Effects of Maillard Reaction on the Immunoreactivity of Almond Major Protein in the Food Matrices Guneet Singh Chhabra

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Maillard Reaction on the Immunoreactivity of Almond Major Protein in the Food Matrices Guneet Singh Chhabra Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2013 Effects of Maillard Reaction on the Immunoreactivity of Almond Major Protein in the Food Matrices Guneet Singh Chhabra Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF HUMAN SCIENCES EFFECTS OF MAILLARD REACTION ON THE IMMUNOREACTIVITY OF ALMOND MAJOR PROTEIN IN THE FOOD MATRICES By GUNEET SINGH CHHABRA A Thesis submitted to the Department of Nutrition, Food and Exercise Science in partial fulfilment of the requirements for the degree of Master of Science Degree Awarded Fall Semester, 2013 Guneet Singh Chhabra defended this thesis on October 18, 2013. The members of the supervisory committee were: Shridhar K. Sathe Professor Directing Thesis Yun-Hwa Peggy Hsieh Committee Member John G. Dorsey Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii ACKNOWLEDGMENTS This master’s thesis is dedicated to my niece, Noor who has come in my life as a blessing of the almighty. Your smile is my remedy. I wish to see you grow all your life and live all your dreams, for that will make my one dream come true, to see you happy. God bless you always. I love you! The journey that has lead to the completion of this Thesis has been long and challenging and could not have been accomplished without several people. Thank you first to Dr. Sathe, who gave me a chance to come back and supported me to finish my master’s degree. Sir, you literally gave me a new beginning in life and when I needed it the most. I owe my life to my family and friends, whose moral support kept me going when I got discouraged or frustrated. The encouragement I received outside of the academic world overwhelms me. To perhaps my biggest supporter throughout my life, the almighty, I call him Waheguru, whose blessings carried me through many tough times and kept me going when the end was not insight, thank you. Thank you to my Mom, Harpreet Kaur and Dad, Jasbir Singh, who got me where I am today and always have stood with me in my decisions. To my sister, Gursimran Kaur and brother-in-law, Harpreet Singh for being the best advisors all the time and bringing the angel of my life, Kulpreet Kaur aka Noor, who is most precious to me. To my brother, Mandeep Singh, my best friend for ever, thank you for always being there with all your love. Thank you so much to my committee members, Dr. Hsieh and Dr. Dorsey, who provided valuable suggestions and guidance in this research and otherwise. I could not have completed this Thesis without the academic and moral support of my lab mates. Coming to lab everyday was so easy when you visited an environment of learning, thinking, and encouragement. I was so lucky to be a part of a lab with so many caring and gifted people that have become dear friends. iii They have taught me not only about protein research, but have taught me the value of peer support. Thank you to Changqi Liu “Ben”, who always helped me selflessly and gave me valuable suggestions during this research. There is so much to learn from you and you are a good man my friend. Thank you to Sahil Gupta for being a friend and a colleague and always being there to celebrate good and bad days. I would take this opportunity to thank Ying Zhang for being an inspiration to work hard. Thank you to my colleagues Jasamrit Bakshi and Sepideh Alasvand. I will cherish all of you. Finally, thank you again to the person who has had the biggest impact on me through the process of completing my Master’s Thesis, my major professor, Dr. Shridhar Sathe. I cannot thank you enough for everything that you have done for me. Dr. Sathe loves research, and he loves his graduate students. Thank you for giving me the finest education that one could receive in this area of research and for always finding a way to support me financially and giving me the opportunity to teach. Thank you for serving as my major professor for the past three years, for being a mentor and a friend. Most of all, thank you for believing in me, even when I did not. You have instilled in me a confidence that is worth more than I can begin to explain. iv TABLE OF CONTENTS List of Tables................................................................................................................................vii List of Figures.............................................................................................................................viii Abstract..........................................................................................................................................ix INTRODUCTION..........................................................................................................................1 Statement of the Problem................................................................................................................5 Research Hypothesis.......................................................................................................................5 Limitations of the Study…..............................................................................................................6 Significance of the Study................................................................................................................6 Definitions.......................................................................................................................................7 REVIEW OF LITERATURE.......................................................................................................10 Maillard Reaction Mechanism......................................................................................................11 MATERIALS AND METHODS..................................................................................................16 Isolation of Almond Major Protein (AMP)...................................................................................21 Protein Extraction..........................................................................................................................22 HunterLab LabScan XE Spectrophotometer.................................................................................22 Water Activity (Aw)….................................................................................................................22 Soluble Protein