Pest Risk Analysis For

Total Page:16

File Type:pdf, Size:1020Kb

Pest Risk Analysis For EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES 12-17833 Pest Risk Analysis for Candidatus Liberibacter solanacearum in Solanaceae September 2012 EPPO 21 Boulevard Richard Lenoir 75011 Paris www.eppo.int [email protected] This risk assessment follows the EPPO Standard PM 5/3(4) Decision-support scheme for quarantine pests (available at http://archives.eppo.int/EPPOStandards/pra.htm) and uses the terminology defined in ISPM 5 Glossary of Phytosanitary Terms (available at https://www.ippc.int/index.php). This document was first elaborated by an Expert Working Group and then reviewed by core members and by the Panel on Phytosanitary Measures and if relevant other EPPO bodies. It was finally approved by the Council in September 2012. Cite this document as: EPPO (2012) Final pest risk analysis for Candidatus Liberibacter solanacearum in Solanaceae. EPPO, Paris. EPPO PRA for Ca. L. solanacearum EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES 12-17833 (12-17594, 12-17383, 11-17160) Pest Risk Analysis for Candidatus Liberibacter solanacearum in Solanaceae This PRA was conducted following EPPO Standard PM 5/3 (4) Decision-support scheme PRA for quarantine pests. A preliminary draft has been prepared by the EPPO Secretariat. This document has been reviewed by an Expert Working Group that met in the EPPO Headquarters in Paris on 2010-11-30/12-031. A short associated PRA was also prepared to cover the vector of Ca L. solanacearum, Bactericera cockerelli. This EWG was composed of: Dr Neil GILTRAP - Food and Environment Research Agency, York (United Kingdom) Dr Joseph MUNYANEZA - USDA-ARS Yakima Agricultural Research Lab- Wapato (USA) Dr Anne NISSINEN - MTT Agrifood Research Finland -Jokioinen (Finland) Dr Tarek SOLIMAN - Business Economic Group - Wageningen University - Wageningen (Netherlands) Dr Emilio STEFANI - Dept.Universita degli Studi UNIMORE - Reggio Emilia (Italy) Dr Leon TJOU-TAM-SIN - National Reference Laboratory - Wageningen (Netherlands) Dr Dirk Jan VAN DER GAAG - Plant Protection Service - Wageningen (Netherlands) (core member) Dr Leif SUNDHEIM - Norwegian Institute for Agricultural and Environment Research - Aas (Norway) (core member) Secretariat Ms Muriel Suffert – EPPO Secretariat Ms Fabienne Grousset – Consultant for EPPO who has prepared the draft PRA. Core members (Dirk Jan Van der Gaag, Leif Sundheim Gritta Schrader, Nursen Ustun, Françoise Petter) reviewed the PRA in autumn 2011. The risk management part was reviewed by the Panel on Phytosanitary Measures for Potato on 2012-02, and by the Panel on Phytosanitary Measures on 2012-03. 1 Some additional references were included in this PRA during the consultation phase within the EPPO framework, when new relevant research results appeared. Nevertheless no exhaustive bibliography was conducted. 1 EPPO PRA for Ca. L. solanacearum Content (you may click on the title to reach the selected section) Initiation ............................................................................................................................................................. 3 Pest categorization ............................................................................................................................................. 8 Probability of entry of a pest ............................................................................................................................ 13 Pathways A1 and B1 Plants for planting of Solanaceae .............................................................................. 16 Pathways A2 and B2 Fruits of Solanaceae .................................................................................................. 21 3. Seed potatoes (including microplants and minitubers) and ware potatoes .............................................. 28 Probability of establishment ............................................................................................................................ 33 Probability of spread ........................................................................................................................................ 42 Assessment of potential economic consequences ............................................................................................ 44 Degree of uncertainty and Conclusion of the pest risk assessment ................................................................. 54 Pest Risk Management ..................................................................................................................................... 56 Pathways A1 and B1 Plants for planting of Solanaceae .............................................................................. 56 Pathways A2 and B2 Fruits of Solanaceae .................................................................................................. 62 Pathway 3 - Seed potatoes (including microplants and minitubers) and ware potatoes .............................. 67 ANNEX 1 Ca. L. solanacearum on carrot and its vector Trioza apicalis ....................................................... 72 ANNEX 2 Notes on the diseases caused by Ca. L. solanacearum .................................................................. 75 ANNEX 3 Potato, tomato, sweet pepper and chilli, carrot, eggplant. Data on fruit production volumes and area in the PRA area ....................................................................................................................................... 