Phyla Nodiflora (L.) Greene (Verbenaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Verbena Bonariensis
A Horticulture Information article from the Wisconsin Master Gardener website, posted 16 July 2004 Verbena bonariensis Clusters of small purple fl owers fl oating on long, airy stems tempting passing butterfl ies to stop for a sip is just one reason to consider adding Verbena bonairiensis, also called tall verbena or purpletop verbena, to your garden. This plant is just one of about 250 species in the genus Verbena, of which only about half a dozen are in cultivation. V. bonairiensis is native to Brazil and Ar- gentina (the specifi c name is after Buenos Aires). They were fi rst grown as a garden ornamental in 1726 by Englishmen James & William Sherard, who got the seeds from a dried specimen sent back to England from Buenos Aires. This plant is perennial in zones 7 to11 and is grown as an annual in cooler climates. It is considered a weed in many mild climates, such as California, Texas, Australia and southern Africa, where it has naturalized. Verbena bonariensis is a tall, airy plant. Purpletop verbena is an upright, clump-form- ing plant with wiry, widely branched stems. It reaches a height of 3 to 6 feet and spreads 1 to 3 feet. Unlike many other tall herbaceous plants it is unlikely to tip over. The stiff stems and branches are square and rough, like sand paper. The deep green, lance-shaped serrat- ed leaves form a mounded rosette at the base of the plant, with few on the stems. The fl ow- ers are borne in rounded clusters 2 to 3 inches across. -
Verbena Bonariensis Tall Vervain
TREATMENT OPTIONS from the book Weed Control in Natural Areas in the Western United States This does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Verbena bonariensis Tall vervain Family: Verbenaceae (vervain) NON-CHEMICAL CONTROL Cultural: grazing NIA Cultural: prescribed burning NIA Mechanical: mowing and cutting NIA Mechanical: tillage NIA Mechanical: grubbing, digging or hand pulling NIA CHEMICAL CONTROL The following specific use information is based on published papers and reports by researchers and land managers. Other trade names may be available, and other compounds also are labeled for this weed. Directions for use may vary between brands; see label before use. 2,4-D E Imazapic F* Postemergence Aminocyclopyrachlor + chlorsulfuron NIA Imazapyr E* Aminopyralid NIA Metsulfuron NIA Chlorsulfuron NIA Paraquat NIA Clopyralid NIA Picloram NIA Dicamba NIA Rimsulfuron NIA Glyphosate P─F* Sulfometuron P* Hexazinone P* Sulfosulfuron NIA Triclopyr NIA E = Excellent control, generally better than 95% * = Likely based on results of observations of G = Good control, 80-95% related species FLW = flowering F = Fair control, 50-80% NIA = No information available P = Poor control, below 50% Fa = Fall Control includes effects within the season of treatment. Sp = Spring Control is followed by best timing, if known, when efficacy is E or G. -
Studies on the Trichomes of Some Oleaceae, Structure and Ontogeny
STUDIES ON THE TRICHOMES OF SOME OLEACEAE, STRUCTURE AND ONTOGENY B~ J. A. INAMDAR (Department of Botany, Sardar Patel Univeraity, Vallabh Vidyanagar, Gujarat) Received August 22, 1967 (Communicated by Prof. V. Puff, r.A.sc.) ABSTRACT Some twelve types of tricho~aes are described for four species of Jasminum and Nyctanthes arbor-tristis L. They fall under two main categories, the eglandular and the glandular trichomes. The systematic position of Nyctanthes seems to be quite natural in the family Oleaceae. INTRODUCTION The family Oleaceae has received considerable attention of the botanists particularly with reference to the systcmatic position of Nyctanthes and the monotypic genus Dimetra. Airy SEaw (1952) transferred these gcnera to the Verbenaceae on morphological grounds. Stant (1952) has supported Airy Shaw on anatomical grounds. Johnson (1957) in a review of the family Oleaceae opined that Nyctanthes should be excluded from Oleaceae based on the cytological findings of Taylor (1945). On the other hand the embryo- logical data (Patel, 1963; Kapil, 1967) suggests that Nyctanthes should be retained in the Oleaceae. Several workers (De Bary, 1884; Cowan, 1950, Goodspeed, 1954; Carlquist, 1958, 1959a, 1959b, 1959c, 1961; Mathur, 1961 ; Ramayya, 1962 a, 1962b, 1963) have described the structure and development of trichomes and glands in several angisoperm families. The present investi- gation was carried out to find if the trichomes ~nd glands could be of any help in settling the doubtful systematic position of Oleaceous genera. The present paper deals with the study of eglandular and glandular (glands) trichomes on the vegetative organs of four species of Jasminum, viz., J. -