Content................................................................................................................23 Immunoassay.................................................................................................................................24 Statistical Analysis........................................................................................................................28 RESULTS AND DISCUSSION...................................................................................................29 Water Activity (Aw) of Food Matrices.........................................................................................29 Color of Food Matrices.................................................................................................................29 Effect of Maillard Reaction and Food Matrix on the Immunoreactivity of Amandin.................33 Sandwich ELISAs.........................................................................................................................35 v Effect of Maillard Reaction on Immunoreactivity of Food Matrices............................................49 Dot Blots........................................................................................................................................50 Western Blots.................................................................................................................................51 Conclusion.....................................................................................................................................59 APPENDIX: The Animal Care and Use Committee Approval Memorandum.............................61 REFERENCES..............................................................................................................................64 BIOGRAPHICAL SKETCH.........................................................................................................74 vi LIST OF TABLES 2.1 Peptides recognized by murine mAbs......................................................................................11 3.1 List of food matrices for analysis.............................................................................................17 3.2 Gradient gel recipe.................................................................................................................. 26 4.1 Water activity (Aw at 25 °C) and browning of food matrices containing almonds................30 4.2 Sandwich ELISA using 4C10..................................................................................................35 4.3 Sandwich ELISA using 4F10...................................................................................................40 4.4 Sandwich ELISA using 2A3....................................................................................................44 vii LIST OF FIGURES 4.1 Relationship between the L* and the Aw of the processed food matrices.............................34 4.2 Dot blot for the food matrix samples
Recommended publications
  • 5-Hydroxymethylfurfural Formation in Bread As a Function of Heat Treatment Intensity: Correlations with Browning Indices
    foods Article 5-Hydroxymethylfurfural Formation in Bread as a Function of Heat Treatment Intensity: Correlations with Browning Indices Gabriella Giovanelli and Carola Cappa * Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via G. Celoria, 2-20133 Milano, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-025-0319-179; Fax: +39-503-19-190 Abstract: 5-hydroxymethylfurfural (HMF) is formed during bread baking as a Maillard reaction product (MRP); it can exert toxicity and it is regarded as a potential health risk because of its high consumption levels in western diets. The aim of this study was to evaluate HMF formation in bread as a function of heat treatment intensity (HTI) and to investigate correlations between HMF and easily detectable browning indices. White breads were baked at 200 ◦C and 225 ◦C for different baking times for a total of 24 baking trials. Browning development was evaluated by reflectance colorimetric and computer vision colour analysis; MRP were quantified spectrophotometrically at 280, 360 and 420 nm and HMF was determined by HPLC. HMF concentrations varied from 4 to 300 mg/kg dw. Colour indices (100–L*) and Intensity mean resulted significantly correlated between each other (r = −0.961) and with MRP (r ≥ 0.819). The effects of the different HTI were visualized by principal component analysis and the data were used to evaluate the best fitting regression models between HMF concentration and other browning indices, obtaining models with high correlation coefficients (r > 0.90). Citation: Giovanelli, G.; Cappa, C. Keywords: bread; Maillard reaction products; HMF; browning; colour; regression models 5-Hydroxymethylfurfural Formation in Bread as a Function of Heat Treatment Intensity: Correlations with Browning Indices.
    [Show full text]
  • Bakery and Confectionary HM-302 UNIT: 01 HISTORICAL BACKGROUND of BAKING
    Bakery and Confectionary HM-302 UNIT: 01 HISTORICAL BACKGROUND OF BAKING STRUCTURE 1.1 Introduction 1.2 Objective 1.3 Historical Background of Baking 1.4 Introduction to Large, Small Equipments and Tools 1.5 Wheat 1.5.1 Structure of Wheat 1.5.2 Types of Flour 1.5.3 Composition Of Flour 1.5.4 WAP of Flour 1.5.5 Milling of Wheat 1.5.6 Differences Between Semolina, Whole Wheat Flour And Refined Flour 1.5.7 Flour Testing 1.6 Summary 1.7 Glossary 1.8 Reference/Bibliography 1.9 Terminal Questions 1.1 INTRODUCTION BREAD!!!!…….A word of many meanings, a symbol of giving, one food that is common to so many countries….but what really is bread ????. Bread is served in various forms with any meal of the day. It is eaten as a snack, and used as an ingredient in other culinary preparations, such as sandwiches, and fried items coated in bread crumbs to prevent sticking. It forms the bland main component of bread pudding, as well as of stuffing designed to fill cavities or retain juices that otherwise might drip out. Bread has a social and emotional significance beyond its importance as nourishment. It plays essential roles in religious rituals and secular culture. Its prominence in daily life is reflected in language, where it appears in proverbs, colloquial expressions ("He stole the bread from my mouth"), in prayer ("Give us this day our daily bread") and in the etymology of words, such as "companion" (from Latin comes "with" + panis "bread"). 1.2 OBJECTIVE The Objective of this unit is to provide: 1.
