The Maillard Reaction

Total Page:16

File Type:pdf, Size:1020Kb

The Maillard Reaction The Maillard Reaction Consequences for the Chemical and Life Sciences Edited by RAPHAEL IKAN Hebrew University of Jerusalem, Israel JOHN WILEY & SONS Chichester • New York • Brisbane • Toronto • Singapore Copyright © 1996 John Wiley & Sons Retrieved from: www.knovel.com Copyright © 1996 by John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex POI9 IUD, England National 01243 779777 International ( + 44) 1243 779777 All rights reserved. No part of this book may be reproduced by any means, or transmitted, or translated into a machine language without the written permission of the publisher. Other Wiley Editorial Offices John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA Jacaranda Wiley Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Canada) Ltd, 22 Worcester Road, Rexdale, Ontario M9W ILl, Canada John Wiley & Sons (SEA) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 0512 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0-471-96300-3 Copyright © 1996 John Wiley & Sons Retrieved from: www.knovel.com To my wife, Yael, and our favorite offspring, who enjoy her tasty Maillard-flavored food. Copyright © 1996 John Wiley & Sons Retrieved from: www.knovel.com Contents List of Contributors .............................................. ix Preface ......................................................... xi List of Abbreviations ............................................. xiii 1 Geochemical Aspects of the Maillard Reaction ..................... R. Ikan, Y. Rubinsztain, A. Nissenbaum and l. R. Kaplan 2 Thermal Generation of Maiilard Aromas ......................... 27 C.-T. Ho 3 The Role of Oxidation in the Maillard Reaction in Vivo ............. 55 J. W. Baynes 4 Free Radicals and Glycation Theory ............................. 73 S. P. Wolff 5 Scavenging of Active Oxygen by Melanoidins ...................... 89 F. Hayase The Impact of the Maillard Reaction on the Nutritional Value of Food Proteins ....... ....................................... 105 M. Friedman 7 Genotoxicity of Maiilard Reaction Products ....................... 129 J. W. Wong and T. Shibamoto 8 DNA-Advanced Glycosylation ................................... 161 R. Bucala and A. Cerami Copyright © 1996 John Wiley & Sons Retrieved from: www.knovel.com viii Contents 9 Maillartl Reaction under Microwave Irradiation .................... 183 V. A. Faylayan Author Index .................................................... 199 Subject Index .................................................... 211 Copyright © 1996 John Wiley & Sons Retrieved from: www.knovel.com List of Contributors PROFESSOR JOHN W. BAYNES Department of Chemistry and Biochemistry and School of Medicine, University of South Carolina, Columbia, SC 29208, USA PROFESSOR RICHARD BUCALA The Picower Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA PROFESSOR ANTHONY CERAMI The Picower Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA DR MENDEL FRIEDMAN USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA PROFESSOR F. HAYASE Department of Agricultural Chemistry, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214, Japan PROFESSOR CHI-TANG HO Department of Food Science, Rutgers State University, PO Box 231, New Brunswick, NJ 08903-0231, USA PROFESSOR RAPHAEL IKAN Department of Organic Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel PROFESSOR I. R. KAPLAN Institute of Geophysics and Planetary Physics, University of California Los Angeles, USA Copyright © 1996 John Wiley & Sons Retrieved from: www.knovel.com x List of Contributors PROFESSOR A. NISSENBAUM Weizmann Institute of Science, Rehovot, Israel PROFESSOR TAKAYUKI SHIBAMOTO Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA DR Y. RUBINSZTAIN Department of Organic Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel PROFESSOR SIMON P. WOLFF Formerly of Toxicology Laboratory, Department of Medicine, University College London Medical School, London WC1E 6JJ, England DR JON W. WONG Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA PROFESSOR V. A. YAYLAYAN Department of Food Science and Agricultural Chemistry, McGill University, 2111 Lakeshore Road, Ste Anne de Bellevue, Quebec, Canada H9X 3 V9 Copyright © 1996 John Wiley & Sons