77 ANNEX 4 Word Map of Köppen-Geiger Climate Classification ................................................................... 81 ANNEX 5 Trade data for potatoes tubers, peppers, tomatoes and eggplants fruit (quantities in tonnes) .......... 82 ANNEX 6 Maps of cultivation of potato and tomato ...................................................................................... 84 ANNEX 7 Climatic suitability study for Bactericera cockerelli ..................................................................... 86 ANNEX 8 Economic impact assessment ......................................................................................................... 94 References (for this PRA and the one on B. cockerelli) ................................................................................ 103 2 EPPO PRA for Ca. L. solanacearum Stage 1: Initiation General comments on the scope of this PRA: The elements below are essential to the present PRA: - This PRA focuses on Solanaceae hosts of Ca. L. solanacearum, as the bacterium has been reported to cause serious economic losses in the Americas and also in New Zealand on its Solanaceae hosts. The PRA covers the bacterium itself and the bacterium/Bactericera cockerelli complex. B. cockerelli is also a pest in its own right, and a separate PRA has also been prepared. - Although Ca. L. solanacearum has recently been identified on carrot in the PRA area (Finland, Norway, Sweden, Spain), to date there does not seem to be a pathway between carrot and solanaceous plants: the vector on carrot is Trioza apicalis (and a Bactericera sp.), which does not feed on Solanaceae, and there are also no psyllids feeding on both carrot and Solanaceae in this part of the PRA area. Data available for the bacterium on carrot and its vector are found in Annex 1. - There is a major uncertainty regarding the host range of Ca. L. solanacearum, which has now been found outside of Solanaceae, as well as on reservoir plants. For the latter there are uncertainties on whether alternative hosts that are common to the two known vectors (T. apicalis and B. cockerelli) (e.g. spruce) could act as a source of the bacterium in the case that B. cockerelli was introduced (i.e. providing a possible pathway from carrot to Solanaceae in the PRA area). - There are some major uncertainties regarding vectors: (all details on vectors have been grouped in sections 15a and 15b) * to date, it is suspected that the bacterium has more vectors than originally thought * whether a psyllid present in the PRA area could both infest carrot and Solanaceae, thereby increasing the risk of introduction and spread if carrots infected with the bacterium would enter areas where such a psyllid occurs (i.e. providing a possible pathway from carrot to Solanaceae in the PRA area). The existence of such a psyllid would drastically change this PRA. * some specific features of B. cockerelli create a major uncertainty when trying to define the possible zone of establishment of the vector in the field in the PRA area and its impact (detailed in the text). In summary: migration patterns, and occurrence of transient populations; reasons why it does not survive in winter in the northwestern part of its range (e.g. Washington); importance of vertical transmission to the progeny, persistence of the bacterium in B. cockerelli populations and factors affecting this, difference between populations of B. cockerelli in North America. - Ca. L. solanacearum was identified in 2008 and is the subject of extensive research. Knowledge about this pest and its vectors continues to evolve very rapidly. Some additional references were included in this PRA during the consultation phase within the EPPO framework, when new relevant research results appeared. Nevertheless no exhaustive bibliography was conducted. Thus, the scope of this PRA is the risk of Ca. L. solanacearum for Solanaceae. The risk will be assessed with and without the presence of the known vector
Recommended publications
  • Melanaphis Sacchari), in Grain Sorghum
    DEVELOPMENT OF A RESEARCH-BASED, USER- FRIENDLY, RAPID SCOUTING PROCEDURE FOR THE INVASIVE SUGARCANE APHID (MELANAPHIS SACCHARI), IN GRAIN SORGHUM By JESSICA CARRIE LINDENMAYER Bachelor of Science in Soil and Crop Sciences Bachelor of Science in Horticulture Colorado State University Fort Collins, Colorado 2013 Master of Science in Entomology and Plant Pathology Oklahoma State University Stillwater, Oklahoma 2015 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2019 DEVELOPMENT OF A RESEARCH-BASED, USER- FRIENDLY, RAPID SCOUTING PROCEDURE FOR THE INVASIVE SUGARCANE APHID (MELANAPHIS SACCHARI), IN GRAIN SORGHUM Dissertation Approved: Tom A. Royer Dissertation Adviser Kristopher L. Giles Norman C. Elliott Mark E. Payton ii ACKNOWLEDGEMENTS I would like to thank my amazing committee and all my friends and family for their endless support during my graduate career. I would like to say a special thank you to my husband Brad for supporting me in every way one possibly can, I couldn’t have pursued this dream without you. I’d also like to thank my first child, due in a month. The thought of getting to be your mama pushed me to finish strong so you would be proud of me. Lastly, I want to thank my step father Jasper H. Davis III for showing me how to have a warrior’s spirit and to never give up on something, or someone you love. Your love, spirit, and motivational words will always be heard in my heart even while you’re gone.