    [Show full text]
  • Harvesting-Traditions-1-47-Rough-In
    HARVESTING TRADITIONS HARVESTING TRADITION Written and produced by BENJAMIN LESTER Writing Edited by Peter Kobel and Kate Henessy Photography, Layout, and design by Benjamin Lester www.localgrain.org In loving Memory of My Father, James Matthew Lester and For My Mother, Margaret Lester Copyright Farm Feast 2018 and All Rights Reserved my step Mother Nancy Lester My three wonderful, truly good parents Words can’t sumate how fortunate I have been but hopefully this book can. Table of Contents 1. Introduction 2. Culling The Harvest 3. Reverence, Connection and Gratitutude 4. The Essential Storm 5.Our Great Grains 6. Heritage Wheat 7.Milling 8. Hielroom Corn 9. Measurement 10. Paddy Rice 11. Storage 12.Beans 13.Temperature 14.Oats, buckwheat 15. fermentation 16.Heritage Grain Brewing 17. rye 18.Timing ACKNOWLEDGEMENTS This book would not be possible without the tireless work and dedication of our farmers. Alan Zuchowski, Stan, Simon, and Abbie White, Sara and Matt Williams, (etc...) My company My Family Community, members, and supporters Hosts Capsicum ovatum DC. Capsicum petenense Standl. Capsicum pomiferum Mart. ex Steud. Capsicum purpureum Vahl ex Hornem. Capsicum pyramidale Mill. Capsicum quitense Willd. ex Roem. & Schult. Capsicum silvestre Vell. Capsicum sphaerium Willd. Capsicum tetragonum Mill. Capsicum tomatiforme Fingerh. ex Steud. Capsicum torulosum Hornem. Capsicum tournefortii Besser Capsicum ustulatum Paxton “The Most Wonderful Story I know is, perhaps, that this bread, thousands of years old though it is, is not yet finished in the baking. Botanist, famer, miller, and baker are stillexperimenting with it. The entire story of bread goes very deep-its social and technical, religious, political, and scientific story” H.E Jacob “Six Thousand Years of Bread” The Richness of Connection We absorb the most valuable lessons from our parents through how they live their lives.
    [Show full text]
  • Maillard Reaction Products: Occurrence, Mitigation Strategies and Their Physiological Relevance
    DOI: 10.14267/phd.2015001 MAILLARD REACTION PRODUCTS: OCCURRENCE, MITIGATION STRATEGIES AND THEIR PHYSIOLOGICAL RELEVANCE Vincenzo Fogliano Doctoral Thesis Corvinus University of Budapest Faculty of Food Science Department of Food Chemistry and Nutrition Budapest, 2014 DOI: 10.14267/phd.2015001 PhD School/Program Name: PhD School of Food Science Field: Food Science Head: Prof. József Felföldi, PhD Corvinus University of Budapest Supervisor: Prof. Dr Livia Simon Sarkadi, DSc Department of Food Chemistry and Nutrition Faculty of Food Science Corvinus University of Budapest The applicant met the requirement of the PhD regulations of the Corvinus University of Budapest and the thesis is accepted for the defence process. ............................................... ............................................... Head of PhD School Supervisor i DOI: 10.14267/phd.2015001 According to the Doctoral Council of Life Sciences of Corvinus University of Budapest on 7th October, 2014, the following committee was designated for the public discussion: Committee: Chair: Prof. Dr József Farkas, MHAS, BCE Members: Prof. Dr Péter Fodor, DSc, BCE Prof. Dr András Salgó, DSc, BME Prof. Dr Éva Gelencsér, CSc, NAIK-ÉKI Dr Gabriella Kiskó, PhD, BCE Opponents: Prof. Dr Anna Halász, DSc, NAIK-ÉKI Prof. Dr Péter Biacs, DSc, BCE Secretary: Dr Gabriella Kiskó, PhD, BCE ii DOI: 10.14267/phd.2015001 TABLE OF CONTENT Page 1. General Introduction 1 1.1 Description of the Maillard Reaction 1 1.2 Relevance in different foods 2 1.3 Why is still necessary to study this reaction
    [Show full text]
  • Sensory and Physicochemical Characterization of Sourdough Bread Prepared with a Coconut Water Kefir Starter
    foods Article Sensory and Physicochemical Characterization of Sourdough Bread Prepared with a Coconut Water Kefir Starter Mansi Limbad * , Noemi Gutierrez Maddox, Nazimah Hamid and Kevin Kantono Department of Food Science and Microbiology, Auckland University of Technology, 34, Saint Paul Street, Auckland 1010, New Zealand; [email protected] (N.G.M.); [email protected] (N.H.); [email protected] (K.K.) * Correspondence: [email protected]; Tel.: +64-9-921-9999 (ext. 8384) Received: 18 July 2020; Accepted: 19 August 2020; Published: 24 August 2020 Abstract: There is a recognized need for formulating functional food products using selected lactic acid bacteria (LAB) starter cultures from various sources such as kefir, yoghurt or kombucha that have health