(Verbenaceae) Using Multiple Loci
bs_bs_banner Botanical Journal of the Linnean Society, 2013, 171, 103–119. With 5 figures Investigating the evolution of Lantaneae (Verbenaceae) using multiple loci PATRICIA LU-IRVING* and RICHARD G. OLMSTEAD Department of Biology, University of Washington, Seattle, Washington 98195, USA Received 3 February 2012; revised 29 June 2012; accepted for publication 23 August 2012 Lantaneae are an example of a taxonomically problematic, widespread and recently radiated Neotropical lineage. Taxonomy in Lantaneae is difficult because of complex, overlapping patterns of shifts in morphological traits among members; monophyly of the traditional genera cannot be assumed without additional information from molecular data. We took a multi-locus approach to infer phylogenetic relationships in Lantaneae, resolving major clades among a broad representative sample that covers the morphological, taxonomic and geographical diversity of this group. Data from multiple, independent loci reveal individual gene trees that are incongruent with one another, with varying degrees of support. Without reliable, applicable methods to determine the sources of such incongru- ence and to resolve it, we present the consensus between well-supported topologies among our data sets as the best estimate of Lantaneae phylogeny to date. According to this consensus tree, fleshy fruits in Lantaneae have been derived from dry fruits at least five times; taxonomic schemes separating genera based on fruit characteristics are artificial. Lantaneae have shifted into the Neotropics from the southern temperate subtropics and have colonized Africa in at least two separate long-distance dispersal events. This study provides a first pass at a broad Lantaneae phylogeny, but two important areas remain unresolved: the position of Acantholippia relative to Aloysia; and species-level relationships in the Lantana–Lippia clade. -
New Hawaiian Plant Records from Herbarium Pacificum for 20081
Records of the Hawaii Biological Survey for 2008. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 107: 19–26 (2010) New Hawaiian plant records from Herbarium Pacificum for 2008 1 BARBARA H. K ENNEDY , S HELLEY A. J AMES , & CLYDE T. I MADA (Hawaii Biological Survey, Bishop Museum, 1525 Bernice St, Honolulu, Hawai‘i 96817-2704, USA; emails: [email protected], [email protected], [email protected]) These previously unpublished Hawaiian plant records report 2 new naturalized records, 13 new island records, 1 adventive species showing signs of naturalization, and nomen - clatural changes affecting the flora of Hawai‘i. All identifications were made by the authors, except where noted in the acknowledgments, and all supporting voucher speci - mens are on deposit at BISH. Apocynaceae Rauvolfia vomitoria Afzel. New naturalized record The following report is paraphrased from Melora K. Purell, Coordinator of the Kohala Watershed Partnership on the Big Island, who sent an email alert to the conservation com - munity in August 2008 reporting on the incipient outbreak of R. vomitoria, poison devil’s- pepper or swizzle stick, on 800–1200 ha (2000–3000 acres) in North Kohala, Hawai‘i Island. First noticed by field workers in North Kohala about ten years ago, swizzle stick has become a growing concern within the past year, as the tree has spread rapidly and invaded pastures, gulches, and closed-canopy alien and mixed alien-‘ōhi‘a forest in North Kohala, where it grows under the canopies of eucalyptus, strawberry guava, common guava, kukui, albizia, and ‘ōhi‘a. The current distribution is from 180–490 m (600–1600 ft) elevation, from Makapala to ‘Iole. -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
(Lamiaceae and Verbenaceae) Using Two DNA Barcode Markers
J Biosci (2020)45:96 Ó Indian Academy of Sciences DOI: 10.1007/s12038-020-00061-2 (0123456789().,-volV)(0123456789().,-volV) Re-evaluation of the phylogenetic relationships and species delimitation of two closely related families (Lamiaceae and Verbenaceae) using two DNA barcode markers 1 2 3 OOOYEBANJI *, E C CHUKWUMA ,KABOLARINWA , 4 5 6 OIADEJOBI ,SBADEYEMI and A O AYOOLA 1Department of Botany, University of Lagos, Akoka, Yaba, Lagos, Nigeria 2Forest Herbarium Ibadan (FHI), Forestry Research Institute of Nigeria, Ibadan, Nigeria 3Department of Education Science (Biology Unit), Distance Learning Institute, University of Lagos, Akoka, Lagos, Nigeria 4Landmark University, Omu-Aran, Kwara State, Nigeria 5Ethnobotany Unit, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria 6Department of Ecotourism and Wildlife Management, Federal University of Technology, Akure, Ondo