    [Show full text]
  • ENDOCRINE CONTROL of VITELLOGENESIS in BACTERICERA COCKERELLI (HEMIPTERA: TRIOZIDAE), the VECTOR of 'ZEBRA CHIP' a Dissertat
    ENDOCRINE CONTROL OF VITELLOGENESIS IN BACTERICERA COCKERELLI (HEMIPTERA: TRIOZIDAE), THE VECTOR OF ‘ZEBRA CHIP’ A Dissertation by FREDDY ANIBAL IBANEZ-CARRASCO Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Cecilia Tamborindeguy Committee Members, Ginger Carney Patricia Pietrantonio Robert Coulson Head of Department, David Ragsdale August 2017 Major Subject: Entomology Copyright 2017 Freddy Ibanez-Carrasco ABSTRACT The potato psyllid, Bactericera cockerelli (Šulc), is a phloem-feeding insect with preference for Solanaceae. This insect species transmits the pathogenic bacteria ‘Candidatus Liberibacter solanacearum’ (Lso) the causative agent of zebra chip, an important disease of commercial potatoes in several countries worldwide. The classification of psyllids among the most dangerous vectors has promoted their study, but still many biological processes need to be investigated. As a first step towards the elucidation of vitellogenesis in B. cockerelli, two candidate vitellogenin transcripts were identified and its expression was analyzed in different life stages. Our results showed that in virgin females, BcVg1-like expression increased up to 5 days old; while mating significantly upregulated its expression in 5- and 7-day-old females and also induced oviposition. BcVg6-like transcript was expressed at similar level between females and males and it was not up-regulated by mating. To elucidate the role of juvenile hormone in B. cockerelli Vgs expression, topical applications of juvenile hormone III (JH III) were performed on virgin females, resulting in an upregulation of BcVg1-like expression and an increase in the number of mature oocytes observed in female reproductive organs.
    [Show full text]
  • Candidatus Liberibacter Solanacearum'
    EPPO Datasheet: 'Candidatus Liberibacter solanacearum' Last updated: 2020-04-22 Only Solanaceae haplotypes of ‘Candidatus Liberibacter solanacearum’ are included in the EPPO A1 List. IDENTITY Preferred name: 'Candidatus Liberibacter solanacearum' Authority: Liefting, Perez-Egusquiza & Clover Taxonomic position: Bacteria: Proteobacteria: Alphaproteobacteria: Rhizobiales: Phyllobacteriaceae Other scientific names: Liberibacter psyllaurous Hansen,Trumble, Stouthamer & Paine, Liberibacter solanacearum Liefting, Perez- Egusquiza & Clover Common names: zebra chip disease view more common names online... EPPO Categorization: A1 list more photos... view more categorizations online... EU Categorization: RNQP (Annex IV) EPPO Code: LIBEPS Notes on taxonomy and nomenclature This bacterium was first described from solanaceous plants and psyllids, almost simultaneously in New Zealand and the USA. The name ‘Candidatus Liberibacter psyllaurous (Hansen et al., 2008) was initially proposed, but ‘ Candidatus Liberibacter solanacearum’ (Liefting et al., 2009c) was finally retained as the validly published name. Until now, ‘Ca. L. solanacearum’ has not been cultivated in axenic medium to allow the Koch’s postulates to be verified, hence its ‘Candidatus’ status. The bacterium is genetically diverse and ten haplotypes of ‘Ca. L. solanacearum’ have been described (Nelson et al., 2011, 2013; Teresani et al., 2014; Swisher Grimm and Garczynski, 2019; Haapalainen et al., 2018b; Mauck et al., 2019; Haapalainen et al., 2019; Contreras-Rendón et al., 2019). These haplotypes also differ in their host ranges, psyllid vectors and geographical distributions. In particular, four haplotypes (A, B, F and G) are associated with diseases of potatoes and other solanaceous plants, whereas four others (C, D, E and H-European) are associated with diseases of carrots and other apiaceous crops. Haplotype H European was also described in plants of the family Polygonaceae.