benefits. The principle objective of this study was to investigate the use of a coconut water kefir-based fermentation starter culture using Lactobacillus fermentum and Lactobacillus plantarum to develop a sourdough bread. Check-all-that-apply (CATA) sensory profiling was used in this study to evaluate the sensory profile of sourdough breads that varied with culture type, culture concentrations, with and without added yeast, and with fermentation for 18 and 24 h. Based on correspondence analysis (CA) of the CATA results, bread samples with positive sensory attributes were chosen for further physicochemical analysis. Physicochemical analyses (texture, proximate composition, shelf life, carboxylic acid analysis and amino acid analysis) were carried out on breads formulated with starter culture concentrations of 8.30 log CFU/mL of L. fermentum, 4.90 log CFU/mL of L. fermentum and 9.60 log CFU/mL of L.
    [Show full text]
  • Impact of Wort Amino Acids on Beer Flavour: a Review
    fermentation Review Impact of Wort Amino Acids on Beer Flavour: A Review Inês M. Ferreira and Luís F. Guido * LAQV/REQUIMTE, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; ines.fi[email protected] * Correspondence: [email protected]; Tel.: +351-220-402-644 Received: 3 March 2018; Accepted: 25 March 2018; Published: 28 March 2018 Abstract: The process by which beer is brewed has not changed significantly since its discovery thousands of years ago. Grain is malted, dried, crushed and mixed with hot water to produce wort. Yeast is added to the sweet, viscous wort, after which fermentation occurs. The biochemical events that occur during fermentation reflect the genotype of the yeast strain used, and its phenotypic expression is influenced by the composition of the wort and the conditions established in the fermenting vessel. Although wort is complex and not completely characterized, its content in amino acids indubitably affects the production of some minor metabolic products of fermentation which contribute to the flavour of beer. These metabolic products include higher alcohols, esters, carbonyls and sulfur-containing compounds. The formation of these products is comprehensively reviewed in this paper. Furthermore, the role of amino acids in the beer flavour, in particular their relationships with flavour active compounds, is discussed in light of recent data. Keywords: amino acids; beer; flavour; higher alcohols; esters; Vicinal Diketones (VDK); sulfur compounds 1. Introduction The process by which beer has been brewed has not changed significantly since its discovery over 2000 years ago. Although industrial equipment is used for modern commercial brewing, the principles are the same.
    [Show full text]
  • Triggering the Aroma Production Through Chemical Kinetics, Chemical Engineering Transactions, 52, 985-990 DOI:10.3303/CET1652165 986
    985 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 52, 2016 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Petar Sabev Varbanov, Peng-Yen Liew, Jun-Yow Yong, Jiří Jaromír Klemeš, Hon Loong Lam Copyright © 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-42-6; ISSN 2283-9216 DOI: 10.3303/CET1652165 Bread as a Chemical Reactor: Triggering the Aroma Production through Chemical Kinetics a a b b Davide Papasidero* , Alessandro Giorgi , Elisa Rocchi , Laura Piazza , Sauro Pierucci a, Giulia Bozzanoa, Flavio Manentia aDipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy b DeFENS, Dept. of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy [email protected] Recent studies address the structural modifications occurring in the thermal processing of food to interact with the development of aroma and taste compounds. Food sensory science is often related to statistical analysis of panel tests and subjective human responses. From a chemical engineering perspective, food can be treated like a chemical reactor. Bread can be one example of “food chemical reactor”, which enormously changes its density (from high to low depending on the leavening process), its aroma (driven from Maillard and other reactions involving carbohydrates, proteins and fats), its color (caramelization and Maillard), its structure (starch gelatinization, gluten hardening), etc. Indeed, transport phenomena and chemical kinetics are consistently involved in this process. A detailed study on the chemical kinetics of bread aroma development can be helpful to achieve an objective quality marker, which can be monitored and controlled dynamically through the process conditions and variables.