Retrieved from: www.knovel.com Preface The term MaiUard reaction, or nonenzymatic browning, was coined in honor of its inventor, Louis-Camille Maillard. It is related to the reaction between amines and carbonyl compounds, especially reducing sugars. It has been detected in heated, dried or stored foods and in the mammalian organisms. In food stuffs, the Maillard reaction is responsible for changes in the flavor, color, nutritive value and the formation of mutagenic compounds. In vivo aging and the complications of diabetes are partly ascribed to the interaction of glucose and proteins. Mauron has divided the Maillard reaction into three stages: early, advanced and final. The first corresponds to the chemically well-defined stages, without browning (flavors, etc.), and the second to the innumerable reactions leading to the final stage of formation of insoluble brown polymers (melanoidins). Maillard reactions are strongly dependent on the reaction conditions. The most important parameters are duration and temperature of heating, moisture content, pH and type of sugar present. This book tries to show the present state of the art in the development of new horizons and approaches of the Maillard reactions in the following topics: the Maillard reaction under physiological conditions, its impact on aging, its anticarcinogenic effects, free radicals and glycation theory, genotoxicity, generation of aromas, the effect on nutritional values of food, nonenzymatic glycation, geochemical aspects, DNA cleavage of glycated proteins, biological recognition of Maillard reaction products, scavenging of active oxygens and microwave-induced Maillard reaction. The wealth of information presented in this book by well-known scientists on the multidisciplinary nature of the Maillard reaction may open up the way for a cross-fertilization between the various disciplines. Although this book cannot give a complete account of the Maillard reaction, we hope that it will furnish important information on its various aspects. The Maillard reaction is regarded as a 'simple' and an easy reaction to carry out in the laboratory; however, the mechanism of this reaction is rather complex. Copyright © 1996 John Wiley & Sons Retrieved from: www.knovel.com xii Preface Furthermore, its involvement in many interdisciplinary fields is remarkable. In this respect it is incomparable to any other chemical reaction. This book might be of interest to scientists engaged in research in the following areas: biochemistry, biology, chemistry, geochemistry, nutrition, food, physiology, toxicology and other areas. I would like to take this opportunity to express my gratitude to the contributing authors and the publisher. Raphael Ikan Department of Organic Chemistry, Laboratory of Natural Products and Organic Geochemistry, Hebrew University of Jerusalem, Israel and The Institute of Geophysics and Planetary Physics, University of California Los Angeles (UCLA), USA Copyright © 1996 John Wiley & Sons Retrieved from: www.knovel.com List of Abbreviations AGE Advanced Glycosylation End-products BSA Bovin Serum Albumin 13C-CP-MAS NMR 13C-Cross Polarized Magic Angle Spinning Nuclear Magnetic Resonance CML Carboxymethyllysine EDTA Ethylene Diamine Tetra Acetate ESR Electron Spin Resonance FFI Furoyl Furanyl Imidazole GC-MS Gas Chromatography-Mass Spectrometry HHA Heterocyclic Aromatic Amines HPLC High Performance Liquid Chromatography HS Humic Substances LC-MS Liquid Chromatography-Mass Spectrum LDL Low Density Lipoproteins MRP Maillard Reaction Products NFP Novel Fluorophore NMR Nuclear Magnetic Resonance NPR Net Protein Ratio NPU Net Protein Utilization PER Protein Efficiency Ratio PNV Protein Nutritional Value UV Ultra Violet Copyright © 1996 John Wiley & Sons Retrieved from: www.knovel.com 1 Geochemical Aspects of the Maillard Reaction R. IKAN 1, Y. RUBINSZTAIN l, A. NISSENBAUM 2 and I. R. KAPLAN 3 ~Department of Organic Chemistry, Hebrew University of Jerusalem, Israel 2Weizmann Institute of Science, Rehovot, Israel 3Institute of Geophysics and Planetary Physics, University of California Los Angeles, USA Brown acidic polymers known as humic substances account for much of the organic material that occurs in soils, natural waters and recent sediments (Borkovsky, 1965). It has long been recognized