Broad Mite, Polyphagotarsonemus Latus (Banks) (Arachnida: Acari: Tarsonemidae)1 Thomas R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Parasitisation with Nymphal Dermacentor Auratus Supino, 1897 (Acari: Ixodoiidea: Ixodidae)
Veterinary Practitioner Vol. 20 No. 2 December 2019 HUMAN PARASITISATION WITH NYMPHAL DERMACENTOR AURATUS SUPINO, 1897 (ACARI: IXODOIIDEA: IXODIDAE) Saidul Islam1, Prabhat Chandra Sarmah2 and Kanta Bhattacharjee3 Department of Parasitology, College of Veterinary Science Assam Agricultural University, Khanapara, Guwahati- 781 022, Assam, India Received on: 29.09.2019 ABSTRACT Accepted on: 03.11.2019 Human parasitisation with nymphal tick and its morhphology has been described. First author accidentally acquired with three nymphal tick infestation from wilderness. Nymphs were attached in hand and both the arm pits leading to intense itching, oedematous swelling and pinkish skin discolouration at the site of attachment. On sixth day of infestation there was mild pyrexia, the differential leukocytic count showed polymorphs 68%, lymphocytes 27%, monocytes 2% and eosinophils 3%. Though the conditions were ameliorated after steroid therapy, yet, the site of attachment was indurated for 8 months which gradually resolved. A nymph replete with blood meal was put in a desiccator with sufficient humidity at room temperature of 170C for moulting that transformed into adult female in 43 days measuring 5.0 X 5.5 mm in size. Detail morphological study confirmed the species as Dermacentor auratus Supino, 1897. Significance of human tick parasitisation has been reviewed and warranted for transmission of possible vector borne pathogens. Key words: Dermacentor auratus, nymph, human, India Introduction Result and Discussion Ticks form a major group of ectoparasites of animals, Tick species and morphology birds and reptiles to cause different types of direct injuries The partially fed nymphs were brown coloured measuring and transmit infectious diseases. Human parasitisation 2.0 X 2.5 mm in size with deep cervical groove, nearly circular by tick, although not common as compared to the animals, small scutum broadest in the middle and 3/3 dentition in the has been recorded in different parts of the world (Wassef hypostome. -
Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York
SUNY College of Environmental Science and Forestry Digital Commons @ ESF Honors Theses 5-2016 Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York Brigitte Wierzbicki Follow this and additional works at: https://digitalcommons.esf.edu/honors Part of the Entomology Commons Recommended Citation Wierzbicki, Brigitte, "Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York" (2016). Honors Theses. 106. https://digitalcommons.esf.edu/honors/106 This Thesis is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. HABITAT ASSOCIATIONS OF IXODES SCAPULARIS (ACARI: IXODIDAE) IN SYRACUSE, NEW YORK By Brigitte Wierzbicki Candidate for Bachelor of Science Environmental and Forest Biology With Honors May,2016 APPROVED Thesis Project Advisor: Af ak Ck M issa K. Fierke, Ph.D. Second Reader: ~~ Nicholas Piedmonte, M.S. Honors Director: w44~~d. William M. Shields, Ph.D. Date: ~ / b / I & r I II © 2016 Copyright B. R. K. Wierzbicki All rights reserved. 111 ABSTRACT Habitat associations of Jxodes scapularis Say were described at six public use sites within Syracuse, New York. Adult, host-seeking blacklegged ticks were collected using tick flags in October and November, 2015 along two 264 m transects at each site, each within a distinct forest patch. We examined the association of basal area, leaf litter depth, and percent understory cover with tick abundance using negative binomial regression models. Models indicated tick abundance was negatively associated with percent understory cover, but was not associated with particular canopy or understory species. -
(Acari: Ixodidae) Attachment to Tick-Bite Victims
