence
(hpvright 0 1997 by the Genetics Society of America The Maize Transposable Element Ac Induces Recombination Between the Donor Site and an Homologous Ectopic Sequence Gil Shalev and Avrzlham A. Levy Department of Plant Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel Manuscript received December 9, 1996 Accepted for publication March 28, 1997 ABSTRACT The prominent repair mechanism of DNA double-strand breaks formed upon excision of the maize Ac transposable element is via nonhomologous end joining. In this work we have studied the role of homologous recombination as an additional repairpathway. To this end, we developed an assay whereby &Glucuronidase (GUS) activity is restored upon recombination between two homologous ectopic (nonal- lelic) sequences in transgenic tobacco plants. One of the recombination partners carried a deletion at the 5’ end of GUS and an Ac or a Ds element inserted at the deletion site. The other partner carried an intact 5’ end of the GUS open reading frame and had a deletion at the 3‘ end of the gene. Based on GUS reactivation data, we found that the excision of Ac induced recombination between ectopic sequences by at least two orders of magnitude. Recombination events, visualized by blue staining, were detected in seedlings, in pollen and in protoplasts. DNA fragments corresponding to recombination events were recovered exclusively in crosses with Ac-carrying plants, providing physical evidence for Ac- induced ectopic recombination.The occurrence of ectopicrecombination following double-strand breaks is a potentially important factor in plant genome evolution. HE transposable element Activator (Ac) of maize cleotide (BANGAand BOYD 1992). -
A Streamlined Method for Transposon Mutagenesis of Rickettsia Parkeri
bioRxiv preprint doi: https://doi.org/10.1101/277160; this version posted March 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A streamlined method for transposon mutagenesis of 2 Rickettsia parkeri yields numerous mutations that 3 impact infection 4 5 Rebecca L. Lamason1,#a,*, Natasha M. Kafai1,#b, and Matthew D. Welch1* 6 7 8 1 Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, 9 CA 10 #a Current address: Department of Biology, Massachusetts Institute of Technology, 11 Cambridge, MA 12 #b Current address: Medical Scientist Training Program, Washington University in St. 13 Louis School of Medicine, St. Louis, MO 14 15 16 17 18 * Co-corresponding authors 19 E-mail: [email protected], [email protected] 20 1 bioRxiv preprint doi: https://doi.org/10.1101/277160; this version posted March 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 21 Abstract 22 The rickettsiae are obligate intracellular alphaproteobacteria that exhibit a complex 23 infectious life cycle in both arthropod and mammalian hosts. As obligate intracellular 24 bacteria, Rickettsia are highly adapted to living inside a variety of host cells, including 25 vascular endothelial cells during mammalian infection. Although it is assumed that the 26 rickettsiae produce numerous virulence factors that usurp or disrupt various host cell 27 pathways, they have been challenging to genetically manipulate to identify the key 28 bacterial factors that contribute to infection. -
The Vectorial Capacity of Human Lice: Pediculus Humanus and Pthirus Pubis
Ankara Üniv Vet Fak Derg, 60, 269-273, 2013 Review / Derleme The vectorial capacity of human lice: Pediculus humanus and Pthirus pubis Kosta Y. MUMCUOGLU Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel. Summary: The body louse (Pediculus humanus humanus) is the vector of Rickettsia prowazekii, the agent of epidemic typhus, Borrelia recurrentis, the agent of louse-borne relapsing fever and Bartonella quintana, and the agent of trench fever. Although Acinobacter baumannii and Serratia marcescens have been detected in body lice, their vectorial capacity for these pathogens is not yet clear. Under experimental conditions, it was shown that body lice become infested and later transmit pathogens such as Yersinia pestis, Rickettsia typhi, Rickettsia conorii and Rickettsia rickettsiae, however in these cases it is not known if this could happen under natural conditions. The vectorial ability of head lice remains quite controversial. Under experimental conditions head lice were infected with R. prowazekii and disseminate this pathogen in their feces, showing that these lice have the potential