that the degradation products of lignin can react with proteins and amino acids to form humic substances (Flaig, 1964). Since the work of Maillard (1913), evidence has accumulated which suggests that natural humic substances may also be produced by condensation reactions between sugars and amino acids (Enders and Theis, 1938; Hodge, 1953; Abelson and Hare, 1971). This evidence is based upon chemical similarities between natural humic substances and sugar-amino acid condensation products (melanoidins) produced in the laboratory (Hoering, 1973) and upon the occurrence of indigenous humic substances in marine environments, where carbohydrates and proteins or their degradation products, because of their abundance, are more likely precursors of humic substances
Recommended publications
  • 5-Hydroxymethylfurfural Formation in Bread As a Function of Heat Treatment Intensity: Correlations with Browning Indices
    foods Article 5-Hydroxymethylfurfural Formation in Bread as a Function of Heat Treatment Intensity: Correlations with Browning Indices Gabriella Giovanelli and Carola Cappa * Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via G. Celoria, 2-20133 Milano, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-025-0319-179; Fax: +39-503-19-190 Abstract: 5-hydroxymethylfurfural (HMF) is formed during bread baking as a Maillard reaction product (MRP); it can exert toxicity and it is regarded as a potential health risk because of its high consumption levels in western diets. The aim of this study was to evaluate HMF formation in bread as a function of heat treatment intensity (HTI) and to investigate correlations between HMF and easily detectable browning indices. White breads were baked at 200 ◦C and 225 ◦C for different baking times for a total of 24 baking trials. Browning development was evaluated by reflectance colorimetric and computer vision colour analysis; MRP were quantified spectrophotometrically at 280, 360 and 420 nm and HMF was determined by HPLC. HMF concentrations varied from 4 to 300 mg/kg dw. Colour indices (100–L*) and Intensity mean resulted significantly correlated between each other (r = −0.961) and with MRP (r ≥ 0.819). The effects of the different HTI were visualized by principal component analysis and the data were used to evaluate the best fitting regression models between HMF concentration and other browning indices, obtaining models with high correlation coefficients (r > 0.90). Citation: Giovanelli, G.; Cappa, C. Keywords: bread; Maillard reaction products; HMF; browning; colour; regression models 5-Hydroxymethylfurfural Formation in Bread as a Function of Heat Treatment Intensity: Correlations with Browning Indices.
    [Show full text]
  • Bakery and Confectionary HM-302 UNIT: 01 HISTORICAL BACKGROUND of BAKING
    Bakery and Confectionary HM-302 UNIT: 01 HISTORICAL BACKGROUND OF BAKING STRUCTURE 1.1 Introduction 1.2 Objective 1.3 Historical Background of Baking 1.4 Introduction to Large, Small Equipments and Tools 1.5 Wheat 1.5.1 Structure of Wheat 1.5.2 Types of Flour 1.5.3 Composition Of Flour 1.5.4 WAP of Flour 1.5.5 Milling of Wheat 1.5.6 Differences Between Semolina, Whole Wheat Flour And Refined Flour 1.5.7 Flour Testing 1.6 Summary 1.7 Glossary 1.8 Reference/Bibliography 1.9 Terminal Questions 1.1 INTRODUCTION BREAD!!!!…….A word of many meanings, a symbol of giving, one food that is common to so many countries….but what really is bread ????. Bread is served in various forms with any meal of the day. It is eaten as a snack, and used as an ingredient in other culinary preparations, such as sandwiches, and fried items coated in bread crumbs to prevent sticking. It forms the bland main component of bread pudding, as well as of stuffing designed to fill cavities or retain juices that otherwise might drip out. Bread has a social and emotional significance beyond its importance as nourishment. It plays essential roles in religious rituals and secular culture. Its prominence in daily life is reflected in language, where it appears in proverbs, colloquial expressions ("He stole the bread from my mouth"), in prayer ("Give us this day our daily bread") and in the etymology of words, such as "companion" (from Latin comes "with" + panis "bread"). 1.2 OBJECTIVE The Objective of this unit is to provide: 1.