Determining the Duration of Ixodes scapularis (Acari: Ixodidae) Attachment to Tick-Bite Victims MIN-TSUNG YEH, JASON M. BAK, RENJIE HU, MATTHEW C. NICHOLSON, COLLEEN KELLY, AND THOMAS N. MATHER Center for Vector-Borne Disease, 240 Woodward Hall, University of Rhode Island, Kingston, RI 02881-0804 J. Med. Entomol. 32(6): 853-858 (1995) ABSTRACT The duration of tick attachment is one factor associated with risk for human infection caused by several tick-borne pathogens. We measured tick engorgement indices at known time intervals after tick attachment and used these indices to determine the length of time that ticks were attached to tick-bite victims in selected Rhode Island and Pennsylvania communities where the agents of Lyme disease and human babesiosis occur. The total body length and width as well as the length and width of the scutum were measured on nymphal and adult female Ixodes scapularis Say removed from laboratory animals at 0, 12, 24, 36, 48, 60, and 72 h after their attachment. Three engorgement indices were calculated at each time interval. In addition, engorgement indices measurements were recorded for 504 ticks sub- mitted to a commercial laboratory for pathogen detection testing between 1990 and 1992. No detectable change was observed in the average engorgement indices for either nymphal or adult ticks between 0 and 24 h of attachment using any of the engorgement indices. After 24 h of tick attachment, all engorgement indices continuously increased; average indices for nymphs attached 36, 48, and 60 h were significantly different from those attached S24 h and from each other. -
Management of Arthropod Pathogen Vectors in North America: Minimizing Adverse Effects on Pollinators
Journal of Medical Entomology, 2017, 1–13 doi: 10.1093/jme/tjx146 Forum Forum Management of Arthropod Pathogen Vectors in North America: Minimizing Adverse Effects on Pollinators Howard S. Ginsberg,1,2 Timothy A. Bargar,3 Michelle L. Hladik,4 and Charles Lubelczyk5 1USGS Patuxent Wildlife Research Center, University of Rhode Island, RI Field Station, Woodward Hall – PSE, Kingston, RI 02881 ([email protected]), 2Corresponding author, e-mail: [email protected], 3USGS Wetland and Aquatic Research Center, 7920 NW 71st St., Gainesville, FL 32653 ([email protected]), 4USGS California Water Science Center, 6000 J St., Placer Hall, Sacramento, CA 95819 ([email protected]), and 5Maine Medical Center Research Institute, Vector-Borne Disease Laboratory, 81 Research Dr., Scarborough, ME 04074 ([email protected]) Subject Editor: Lars Eisen Received 26 April 2017; Editorial decision 19 June 2017 Abstract Tick and mosquito management is important to public health protection. At the same time, growing concerns about declines of pollinator species raise the question of whether vector control practices might affect pollinator populations. We report the results of a task force of the North American Pollinator Protection Campaign (NAPPC) that examined potential effects of vector management practices on pollinators, and how these pro- grams could be adjusted to minimize negative effects on pollinating species. The main types of vector control practices that might affect pollinators are landscape manipulation, biocontrol, and pesticide applications. Some current practices already minimize effects of vector control on pollinators (e.g., short-lived pesticides and application-targeting technologies). Nontarget effects can be further diminished by taking pollinator protection into account in the planning stages of vector management programs. -
Community Structure of Mites (Acari: Acariformes and Parasitiformes) in Nests of the Semi-Collared Flycatcher (Ficedula Semitorquata) R
International Research Journal of Natural Sciences Vol.3, No.3, pp.48-53, December 2015 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) COMMUNITY STRUCTURE OF MITES (ACARI: ACARIFORMES AND PARASITIFORMES) IN NESTS OF THE SEMI-COLLARED FLYCATCHER (FICEDULA SEMITORQUATA) R. Davidova, V. Vasilev, N. Ali, J. Bakalova Konstantin Preslavsky University of Shumen, 115, Universitetska Str., Shumen, 9700, Bulgaria. ABSTRACT: The aims of the present paper are to establish the specific structure of communities of prostigmatic and mesostigmatic mites in nests of the semi-collared flycatcher (Ficedula semitorquata) and to compare the fauna with the mites in nests of two other European flycatchers. For analysis of community structure of mites were used the indices: prevalence, relative density, mean intensity and dominance. Mite communities are strongly dominated by the species Dermanyssus gallinae and Ornithonyssus sylviarum, which were found with the