    [Show full text]
  • Bactericera Cockerelli
    EPPO Datasheet: Bactericera cockerelli Last updated: 2020-10-08 Bactericera cockerelli is a pest in itself (feeding damage), and it transmits ‘Candidatus Liberibacter solanacearum’ to solanaceous plants. IDENTITY Preferred name: Bactericera cockerelli Authority: (Šulc) Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Hemiptera: Sternorrhyncha: Triozidae Other scientific names: Paratrioza cockerelli (Šulc), Trioza cockerelli Šulc Common names: potato psyllid, tomato psyllid view more common names online... EPPO Categorization: A1 list view more categorizations online... more photos... EU Categorization: A1 Quarantine pest (Annex II A) EPPO Code: PARZCO HOSTS Bactericera cockerelli is found primarily on plants within the family Solanaceae. It attacks, reproduces, and develops on a variety of cultivated and weedy plant species (Essig, 1917; Knowlton & Thomas, 1934; Pletsch, 1947; Jensen, 1954; Wallis, 1955), including crop plants such as potato (Solanum tuberosum), tomato (Solanum lycopersicum), pepper (Capsicum annuum), eggplant (Solanum melongena), and tobacco (Nicotiana tabacum), and non-crop species such as nightshade (Solanum spp.), groundcherry (Physalis spp.) and matrimony vine (Lycium spp.). Adults have been collected from plants in numerous families, including Pinaceae, Salicaceae, Polygonaceae, Chenopodiaceae, Brassicaceae, Asteraceae, Fabaceae, Malvaceae, Amaranthaceae, Lamiaceae, Poaceae, Menthaceae and Convolvulaceae, but this is not an indication of the true host range of this psyllid (Pletsch, 1947; Wallis, 1955;
    [Show full text]
  • Bactericera Cockerelli
    Bulletin OEPP/EPPO Bulletin (2013) 43 (2), 202–208 ISSN 0250-8052. DOI: 10.1111/epp.12044 European and Mediterranean Plant Protection Organization Organisation Europeenne et Mediterran eenne pour la Protection des Plantes EPPO Data Sheets on pests recommended for regulation Fiches informatives sur les organismes recommandes pour reglementation Bactericera cockerelli migration from Northern Mexico and the USA. B. cockerelli Identity cannot overwinter in Canada, and is not considered as Name: Bactericera cockerelli (Sulc) established there. In addition, it must be noted that the Synonym: Paratrioza cockerelli Sulc pathogen ‘Candidatus Liberibacter solanacearum’ has never Taxonomic position: Insecta, Hemiptera, Psylloidea, been observed on potatoes or tomatoes in Canada (Ferguson Triozidae & Shipp, 2002; Ferguson et al., 2003). In the USA, The Common names: potato psyllid, tomato psyllid potato psyllid had previously been reported to only occur EPPO code: PARZCO west of the Mississippi River (Richards & Blood, 1933; Phytosanitary categorization: EPPO A1 list no 366 Pletsch, 1947; Wallis, 1955; Cranshaw, 1993; Capinera, Note: B. cockerelli is a pest in itself (feeding damage), but 2001); however, this insect was recently collected on yel- more importantly it transmits ‘Candidatus Liberibacter low sticky traps near potato fields in Wisconsin late in the solanacearum’ to solanaceous plants. summer of 2012 (Henne et al., 2012), which constitutes the first documentation of this insect east of Mississippi. EPPO region: absent. Hosts EU: absent. Bactericera
    [Show full text]
  • Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla
    insects Article Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla picta Helps Understanding Its Feeding Behavior Dana Barthel 1,*, Hannes Schuler 2,3 , Jonas Galli 4, Luigimaria Borruso 2 , Jacob Geier 5, Katrin Heer 6 , Daniel Burckhardt 7 and Katrin Janik 1,* 1 Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), Italy 2 Faculty of Science and Technology, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy; [email protected] (H.S.); [email protected] (L.B.) 3 Competence Centre Plant Health, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy 4 Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria; [email protected] 5 Department of Botany, Leopold-Franzens-Universität Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; [email protected] 6 Faculty of Biology—Conservation Biology, Philipps Universität Marburg, Karl-von-Frisch-Straße 8, D-35043 Marburg, Germany; [email protected] 7 Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel, Switzerland; [email protected] * Correspondence: [email protected] (D.B.); [email protected] (K.J.) Received: 10 November 2020; Accepted: 24 November 2020; Published: 26 November 2020 Simple Summary: Cacopsylla picta is an insect vector of apple proliferation phytoplasma, the causative bacterial agent of apple proliferation disease. In this study, we provide an answer to the open question of whether adult Cacopsylla picta feed from other plants than their known host, the apple plant. We collected Cacopsylla picta specimens from apple trees and analyzed the composition of plant DNA ingested by these insects.
    [Show full text]
  • Interspecific Interactions Within a Vector-Borne Complex Are Influenced by a Co-Occurring Pathosystem
    www.nature.com/scientificreports OPEN Interspecifc interactions within a vector‑borne complex are infuenced by a co‑occurring pathosystem Regina K. Cruzado‑Gutiérrez1,2,7, Rohollah Sadeghi2,7, Sean M. Prager3, Clare L. Casteel4, Jessica Parker2, Erik J. Wenninger5, William J. Price6, Nilsa A. Bosque‑Pérez2, Alexander V. Karasev2 & Arash Rashed1,2* Potato virus Y (PVY) and zebra chip (ZC) disease are major threats to solanaceous crop production in North America. PVY can be spread by aphid vectors and through vegetative propagation in potatoes. ZC is associated with “Candidatus Liberibacter solanacearum” (Lso), which is transmitted by the tomato/potato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae). As these two pathosystems may co‑occur, we studied whether the presence of one virus strain, PVY°, afected the host preference, oviposition, and egg hatch rate of Lso‑free or Lso‑carrying psyllids in tomato plants. We also examined whether PVY infection infuenced Lso transmission success by psyllids, Lso titer and plant chemistry (amino acids, sugars, and phytohormones). Lso‑carrying psyllids showed a preference toward healthy hosts, whereas the Lso‑free psyllids preferentially settled on the PVY‑infected tomatoes. Oviposition of the Lso‑carrying psyllids was lower on PVY‑infected than healthy tomatoes, but Lso transmission, titer, and psyllid egg hatch were not signifcantly afected by PVY. The induction of salicylic acid and its related responses, and not nutritional losses, may explain the reduced attractiveness of the PVY‑infected host to the Lso‑carrying psyllids. Although our study demonstrated that pre‑existing PVY infection can reduce oviposition by the Lso‑carrying vector, the preference of the Lso‑carrying psyllids to settle on healthy hosts could contribute to Lso spread to healthy plants in the presence of PVY infection in a feld.