    [Show full text]
  • Harvesting-Traditions-1-47-Rough-In
    HARVESTING TRADITIONS HARVESTING TRADITION Written and produced by BENJAMIN LESTER Writing Edited by Peter Kobel and Kate Henessy Photography, Layout, and design by Benjamin Lester www.localgrain.org In loving Memory of My Father, James Matthew Lester and For My Mother, Margaret Lester Copyright Farm Feast 2018 and All Rights Reserved my step Mother Nancy Lester My three wonderful, truly good parents Words can’t sumate how fortunate I have been but hopefully this book can. Table of Contents 1. Introduction 2. Culling The Harvest 3. Reverence, Connection and Gratitutude 4. The Essential Storm 5.Our Great Grains 6. Heritage Wheat 7.Milling 8. Hielroom Corn 9. Measurement 10. Paddy Rice 11. Storage 12.Beans 13.Temperature 14.Oats, buckwheat 15. fermentation 16.Heritage Grain Brewing 17. rye 18.Timing ACKNOWLEDGEMENTS This book would not be possible without the tireless work and dedication of our farmers. Alan Zuchowski, Stan, Simon, and Abbie White, Sara and Matt Williams, (etc...) My company My Family Community, members, and supporters Hosts Capsicum ovatum DC. Capsicum petenense Standl. Capsicum pomiferum Mart. ex Steud. Capsicum purpureum Vahl ex Hornem. Capsicum pyramidale Mill. Capsicum quitense Willd. ex Roem. & Schult. Capsicum silvestre Vell. Capsicum sphaerium Willd. Capsicum tetragonum Mill. Capsicum tomatiforme Fingerh. ex Steud. Capsicum torulosum Hornem. Capsicum tournefortii Besser Capsicum ustulatum Paxton “The Most Wonderful Story I know is, perhaps, that this bread, thousands of years old though it is, is not yet finished in the baking. Botanist, famer, miller, and baker are stillexperimenting with it. The entire story of bread goes very deep-its social and technical, religious, political, and scientific story” H.E Jacob “Six Thousand Years of Bread” The Richness of Connection We absorb the most valuable lessons from our parents through how they live their lives.
    [Show full text]
  • Maillard Reaction Products: Occurrence, Mitigation Strategies and Their Physiological Relevance
    DOI: 10.14267/phd.2015001 MAILLARD REACTION PRODUCTS: OCCURRENCE, MITIGATION STRATEGIES AND THEIR PHYSIOLOGICAL RELEVANCE Vincenzo Fogliano Doctoral Thesis Corvinus University of Budapest Faculty of Food Science Department of Food Chemistry and Nutrition Budapest, 2014 DOI: 10.14267/phd.2015001 PhD School/Program Name: PhD School of Food Science Field: Food Science Head: Prof. József Felföldi, PhD Corvinus University of Budapest Supervisor: Prof. Dr Livia Simon Sarkadi, DSc Department of Food Chemistry and Nutrition Faculty of Food Science Corvinus University of Budapest The applicant met the requirement of the PhD regulations of the Corvinus University of Budapest and the thesis is accepted for the defence process. ............................................... ............................................... Head of PhD School Supervisor i DOI: 10.14267/phd.2015001 According to the Doctoral Council of Life Sciences of Corvinus University of Budapest on 7th October, 2014, the following committee was designated for the public discussion: Committee: Chair: Prof. Dr József Farkas, MHAS, BCE Members: Prof. Dr Péter Fodor, DSc, BCE Prof. Dr András Salgó, DSc, BME Prof. Dr Éva Gelencsér, CSc, NAIK-ÉKI Dr Gabriella Kiskó, PhD, BCE Opponents: Prof. Dr Anna Halász, DSc, NAIK-ÉKI Prof. Dr Péter Biacs, DSc, BCE Secretary: Dr Gabriella Kiskó, PhD, BCE ii DOI: 10.14267/phd.2015001 TABLE OF CONTENT Page 1. General Introduction 1 1.1 Description of the Maillard Reaction 1 1.2 Relevance in different foods 2 1.3 Why is still necessary to study this reaction
    [Show full text]
  • Sensory and Physicochemical Characterization of Sourdough Bread Prepared with a Coconut Water Kefir Starter
    foods Article Sensory and Physicochemical Characterization of Sourdough Bread Prepared with a Coconut Water Kefir Starter Mansi Limbad * , Noemi Gutierrez Maddox, Nazimah Hamid and Kevin Kantono Department of Food Science and Microbiology, Auckland University of Technology, 34, Saint Paul Street, Auckland 1010, New Zealand; [email protected] (N.G.M.); [email protected] (N.H.); [email protected] (K.K.) * Correspondence: [email protected]; Tel.: +64-9-921-9999 (ext. 8384) Received: 18 July 2020; Accepted: 19 August 2020; Published: 24 August 2020 Abstract: There is a recognized need for formulating functional food products using selected lactic acid bacteria (LAB) starter cultures from various sources such as kefir, yoghurt or kombucha that have health benefits. The principle objective of this study was to investigate the use of a coconut water kefir-based fermentation starter culture using Lactobacillus fermentum and Lactobacillus plantarum to develop a sourdough bread. Check-all-that-apply (CATA) sensory profiling was used in this study to evaluate the sensory profile of sourdough breads that varied with culture type, culture concentrations, with and without added yeast, and with fermentation for 18 and 24 h. Based on correspondence analysis (CA) of the CATA results, bread samples with positive sensory attributes were chosen for further physicochemical analysis. Physicochemical analyses (texture, proximate composition, shelf life, carboxylic acid analysis and amino acid analysis) were carried out on breads formulated with starter culture concentrations of 8.30 log CFU/mL of L. fermentum, 4.90 log CFU/mL of L. fermentum and 9.60 log CFU/mL of L.