highest frequency and dominance. The mite communities are characterized by a large number of subrecedent species. KEYWORDS: Acariformes, Parasitiformes, Nest of Bird, Community Structure INTRODUCTION The nests of different species of birds are an example of a fairly unstable and isolated habitat, with its own dependent on it specific fauna which involves different groups of invertebrate animals. One of the components of this fauna which demonstrates particular abundance is the arthropods, and more specifically, the mites. The studies of Parasitiformes show that mesostigmatic mites living in birds' nests vary both in terms of their species affiliation and the structure of their communities [4, 8]. Highly important with respect to veterinary science and medicine are a number of species, such as Ornithonyssus bursa, Ornithonyssus sylviarum, Dermanyssus gallinae harboured by birds, Ornithonyssus bacoti, harboured by rodents, etc. -
Life History of the Honey Bee Tracheal Mite (Acari: Tarsonemidae)
ARTHROPOD BIOLOGY Life History of the Honey Bee Tracheal Mite (Acari: Tarsonemidae) JEFFERY S. PETTIS1 AND WILLIAM T. WILSON Honey Bee Research Unit, USDA-ARS, 2413 East Highway 83, Weslaco, TX 78596 Ann. Entomol. Soc. Am. 89(3): 368-374 (1996) ABSTRACT Data on the seasonal reproductive patterns of the honey bee tracheal mite, Acarapis woodi (Rennie), were obtained by dissecting host honey bees, Apis mellifera L., at intervals during their life span. Mite reproduction normally was limited to 1 complete gen- eration per host bee, regardless of host life span. However, limited egg laying by foundress progeny was observed. Longer lived bees in the fall and winter harbored mites that reproduced for a longer period than did mites in bees during spring and summer. Oviposition rate was relatively uniform at =0.85 eggs per female per day during the initial 16 d of adult bee life regardless of season. In all seasons, peak mite populations occurred in bees =24 d old, with egg laying declining rapidly beyond day 24 in spring and summer bees but more slowly in fall and winter bees. Stadial lengths of eggs and male and female larvae were 5, 4, and 5 d, respectively. Sex ratio ranged from 1.15:1 to 2.01:1, female bias, but because males are not known to migrate they would have been overestimated in the sampling scheme. Fecundity was estimated to be =21 offspring, assuming daughter mites laid limited eggs in tracheae before dispersal. Mortality of adult mites increased with host age; an estimate of 35 d for female mite longevity was indirectly obtained. -
Selected Miticides for Use on Ornamental Plants1
ENH1118 Selected Miticides for Use on Ornamental Plants1 Robert H. Stamps and Lance S. Osborne2 Mites are among the most difficult arthropod Some Tarsonemid mites (family Tarsonemidae) pests to control on ornamental plants. Adult mites are smaller than even false spider mites. This family have eight legs and piercing/sucking mouthparts that includes broad and cyclamen mites. are used to suck fluids from the cells of host plants (Denmark, 1969). The first immature stage of a mite, Eriophyid mites (Eriophyidae family) are too referred to as the larva, has only six legs, like insects. small to be seen with the naked eye and include bud, The exceptions are the Eriophyid mites, which have gall, purple tea and rust mites, among others. As their four legs in all stages. Mites are not insects, but are names suggest, these mites can cause galls, rusts and more closely related to spiders and ticks. Thousands other abnormal plant growth. of species of mites feed on plants. There are other families of mites that have Spider mites, members of the Tetranychidae crop-damaging members, but the mites named above family, are perhaps the most important mite pests of are the main mite pests of ornamental plants. ornamental plants. The name, spider mites, is due to Mites of a given species can develop very the many members of this family that produce silk rapidly when temperatures, relative humidities, host webbing. Spider mites are medium-sized mites that plants and other factors are optimal. In fact, for many, feed on a wide variety of host plants from many the time to develop from an egg to an adult can be different plant families. -
Seven New Larval Mites (Acari, Prostigmata, Erythraeidae) from Iran