State, Nigeria *Corresponding author (Email, [email protected]) MS received 21 September 2019; accepted 27 May 2020 The families Lamiaceae and Verbenaceae comprise several closely related species that possess high mor- phological synapomorphic traits. Hence, there is a tendency of species misidentification using only the mor- phological characters. Herein, we evaluated the discriminatory power of the universal DNA barcodes (matK and rbcL) for 53 species spanning the two families. Using these markers, we inferred phylogenetic relation- ships and conducted species delimitation analysis using four delimitation methods: Automated Barcode Gap Discovery (ABGD), TaxonDNA, Bayesian Poisson Tree Processes (bPTP) and General Mixed Yule Coalescent (GMYC). The phylogenetic reconstruction based on the matK gene resolved the relationships between the families and further suggested the expansion of the Lamiaceae to include some core Verbanaceae genus, e.g., Gmelina. -
Vascular Plant Families of the United States Grouped by Diagnostic Features
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 12-6-2019 Vascular Plant Families of the United States Grouped by Diagnostic Features James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Vascular Plant Families of the United States Grouped by Diagnostic Features" (2019). Botanical Studies. 96. https://digitalcommons.humboldt.edu/botany_jps/96 This Flora of the United States and North America is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. FLOWERING PLANT FAMILIES OF THE UNITED STATES GROUPED BY DIAGNOSTIC FEATURES James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Second edition — 6 December 2019 The focus is on families of plants found in the conterminous United States, including ornamentals. The listing of a family is not meant to imply that every species has that feature. I am using a fewfamily names, such as Liliaceae, Plantaginaceae, and Scrophulariaceae, in the traditional sense, because their limits remain unsettled. Parasitic on branches Dioscoreaceae -
ACANTHACEAE 爵床科 Jue Chuang Ke Hu Jiaqi (胡嘉琪 Hu Chia-Chi)1, Deng Yunfei (邓云飞)2; John R
ACANTHACEAE 爵床科 jue chuang ke Hu Jiaqi (胡嘉琪 Hu Chia-chi)1, Deng Yunfei (邓云飞)2; John R. I. Wood3, Thomas F. Daniel4 Prostrate, erect, or rarely climbing herbs (annual or perennial), subshrubs, shrubs, or rarely small trees, usually with cystoliths (except in following Chinese genera: Acanthus, Blepharis, Nelsonia, Ophiorrhiziphyllon, Staurogyne, and Thunbergia), isophyllous (leaf pairs of equal size at each node) or anisophyllous (leaf pairs of unequal size at each node). Branches decussate, terete to angular in cross-section, nodes often swollen, sometimes spinose with spines derived from reduced leaves, bracts, and/or bracteoles. Stipules absent. Leaves opposite [rarely alternate or whorled]; leaf blade margin entire, sinuate, crenate, dentate, or rarely pinnatifid. Inflo- rescences terminal or axillary spikes, racemes, panicles, or dense clusters, rarely of solitary flowers; bracts 1 per flower or dichasial cluster, large and brightly colored or minute and green, sometimes becoming spinose; bracteoles present or rarely absent, usually 2 per flower. Flowers sessile or pedicellate, bisexual, zygomorphic to subactinomorphic. Calyx synsepalous (at least basally), usually 4- or 5-lobed, rarely (Thunbergia) reduced to an entire cupular ring or 10–20-lobed. Corolla sympetalous, sometimes resupinate 180º by twisting of corolla tube; tube cylindric or funnelform; limb subactinomorphic (i.e., subequally 5-lobed) or zygomorphic (either 2- lipped with upper lip subentire to 2-lobed and lower lip 3-lobed, or rarely 1-lipped with 3 lobes); lobes ascending or descending cochlear, quincuncial, contorted, or open in bud. Stamens epipetalous, included in or exserted from corolla tube, 2 or 4 and didyna- mous; filaments distinct, connate in pairs, or monadelphous basally via a sheath (Strobilanthes); anthers with 1 or 2 thecae; thecae parallel to perpendicular, equally inserted to superposed, spherical to linear, base muticous or spurred, usually longitudinally dehis- cent; staminodes 0–3, consisting of minute projections or sterile filaments. -
Desirable Plant List