    [Show full text]
  • Impact of Wort Amino Acids on Beer Flavour: a Review
    fermentation Review Impact of Wort Amino Acids on Beer Flavour: A Review Inês M. Ferreira and Luís F. Guido * LAQV/REQUIMTE, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; ines.fi[email protected] * Correspondence: [email protected]; Tel.: +351-220-402-644 Received: 3 March 2018; Accepted: 25 March 2018; Published: 28 March 2018 Abstract: The process by which beer is brewed has not changed significantly since its discovery thousands of years ago. Grain is malted, dried, crushed and mixed with hot water to produce wort. Yeast is added to the sweet, viscous wort, after which fermentation occurs. The biochemical events that occur during fermentation reflect the genotype of the yeast strain used, and its phenotypic expression is influenced by the composition of the wort and the conditions established in the fermenting vessel. Although wort is complex and not completely characterized, its content in amino acids indubitably affects the production of some minor metabolic products of fermentation which contribute to the flavour of beer. These metabolic products include higher alcohols, esters, carbonyls and sulfur-containing compounds. The formation of these products is comprehensively reviewed in this paper. Furthermore, the role of amino acids in the beer flavour, in particular their relationships with flavour active compounds, is discussed in light of recent data. Keywords: amino acids; beer; flavour; higher alcohols; esters; Vicinal Diketones (VDK); sulfur compounds 1. Introduction The process by which beer has been brewed has not changed significantly since its discovery over 2000 years ago. Although industrial equipment is used for modern commercial brewing, the principles are the same.
    [Show full text]
  • Triggering the Aroma Production Through Chemical Kinetics, Chemical Engineering Transactions, 52, 985-990 DOI:10.3303/CET1652165 986
    985 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 52, 2016 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Petar Sabev Varbanov, Peng-Yen Liew, Jun-Yow Yong, Jiří Jaromír Klemeš, Hon Loong Lam Copyright © 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-42-6; ISSN 2283-9216 DOI: 10.3303/CET1652165 Bread as a Chemical Reactor: Triggering the Aroma Production through Chemical Kinetics a a b b Davide Papasidero* , Alessandro Giorgi , Elisa Rocchi , Laura Piazza , Sauro Pierucci a, Giulia Bozzanoa, Flavio Manentia aDipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy b DeFENS, Dept. of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy [email protected] Recent studies address the structural modifications occurring in the thermal processing of food to interact with the development of aroma and taste compounds. Food sensory science is often related to statistical analysis of panel tests and subjective human responses. From a chemical engineering perspective, food can be treated like a chemical reactor. Bread can be one example of “food chemical reactor”, which enormously changes its density (from high to low depending on the leavening process), its aroma (driven from Maillard and other reactions involving carbohydrates, proteins and fats), its color (caramelization and Maillard), its structure (starch gelatinization, gluten hardening), etc. Indeed, transport phenomena and chemical kinetics are consistently involved in this process. A detailed study on the chemical kinetics of bread aroma development can be helpful to achieve an objective quality marker, which can be monitored and controlled dynamically through the process conditions and variables.