Miscel.lania Zoologica 19.2 (1996) 117 Seven new larval mites (Acari, Prostigmata, Erythraeidae) from Iran R. Haitlinger & A. Saboori Haitlinger, R. & Saboori, A,, 1996. Seven new larval mites (Acari, Prostigmata, Erythraeidae) from Iran. Misc. Zool., 19.2: 117-1 31. Seven new larva1 mites (Acari, Prostlgmata, Erythraeidae) from 1ran.- Seven new larval mites are described: Hauptmannia ostovani n. sp. obtained from undetermined Aphididae (Homoptera), a species with thick and sharptipped accessory claw on palptibia and without pectinala on palptarsus; H. iranican. sp. from plants, without pectinala on palptarsus and bearing numerous setae on dorsal and ventral surfaces (NDV over 170); H. khanjaniin. sp. from plants, with pectinala on palptarsus and has shorter L, W and ISD than the other species of this group; Leptus fathipeurin. sp. from plants with two palpgenualae; Erythraeus(E.)akbarianin.sp. from unidentified Aphididae; it has very short ASE; E. (E.) sabrinae n. sp. from undetermined Aphididae; this species is similar to E. adrasatus, E. kresnensisand E. akbariani, differing mainly in number of dorsal and ventral setae and E.@aracarus) tehranicusn. sp. from plants; one of the three species of this subgenus, differs mainly from the other two by shorter tarsi and tibiae l. Key words: Acari, Erythraeidae, Iran, New species. (Rebut: 20 Vil/ 95; Acceptaci6 condiconal: 72 1V 96; Acc. definitiva: 70 lX 96) Ryszard Haitlinger, Dept. o fzoology, AgriculturalAcademy, 50-205 Wroclaw, Cybulskiego20, Polska (Poland).- Alireza Saboori, Dept. of Entomology, Tarbiat Modarres Univ., Teheran, lran Oran). lntroduction Saudi Arabia (HAITLINGER,1994a) and L. guus Haitlinger described from Turkmenia (HAIT- Only a few erythraeid mites are known from LINGER, 1990~).Larval species of the genus lran and neighbouring countries. -
Colwellcv 2018 July Copy
Curriculum Vitae Robert Knight Colwell Personal Postal Address: Department of Entomology Museum of Natural History University of Colorado Boulder, CO 80309, U.S.A. E-mail: robertkcolwell@gmailcom Homepage: http://viceroy.colorado.edu/colwell Education Ph.D. 1969 University of Michigan, Ann Arbor, MI, Ecology A.B. 1965 Harvard University, Cambridge, MA, Biology Affiliations and Professional Experience 2016-Present Adjunct Professor, Tropical Forests and People Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia 2012-Present Museum Curator Adjoint in Entomology and Zoology, University of Colorado Museum of Natural History, Boulder 2014-Present Distinguished Research Professor, University of Connecticut 2014-Present Board of Trustees Distinguished Professor Emeritus, University of Connecticut 2001-2014 Board of Trustees Distinguished Professor, University of Connecticut 1989-2001 Professor, University of Connecticut 1982-1990 Professor, University of California at Berkeley 1976-1982 Associate Professor, University of California, Berkeley 1970-1976 Assistant Professor, University of California, Berkeley 2014-Present Professor e Pesquisador Visitante Especial, Universidade Federal de Goiás, Brazil 2010-Present International Collaborator, Center for Macroecology, Evolution and Climate, The Natural History Museum of Denmark, University of Copenhagen, Denmark 1983-1985 Vice Chair, Department of Zoology, U.C., Berkeley 1982 Acting Chair, Department of Zoology, U.C., Berkeley 1969-1970 Ford Postdoctoral Fellow, -
PARASITIC MITES of HONEY BEES: Life History, Implications, and Impact
Annu. Rev. Entomol. 2000. 45:519±548 Copyright q 2000 by Annual Reviews. All rights reserved. PARASITIC MITES OF HONEY BEES: Life History, Implications, and Impact Diana Sammataro1, Uri Gerson2, and Glen Needham3 1Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802; e-mail: [email protected] 2Department of Entomology, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot 76100, Israel; e-mail: [email protected] 3Acarology Laboratory, Department of Entomology, 484 W. 12th Ave., The Ohio State University, Columbus, Ohio 43210; e-mail: [email protected] Key Words bee mites, Acarapis, Varroa, Tropilaelaps, Apis mellifera Abstract The hive of the honey bee is a suitable habitat for diverse mites (Acari), including nonparasitic, omnivorous, and pollen-feeding species, and para- sites. The biology and damage