    [Show full text]
  • UTAH PESTS Staff
    UTAH PESTS News Utah Plant Pest Diagnostic Laboratory and USU Extension Vol. IX, Winter 2015 A New Disease of Potato and Other What’s Inside Solanecous Spotlight: Emerald Ash Borer Update Plants Reported Our Favorite Websites, in Utah Books Orchard Research at Capitol The non-culturable bacterium Reef National Park 'Candidatus Liberibacter New and Increasing Pests in solanacearum' is a pathogen Turf and Alfalfa that causes zebra chip disease of potato. The bacterium is Seed Selecting transmitted by potato psyllids Volunteering (Bactericera cockerelli). These insects are very small and IPM in the News look like black, winged aphids. They have characteristic white bands on their backs that News Highlights can be seen with a hand lens URBAN AND SMALL or dissecting microscope. In FARMS CONFERENCE the field, a hand lens is also required to see the eggs and Vegetable production, nymphs. The potato psyllids irrigation, good agricultural have been present in Utah for practices, marketing, organic a long time, but the bacterium research and more! was detected for the first time February 18 - 20 at the in a potato sample in 2013, Viridian Center, West and again in 2014. Jordan, UT. For more information and to register, The exterior of potato tubers to go: diverseag.org. affected with zebra chip appear perfectly healthy. It is not until the tubers are NEW FACT SHEETS sliced for cooking that the Top: Zebra chip disease causes brown striations in potato typical brown striations can tubers, and is most pronounced on fried chips. Damping-off be seen. They are even more pronounced when fried, giving Middle: Diseased pepper plants will have small, deformed fruit Emerald Ash Borer this disease its name.
    [Show full text]
  • APP201955: an Application to Release Tamarixia Triozae As a Biological Control for the Tomato Potato Psyllid (Bactericera Cockerelli)
    Staff Assessment Report APP201955: An application to release Tamarixia triozae as a biological control for the tomato potato psyllid (Bactericera cockerelli) April 2016 Purpose To release from containment the psyllid parasitoid Tamarixia triozae into New Zealand to assist with the biological control of the tomato potato psyllid (Bactericera cockerelli) Application number APP201955 Application type Notified, full release Applicant Horticulture New Zealand Inc. Date formally received 27 January 2016 2 EPA advice for application APP201955 Executive Summary and Recommendation In January 2015, Horticulture New Zealand Inc. applied to the Environmental Protection Authority (EPA) to introduce the psyllid parasitoid Tamarixia triozae as a biological control agent (BCA) for the tomato potato psyllid (TPP; Bactericera cockerelli). The application was submitted on behalf of Potatoes New Zealand Inc., Tomatoes NZ Inc., Heinz-Wattie’s NZ Ltd, Vegetables NZ Inc., and NZ Tamarillo Growers Association Inc. We examined the efficacy of T. triozae to control TPP and curb transmission of Candidatus Liberibacter solanacearum, the causal agent of Zebra Chip disease, to horticulture crop plants, and the beneficial and adverse effects on the environment, market economy and on Māori and their relationship to the environment. Our assessment found that we consider it likely that the release of T. triozae will improve management of TPP which will support development of new integrated pest management (IPM) programmes. We consider it likely that IPM programmes will reduce applications of broad-spectrum insecticides which will improve the environmental impact of horticulture practices. We also consider the use of T. triozae will benefit Māori who use traditional (organic) pest control methods to cultivate taewa, kūmara and poroporo.
    [Show full text]
  • A Revised Classification of the Jumping Plant-Lice (Hemiptera: Psylloidea)
    Zootaxa 3509: 1–34 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:16A98DD0-D7C4-4302-A3B7-64C57768A045 A revised classification of the jumping plant-lice (Hemiptera: Psylloidea) DANIEL BURCKHARDT1 & DAVID OUVRARD2 1Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel, Switzerland. E-mail: [email protected] 2Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. E-mail: [email protected] Abstract A revised classification for the world jumping plant-lice (Hemiptera: Psylloidea) is presented comprising all published family and genus-group names. The new classification consists of eight families: Aphalaridae, Carsidaridae, Calophy- idae, Homotomidae, Liviidae, Phacopteronidae, Psyllidae and Triozidae. The Aphalaridae, Liviidae and Psyllidae are redefined, 20 family-group names as well as 28 genus-group names are synonymised, and one replacement name is proposed [Sureaca nomen nov., for Acaerus Loginova, 1976]. Forty two new species combinations are proposed re- sulting from new genus-group synonymies and a replacement name. One subfamily and three genera are considered taxa incertae sedis, and one genus a nomen dubium. Finally eight unavailable names are listed (one family-group and seven genus-group names). Key words: Psyllids, classification, diagnosis, systematics, taxonomy, new taxa, synonymy. Introduction Jumping plant-lice have lately shifted into general awareness as vectors of serious plant diseases, as economically important pests in agriculture and forestry and as potential control organisms of exotic invasive plants. Diaphorina citri Kuwayama which transmits the causal agent of huanglongbing (HLB, greening disease) is considered today the most serious citrus pest in Asia and America (Bonani et al., 2009; de Leon et al., 2011; Tiwari et al., 2011).