    [Show full text]
  • Saccharomyces Cerevisiae in the Production of Fermented Beverages
    beverages Review Saccharomyces cerevisiae in the Production of Fermented Beverages Graeme M Walker 1,* and Graham G Stewart 2 1 Abertay University, Dundee, Scotland DD1 1HG, UK 2 Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1382-308658 Academic Editor: Edgar Chambers IV Received: 20 October 2016; Accepted: 11 November 2016; Published: 17 November 2016 Abstract: Alcoholic beverages are produced following the fermentation of sugars by yeasts, mainly (but not exclusively) strains of the species, Saccharomyces cerevisiae. The sugary starting materials may emanate from cereal starches (which require enzymatic pre-hydrolysis) in the case of beers and whiskies, sucrose-rich plants (molasses or sugar juice from sugarcane) in the case of rums, or from fruits (which do not require pre-hydrolysis) in the case of wines and brandies. In the presence of sugars, together with other essential nutrients such as amino acids, minerals and vitamins, S. cerevisiae will conduct fermentative metabolism to ethanol and carbon dioxide (as the primary fermentation metabolites) as the cells strive to make energy and regenerate the coenzyme NAD+ under anaerobic conditions. Yeasts will also produce numerous secondary metabolites which act as important beverage flavour congeners, including higher alcohols, esters, carbonyls and sulphur compounds. These are very important in dictating the final flavour and aroma characteristics of beverages such as beer and wine, but also in distilled beverages such as whisky, rum and brandy. Therefore, yeasts are of vital importance in providing the alcohol content and the sensory profiles of such beverages. This Introductory Chapter reviews, in general, the growth, physiology and metabolism of S.
    [Show full text]
  • Ampelopsis Grossedentata) on Acrylamide Formation, Quality and Consumer Acceptability of Bread
    foods Article Effects of Hot-Water Extract from Vine Tea (Ampelopsis grossedentata) on Acrylamide Formation, Quality and Consumer Acceptability of Bread Qian Ma 1, Shengbao Cai 1 , Yijia Jia 1, Xiyan Sun 2, Junjie Yi 1 and Jiang Du 2,* 1 Faculty of Agriculture and Food, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China; [email protected] (Q.M.); [email protected] (S.C.); [email protected] (Y.J.); [email protected] (J.Y.) 2 Faculty of Art and Communication, Kunming University of Science and Technology, Kunming 650500, China; [email protected] * Correspondence: [email protected]; Tel.: +86-153-9869-1006 Received: 16 February 2020; Accepted: 20 March 2020; Published: 23 March 2020 Abstract: Acrylamide is a harmful substance that could be inhibited by natural products. Vine tea is an edible herb belonging to the Vitaceae family and has been approved by Chinese authorities as a new food ingredient in 2013. However, the effects of vine tea extract on acrylamide formation and bread quality are rarely investigated. In this study, the polyphenol composition of hot-water extract from vine tea was characterized by ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-ESI-HRMS/MS), and its effects on acrylamide formation, quality, and consumer acceptability of bread were investigated. Vine tea extract and its main polyphenol, dihydromyricetin, significantly inhibited the acrylamide formation in bread, especially the low dose of vine tea extract (1.25 g/kg), which decreased the acrylamide formation by 58.23%. The color and texture of bread were significantly affected by vine tea extract or dihydromyricetin, whereas the moisture content was not changed remarkably.