of the three main pest species Acarapis woodi, Varroa jacobsoni, and Tropilaelaps clareae is reviewed, along with detection and control methods. The hypothesis that Acarapis woodi is a recently evolved species is rejected. Mite-associated bee pathologies (mostly viral) also cause increasing losses to apiaries. Future studies on bee mites are beset by three main problems: (a) The recent discovery of several new honey bee species and new bee-parasitizing mite species (along with the probability that several species are masquerading under the name Varroa jacob- soni) may bring about new bee-mite associations and increase damage to beekeeping; (b) methods for studying bee pathologies caused by viruses are still largely lacking; (c) few bee- and consumer-friendly methods for controlling bee mites in large apiaries are available. -
Fauna of Nakai District, Khammouane Province, Laos
Systematic & Applied Acarology 21(2): 166–180 (2016) ISSN 1362-1971 (print) http://doi.org/10.11158/saa.21.2.2 ISSN 2056-6069 (online) Article First survey of the hard tick (Acari: Ixodidae) fauna of Nakai Dis- trict, Khammouane Province, Laos, and an updated checklist of the ticks of Laos KHAMSING VONGPHAYLOTH1,4, PAUL T. BREY1, RICHARD G. ROBBINS2 & IAN W. SUTHERLAND3 1Institut Pasteur du Laos, Laboratory of Vector-Borne Diseases, Samsenthai Road, Ban Kao-Gnot, Sisattanak District, P.O Box 3560, Vientiane, Lao PDR. 2Armed Forces Pest Management Board, Office of the Assistant Secretary of Defense for Energy, Installations and Environ- ment, Silver Spring, MD 20910-1202. 3Chief of Entomological Sciences, U.S. Naval Medical Research Center - Asia, Sembawang, Singapore. 4Corresponding author: [email protected] Abstract From 2012 to 2014, tick collections for tick and tick-borne pathogen surveillance were carried out in two areas of Nakai District, Khammouane Province, Laos: the Watershed Management and Protection Authority (WMPA) area and Phou Hin Poun National Protected Area (PHP NPA). Throughout Laos, ticks and tick- associated pathogens are poorly known. Fifteen thousand and seventy-three ticks representing larval (60.72%), nymphal (37.86%) and adult (1.42%) life stages were collected. Five genera comprising at least 11 species, including three suspected species that could not be readily determined, were identified from 215 adult specimens: Amblyomma testudinarium Koch (10; 4.65%), Dermacentor auratus Supino (17; 7.91%), D. steini (Schulze) (7; 3.26%), Haemaphysalis colasbelcouri (Santos Dias) (1; 0.47%), H. hystricis Supino (59; 27.44%), H. sp. near aborensis Warburton (91; 42.33%), H. -
Cyclamen Mite, Phytonemus Pallidus (Banks) (Arachnida: Acarina: Tarsonemidae)1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-178 Cyclamen Mite, Phytonemus pallidus (Banks) (Arachnida: Acarina: Tarsonemidae)1 H. A. Denmark2 Introduction Synonymy The cyclamen mite, Phytonemus pallidus Tarsonemus pallidus Banks, 1901: 294. (Banks), (family Tarsonemidae), was first noticed in New York in 1898 and in Canada in 1908. The Tarsonemus fragariae Zimmerman, 1905: 91. cyclamen mite was described by Banks (1901) as Steneotarsonemus pallidus (Banks), Beer, Tarsonemus pallidus from leaves of greenhouse 1954: 1267. chrysanthemums at Jamaica, New York. Today, it is generally distributed throughout the country. Ewing Phytodromus pallidus (Banks), Lindquist, (1939) considered Tarsonemus fragariae Zimmermn 1987: 291. and T. destructor Reuter to be synonyms of T. pallidus Banks. Beer (1954) placed it in the genus Steneotarsonemus. However, Linquist placed in it the genus Phytodromus in 1987. Description The mites are often found on the corms of This is one of the smaller mites that attacks cyclamens in storage and are thus transported by ornamental plants. The adult female mite is yellowish trade. It has been spread on plants in unopened brown, 250µ to 260µ long, with hind legs reduced leaflets and on the tubers of cyclamen to all parts of to slender threadlike structures. The male is the world. This mite requires high humidity and approximately 75% the size of the female. On the avoids light. It overwinters in the adult stage in the adult males the fourth pair of legs are modified and temperate zone. It is widely distributed throughout are used to transport the pupae or adult females.