    [Show full text]
  • Jumping Plant-Lice (Hemiptera: Psylloidea) of Afghanistan
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.vi.2012 Volume 52(1), pp. 1–22 ISSN 0374-1036 Jumping plant-lice (Hemiptera: Psylloidea) of Afghanistan Igor MALENOVSKÝ1), Pavel LAUTERER1,2), Eugenia LABINA3) & Daniel BURCKHARDT4) 1) Department of Entomology, Moravian Museum, Hviezdoslavova 29a, CZ-627 00 Brno, Czech Republic; e-mail: [email protected] 2) e-mail: [email protected] 3) Laboratory of Systematics of Insects, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia; e-mail: [email protected] 4) Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel, Switzerland; e-mail: [email protected] Abstract. The psylloid fauna of Afghanistan is reviewed comprising, 32 identifi ed species, 15 of which are recorded from the country for the fi rst time, including Agonoscena klapperichi sp. nov. (Psyllidae: Rhinocolinae), which is formally described and illustrated. Additional illustrations are provided for Craspedolepta manica Baeva, 1978, Cacopsylla cf. nasuta (Horváth, 1904) and Trioza urticae Linnaeus, 1758. Another 5 species are represented by insuffi cient material and cannot be currently identifi ed. The bulk of the examined material comes from four expeditions by J. Klapperich, O. Jakeš, M. Daniel and E. S. Sugonyaev in the 1950’s and 1960’s. The psylloid fauna of Afghanistan remains poorly known and additional species can be expected. The biogeographical relationships and eco- nomic importance of the Afghan psylloid fauna are briefl y discussed. In addition, a new record of Psyllopsis securicola Loginova, 1963 from Iraq is provided. Key words. Hemiptera, Sternorrhyncha, Psylloidea, taxonomy, distribution, new species, Afghanistan, Central Asia, Palaearctic Region Introduction Jumping plant-lice or psyllids, with some 4,000 described species worldwide, are usually highly host-specifi c plant-sap sucking insects.
    [Show full text]
  • Risk Assessment of 'Candidatus Liberibacter Solanacearum' Transmission by the Psyllids Bactericera Trigonica and B. Tremblay
    www.nature.com/scientificreports OPEN Risk assessment of ‘Candidatus Liberibacter solanacearum’ transmission by the psyllids Received: 11 November 2016 Accepted: 28 February 2017 Bactericera trigonica and B. Published: 03 April 2017 tremblayi from Apiaceae crops to potato C. A. Antolinez, A. Fereres & A. Moreno Candidatus Liberibacter solanacearum (Lso) is bacterium transmitted by psyllids to Solanaceae and Apiaceae plants. So far, Lso is found in Europe affecting Apiaceae. In the Mediterranean region, Bactericera trigonica is the only known vector of Lso, but the leek-onion psyllid Bactericera tremblayi is another widespread psyllid and potential vector of Lso. Commonly, carrot, leek and potato are cultivated in the same zones and it is uncertain if these psyllid species are able to transmit Lso to potato plants. Here, we assessed the transmission of Lso by B. trigonica and B. tremblayi to potato plants. B. trigonica showed preference to ingest from the phloem, settle and oviposit on carrot and celery but not on potato. This was correlated with high Lso transmission rates to both carrot (80%) and celery (70%) but very low to potato (≤3%). B. tremblayi preferred leek over carrot and potato, the latter being the less preferred host. B. tremblayi readily ingested from the phloem of infected carrots but failed to transmit Lso from carrot to carrot. Our study shows that the risk of Lso transmission from Apiaceae to potato by B. trigonica is very low, and that B. tremblayi is not a likely vector of Lso. Most plant pathogenic viruses and bacteria depend on insect vectors to spread to new areas or new hosts1.
    [Show full text]