    [Show full text]
  • Maillard Reaction
    Maillard Reaction Chemistry and Consequences in Food Properties Blanca Gomez Guerrero Topics in Food Science (FOOD 7240) Department of Food Science April 2007 Contents Introduction History Maillard Reaction in Food Chemical Mechanism of Maillard reaction Food Properties under Maillard reaction Color Flavour and Aroma Texture Bioactivity Nutrition Conclusions Bibliography 2 Introduction Maillard reaction is a non-enzymatic browning reaction, caused by the condensation of an amino group and a reducing compound. It is a complex network of diverse reactions involving mixtures of compounds with varying initial concentrations. The Maillard reaction is divided in four steps: 1) the formation of an N glucosamine from sugar amino condensation; 2) rearrangement of the glycosamine via Amadori mechanism; 3) degradation and fragmentation of the Amadori product and amino acid degradation; and 4) the condensation and polymerization of aldol, aldehyde and amino compounds forming melanoidins. This reaction occurs in many different fields, and the analysis under any particular set of conditions represents a continuous challenge for scientists. Great numbers of both desirable and undesirable changes occur in raw materials and foods as a result of the Maillard reaction. In food, the condensation is commonly between the amino acids (both free and peptide-bound), and reducing sugars. During heat treatment like frying, roasting and baking the reaction produces different flavours and colours, most of them were desirable. Roasting of cereals is an example of processes in which the reaction brings about a compromise between positive and negative effects. The Maillard reaction was first studied with respect to humus formation and only later became concerned with color and flavour formation in food.
    [Show full text]
  • Protein Proteins Are One of the Macronutrients
    Protein Proteins are one of the macronutrients. Proteins form the main part all cells and tissues, making them essential for growth and repair. Elemental compositions of proteins Proteins are made up of four elements: carbon (C), hydrogen (H), oxygen (O) and nitrogen (N). Proteins are the only nutrients that contain nitrogen, which is essential for growth. Some proteins contain small quantities of sulfur (S), iron (Fe) and phosphorus (P). Chemical structure of proteins Proteins are large molecules composed of amino acids. Amino acids are joined together by peptide links to form polypeptide chains that make up proteins. Basic structure of an amino acid Each amino acid contains: An amino group (NH2) (basic) A carboxyl group (COOH) (acidic) A central carbon (C) A single hydrogen (H) A variable group (R): changes with each amino acid. Basic structure of an amino acid: H | NH2— C —COOH | R Examples of amino acids The variable group (R) is different in each amino acid. When the variable group (R) is hydrogen (H) When the variable group (R) is HS-CH2 the the amino acid is glycine. amino acid is cysteine. H H | | NH2 — C — COOH NH2 — C — COOH | | H HS — CH2 Essential and non-essential amino acids The human body uses 20 different amino acids to make all the proteins it needs to function. These are all found in food. They are divided into two groups: essential and non-essential amino acids. Essential amino acids Non-essential amino acids Can’t be manufactured by the body, Can be manufactured by the body, therefore therefore must be obtained from food.
    [Show full text]
  • Acrylamide in Food Products
    cess Pro ing d & o o T F e c f h o n l Krishnakumar and Visvanathan, J Food Process Technol 2014, 5:7 o a l Journal of Food n o r g DOI: 10.4172/2157-7110.1000344 u y o J ISSN: 2157-7110 Processing & Technology Review Article Open Access Acrylamide in Food Products: A Review Krishnakumar T1* and Visvanathan R2 1Department of Food and Agricultural Process Engineering, Tamil Nadu Agricultural University, Coimbatore, India 2Post Harvest Technology Centre, Tamil Nadu Agricultural University, Coimbatore, India Abstract Acrylamide or 2-propenamide an industrial chemical formed in some foods particularly starchy foods during heating process such as baking, frying and roasting. Acrylamide is proven to be carcinogenic in animals and a probable human carcinogen mainly formed in foods by the reaction of asparagine (free amino acid) with reducing sugars (glucose and fructose) as part of the Maillard reaction during heating under high temperature and low moisture conditions. The main aim of this review is to summarize the results of academic and industrial research on occurrence, dietary exposure, formation mechanism and mitigation measures of acrylamide in bakery, cereal and potato food products. Keywords: Acrylamide; Asparagine; Maillard reaction; Bakery; intake have been made for populations in many countries consist of Cereal; Potato products different dietary records [21-33]. These studies found that the amount of acrylamide was extremely higher in fried potato products (such as Introduction French fries and potato chips) followed by cereals, crisp breads, biscuits and other bakery products. Concentration and dietary intake of food Acrylamide (C H NO; 2-propenamide), is a colourless, non-volatile 3 5 have significant variations, which depends upon cooking methods crystalline solid, soluble in water and has a molecular weight of 71.08 [21,34-42].
    [Show full text]