Carpinteria-Summerland Fire Protection District High Fire Hazard Area Desirable Plant List Desirable Qualities for Landscape Plants within Carpinteria/Summerland High Fire Hazard areas • Ability to store water in leaves or • Ability to withstand drought. stems. • Prostrate or prone in form. • Produces limited dead and fine • Ability to withstand severe pruning. material. • Low levels of volatile oils or resins. • Extensive root systems for controlling erosion. • Ability to resprout after a fire. • High levels of salt or other compounds within its issues that can contribute to fire resistance. PLANT LIST LEGEND Geographical Area ......... ............. Water Needs..... ............. Evergreen/Deciduous C-Coastal ............. ............. H-High . ............. ............. E-Evergreen IV-Interior Valley ............. ............. M-Moderate....... ............. D-Deciduous D-Deserts ............. ............. L-Low... ............. ............. E/D-Partly or ............. ............. VL -Very Low .... ............. Summer Deciduous Comment Code 1 Not for use in coastal areas......... ............ 13 ........ Tends to be short lived. 2 Should not be used on steep slopes........ 14 ........ High fire resistance. 3 May be damaged by frost. .......... ............ 15 ........ Dead fronds or leaves need to be 4 Should be thinned bi-annually to ............ ............. removed to maintain fire safety. remove dead or unwanted growth. .......... 16 ........ Tolerant of heavy pruning. 5 Good for erosion control. ............. ........... -
Nitella Parooensis M.T.Casanova & J.L.Porter As a CRITICALLY ENDANGERED SPECIES in Part 1 of Schedule 1 of the Act
NSW Threatened Species Scientific Committee Exhibition period: 30/11/18 – 25/01/19 Proposed Listing date: 30/11/18 Notice of and reasons for the Final Determination The Scientific Committee, established under the Biodiversity Conservation Act 2016 (the Act), has made a Final Determination to list the alga Nitella parooensis M.T.Casanova & J.L.Porter as a CRITICALLY ENDANGERED SPECIES in Part 1 of Schedule 1 of the Act. Listing of Critically endangered species is provided for by Part 4 of the Act. Summary of Conservation Assessment Nitella parooensis is eligible for listing as Critically endangered, as the highest threat category met by the taxon across all categories, under Clause 4.3(a) (d) (e iiii) because: i) the distribution of the species is very highly restricted with an area of occupancy of 8 km2 and an extent of occurrence of 8 km2; ii) the species is only known to occur at a very small number of locations; and iii) there is a projected continuing decline in the species’ habitat area and quality. The NSW Threatened Species Scientific Committee has found that: 1. Nitella parooensis M.T.Casanova & J.L.Porter (family Characeae) is a short lived annual charaphyte (an alga) and was described by Casanova and Porter (2013) as “dioecious, scarcely heteroclemous, to 10 cm high, internodes to 3 cm long, c. 0.4 mm wide, sterile branchlets to 3 cm long, unevenly 0–3 × furcate, monopodial or nearly so, in whorls of 5–7 at the axis nodes, with an occasional 0 × furcate accessory branchlet at the base of the whorl. -
Evaluation of Antibacterial Activity of Methanolic Extract of Seeds of Phyla Nodiflora Linn
Patel Janki B et al. IRJP 2 (6) 2011 91-93 INTERNATIONAL RESEARCH JOURNAL OF PHARMACY ISSN 2230 – 8407 Available online http://www.irjponline.com Research Article EVALUATION OF ANTIBACTERIAL ACTIVITY OF METHANOLIC EXTRACT OF SEEDS OF PHYLA NODIFLORA LINN. Patel Janki B*, Shah Kinjal H, Patel Rashmika C B. Pharmacy College Rampura – Kakanpur, Godhra, India Article Received on: 03/04/2011 Revised on: 20/05/2011 Approved for publication: 12/06/2011 *Email: [email protected] ABSTRACT ‘Jalapippali’ described in classical texts of Ayurveda is botanically identified as Phyla nodiflora Linn. (Syn. Lippia nodiflora Rich). In present study methanolic extract of seeds of Phyla nodiflora Linn. was screened for in-vitro antibacterial activity against gram positive and gram negative bacteria by cup- plate method. The methanolic extract of the seeds significantly inhibit the growth of bacteria as compared to the standard bactericide (streptomycin). The study reveals that the methanolic fraction of seeds of Phyla nodiflora Linn possesses significant antibacterial activity. KEYWORDS Antibacterial activity, streptomycin, seeds of Phyla nodiflora, cup- plate method. INTRODUCTION workers have reported many pharmacological properties Phyla nodiflora Linn. (family– Verbenaceae) Known as including antispasmodic13, hair afflictions14, anti- Lippia nodiflora Rich, Jalapippali. As per Ayurvedic inflammatory, analgesic and antipyretic15, antibacterial16, literature the drug is shukrala, laghu, sheeta, katu, anti Helicobacter pylori activity17, hypotensive activity18, ruksha, kashya and agnivardhaka. Phyla nodiflora Linn. antinociceptive19 and antifungal20. Yet, antibacterial is an evergreen, creeping, much branched herb is potential of methanol fraction of seeds of the plant was distributed in India, Sri Lanka, Ceylon, Baluchistan, not proved; it was studied in the present research-work.