    [Show full text]
  • Saccharomyces Cerevisiae in the Production of Fermented Beverages
    beverages Review Saccharomyces cerevisiae in the Production of Fermented Beverages Graeme M Walker 1,* and Graham G Stewart 2 1 Abertay University, Dundee, Scotland DD1 1HG, UK 2 Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1382-308658 Academic Editor: Edgar Chambers IV Received: 20 October 2016; Accepted: 11 November 2016; Published: 17 November 2016 Abstract: Alcoholic beverages are produced following the fermentation of sugars by yeasts, mainly (but not exclusively) strains of the species, Saccharomyces cerevisiae. The sugary starting materials may emanate from cereal starches (which require enzymatic pre-hydrolysis) in the case of beers and whiskies, sucrose-rich plants (molasses or sugar juice from sugarcane) in the case of rums, or from fruits (which do not require pre-hydrolysis) in the case of wines and brandies. In the presence of sugars, together with other essential nutrients such as amino acids, minerals and vitamins, S. cerevisiae will conduct fermentative metabolism to ethanol and carbon dioxide (as the primary fermentation metabolites) as the cells strive to make energy and regenerate the coenzyme NAD+ under anaerobic conditions. Yeasts will also produce numerous secondary metabolites which act as important beverage flavour congeners, including higher alcohols, esters, carbonyls and sulphur compounds. These are very important in dictating the final flavour and aroma characteristics of beverages such as beer and wine, but also in distilled beverages such as whisky, rum and brandy. Therefore, yeasts are of vital importance in providing the alcohol content and the sensory profiles of such beverages. This Introductory Chapter reviews, in general, the growth, physiology and metabolism of S.
    [Show full text]
  • Ampelopsis Grossedentata) on Acrylamide Formation, Quality and Consumer Acceptability of Bread
    foods Article Effects of Hot-Water Extract from Vine Tea (Ampelopsis grossedentata) on Acrylamide Formation, Quality and Consumer Acceptability of Bread Qian Ma 1, Shengbao Cai 1 , Yijia Jia 1, Xiyan Sun 2, Junjie Yi 1 and Jiang Du 2,* 1 Faculty of Agriculture and Food, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China; [email protected] (Q.M.); [email protected] (S.C.); [email protected] (Y.J.); [email protected] (J.Y.) 2 Faculty of Art and Communication, Kunming University of Science and Technology, Kunming 650500, China; [email protected] * Correspondence: [email protected]; Tel.: +86-153-9869-1006 Received: 16 February 2020; Accepted: 20 March 2020; Published: 23 March 2020 Abstract: Acrylamide is a harmful substance that could be inhibited by natural products. Vine tea is an edible herb belonging to the Vitaceae family and has been approved by Chinese authorities as a new food ingredient in 2013. However, the effects of vine tea extract on acrylamide formation and bread quality are rarely investigated. In this study, the polyphenol composition of hot-water extract from vine tea was characterized by ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-ESI-HRMS/MS), and its effects on acrylamide formation, quality, and consumer acceptability of bread were investigated. Vine tea extract and its main polyphenol, dihydromyricetin, significantly inhibited the acrylamide formation in bread, especially the low dose of vine tea extract (1.25 g/kg), which decreased the acrylamide formation by 58.23%. The color and texture of bread were significantly affected by vine tea extract or dihydromyricetin, whereas the moisture content was not changed remarkably.