to be a vector pathogen under optimal epidemiologic conditions, e.g., during outbreaks of epidemic typhus. Head lice and their eggs collected from children and homeless people were tested positive for B. quintana. Pubic lice are not known to be vectors of any human pathogenic microorganisms under field conditions. Key words: Pediculus humanus capitis, Pediculus humanus humanus, Pthirus pubis, vector. İnsan bitleri: Pediculus humanus ve Pthirus pubis’in vektörlük kapasiteleri Özet: İnsan vücut biti (Pediculus humanus humanus); epidemik tifüs (salgın tifüs, bit tifüsü, lekeli humma) etkeni Rickettsia prowazekii’nin, bitle bulaşan dönemeli ateş (louse-borne relapsing fever) ajanı Borrelia recurrentis’in ve siper ateşi (trench fever) etkeni Bartonella quintana’nın vektörüdür. -
The Approved List of Biological Agents Advisory Committee on Dangerous Pathogens Health and Safety Executive
The Approved List of biological agents Advisory Committee on Dangerous Pathogens Health and Safety Executive © Crown copyright 2021 First published 2000 Second edition 2004 Third edition 2013 Fourth edition 2021 You may reuse this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view the licence visit www.nationalarchives.gov.uk/doc/ open-government-licence/, write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email [email protected]. Some images and illustrations may not be owned by the Crown so cannot be reproduced without permission of the copyright owner. Enquiries should be sent to [email protected]. The Control of Substances Hazardous to Health Regulations 2002 refer to an ‘approved classification of a biological agent’, which means the classification of that agent approved by the Health and Safety Executive (HSE). This list is approved by HSE for that purpose. This edition of the Approved List has effect from 12 July 2021. On that date the previous edition of the list approved by the Health and Safety Executive on the 1 July 2013 will cease to have effect. This list will be reviewed periodically, the next review is due in February 2022. The Advisory Committee on Dangerous Pathogens (ACDP) prepares the Approved List included in this publication. ACDP advises HSE, and Ministers for the Department of Health and Social Care and the Department for the Environment, Food & Rural Affairs and their counterparts under devolution in Scotland, Wales & Northern Ireland, as required, on all aspects of hazards and risks to workers and others from exposure to pathogens. -
Chemosynthetic Symbiont with a Drastically Reduced Genome Serves As Primary Energy Storage in the Marine Flatworm Paracatenula
Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula Oliver Jäcklea, Brandon K. B. Seaha, Målin Tietjena, Nikolaus Leischa, Manuel Liebekea, Manuel Kleinerb,c, Jasmine S. Berga,d, and Harald R. Gruber-Vodickaa,1 aMax Planck Institute for Marine Microbiology, 28359 Bremen, Germany; bDepartment of Geoscience, University of Calgary, AB T2N 1N4, Canada; cDepartment of Plant & Microbial Biology, North Carolina State University, Raleigh, NC 27695; and dInstitut de Minéralogie, Physique des Matériaux et Cosmochimie, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France Edited by Margaret J. McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved March 1, 2019 (received for review November 7, 2018) Hosts of chemoautotrophic bacteria typically have much higher thrive in both free-living environmental and symbiotic states, it is biomass than their symbionts and consume symbiont cells for difficult to attribute their genomic features to either functions nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria they provide to their host, or traits that are necessary for envi- symbionts in mouthless Paracatenula flatworms comprise up to ronmental survival or to both. half of the biomass of the consortium. Each species of Paracate- The smallest genomes of chemoautotrophic symbionts have nula harbors a specific Ca. Riegeria, and the endosymbionts have been observed for the gammaproteobacterial symbionts of ves- been vertically transmitted for at least 500 million years. Such icomyid clams that are directly transmitted between host genera- prolonged strict vertical transmission leads to streamlining of sym- tions (13, 14). Such strict vertical transmission leads to substantial biont genomes, and the retained physiological capacities reveal and ongoing genome reduction.