GE44CH06-Heyer ARI 3 October 2010 11:50 Regulation of Homologous Recombination in Eukaryotes Wolf-Dietrich Heyer,1,2 Kirk T. Ehmsen,1 and Jie Liu1 1Department of Microbiology, University of California, Davis, Davis, California 95616-8665; email:
[email protected] 2Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616-8665 Annu. Rev. Genet. 2010. 44:113–39 Key Words First published online as a Review in Advance on cyclin-dependent kinase, DNA damage response (DDR), DNA repair, August 6, 2010 phosphorylation, sumoylation, ubiquitylation The Annual Review of Genetics is online at genet.annualreviews.org Abstract This article’s doi: Homologous recombination (HR) is required for accurate chromosome by CNRS-Multi-Site on 08/22/12. For personal use only. 10.1146/annurev-genet-051710-150955 segregation during the first meiotic division and constitutes a key re- Copyright c 2010 by Annual Reviews. pair and tolerance pathway for complex DNA damage, including DNA All rights reserved double-strand breaks, interstrand crosslinks, and DNA gaps. In addi- Annu. Rev. Genet. 2010.44:113-139. Downloaded from www.annualreviews.org 0066-4197/10/1201-0113$20.00 tion, recombination and replication are inextricably linked, as recombi- nation recovers stalled and broken replication forks, enabling the evo- lution of larger genomes/replicons. Defects in recombination lead to genomic instability and elevated cancer predisposition, demonstrating a clear cellular need for recombination. However, recombination can also lead to genome rearrangements. Unrestrained recombination causes undesired endpoints (translocation, deletion, inversion) and the accu- mulation of toxic recombination intermediates. Evidently, HR must be carefully regulated to match specific cellular needs.