    [Show full text]
  • Maillard Reaction
    Maillard Reaction Chemistry and Consequences in Food Properties Blanca Gomez Guerrero Topics in Food Science (FOOD 7240) Department of Food Science April 2007 Contents Introduction History Maillard Reaction in Food Chemical Mechanism of Maillard reaction Food Properties under Maillard reaction Color Flavour and Aroma Texture Bioactivity Nutrition Conclusions Bibliography 2 Introduction Maillard reaction is a non-enzymatic browning reaction, caused by the condensation of an amino group and a reducing compound. It is a complex network of diverse reactions involving mixtures of compounds with varying initial concentrations. The Maillard reaction is divided in four steps: 1) the formation of an N glucosamine from sugar amino condensation; 2) rearrangement of the glycosamine via Amadori mechanism; 3) degradation and fragmentation of the Amadori product and amino acid degradation; and 4) the condensation and polymerization of aldol, aldehyde and amino compounds forming melanoidins. This reaction occurs in many different fields, and the analysis under any particular set of conditions represents a continuous challenge for scientists. Great numbers of both desirable and undesirable changes occur in raw materials and foods as a result of the Maillard reaction. In food, the condensation is commonly between the amino acids (both free and peptide-bound), and reducing sugars. During heat treatment like frying, roasting and baking the reaction produces different flavours and colours, most of them were desirable. Roasting of cereals is an example of processes in which the reaction brings about a compromise between positive and negative effects. The Maillard reaction was first studied with respect to humus formation and only later became concerned with color and flavour formation in food.
    [Show full text]
  • Protein Proteins Are One of the Macronutrients
    Protein Proteins are one of the macronutrients. Proteins form the main part all cells and tissues, making them essential for growth and repair. Elemental compositions of proteins Proteins are made up of four elements: carbon (C), hydrogen (H), oxygen (O) and nitrogen (N). Proteins are the only nutrients that contain nitrogen, which is essential for growth. Some proteins contain small quantities of sulfur (S), iron (Fe) and phosphorus (P). Chemical structure of proteins Proteins are large molecules composed of amino acids. Amino acids are joined together by peptide links to form polypeptide chains that make up proteins. Basic structure of an amino acid Each amino acid contains: An amino group (NH2) (basic) A carboxyl group (COOH) (acidic) A central carbon (C) A single hydrogen (H) A variable group (R): changes with each amino acid. Basic structure of an amino acid: H | NH2— C —COOH | R Examples of amino acids The variable group (R) is different in each amino acid. When the variable group (R) is hydrogen (H) When the variable group (R) is HS-CH2 the the amino acid is glycine. amino acid is cysteine. H H | | NH2 — C — COOH NH2 — C — COOH | | H HS — CH2 Essential and non-essential amino acids The human body uses 20 different amino acids to make all the proteins it needs to function. These are all found in food. They are divided into two groups: essential and non-essential amino acids. Essential amino acids Non-essential amino acids Can’t be manufactured by the body, Can be manufactured by the body, therefore therefore must be obtained from food.
    [Show full text]
  • Acrylamide in Food Products
    cess Pro ing d & o o T F e c f h o n l Krishnakumar and Visvanathan, J Food Process Technol 2014, 5:7 o a l Journal of Food n o r g DOI: 10.4172/2157-7110.1000344 u y o J ISSN: 2157-7110 Processing & Technology Review Article Open Access Acrylamide in Food Products: A Review Krishnakumar T1* and Visvanathan R2 1Department of Food and Agricultural Process Engineering, Tamil Nadu Agricultural University, Coimbatore, India 2Post Harvest Technology Centre, Tamil Nadu Agricultural University, Coimbatore, India Abstract Acrylamide or 2-propenamide an industrial chemical formed in some foods particularly starchy foods during heating process such as baking, frying and roasting. Acrylamide is proven to be carcinogenic in animals and a probable human carcinogen mainly formed in foods by the reaction of asparagine (free amino acid) with reducing sugars (glucose and fructose) as part of the Maillard reaction during heating under high temperature and low moisture conditions. The main aim of this review is to summarize the results of academic and industrial research on occurrence, dietary exposure, formation mechanism and mitigation measures of acrylamide in bakery, cereal and potato food products. Keywords: Acrylamide; Asparagine; Maillard reaction; Bakery; intake have been made for populations in many countries consist of Cereal; Potato products different dietary records [21-33]. These studies found that the amount of acrylamide was extremely higher in fried potato products (such as Introduction French fries and potato chips) followed by cereals, crisp breads, biscuits and other bakery products. Concentration and dietary intake of food Acrylamide (C H NO; 2-propenamide), is a colourless, non-volatile 3 5 have significant variations, which depends upon cooking methods crystalline solid, soluble in water and has a molecular weight of 71.08 [21,34-42].
    [Show full text]