Histopathology of Oedema in Pearl Oysters Pinctada Maxima
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Branding for Sabah Pearl 2018
BRANDING FOR SABAH PEARL Tan Yin Yin Bachelor of Applied Arts with Honours (Design Technology) 2018 BRANDII\'G FOR SABAH PEARL 'IlL'1 YII\' YIN Th,s project is submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts with Honors (IlE'sign Technology) Faculty of Apphed and Creative Arts UWVERSITI NiALl, YSIA SARAWAK 2013 PENJENAMAAN UNTUK MUTIARA SABAH TAN \1N \1N Pr'Diekilll merupakan salah satu keperluan untuk ljazah Sarjana Seni Gunaan dengan (Teknologi Sem Reka) Fakulti Seni. Gunaan dan Kreatif UNlVERSITI Mll.Lll. YSIA SARA WAK 2018 ii PIE'.u~ (leI> ( 'd FUll.! \'t","\r ?r -:~ <:' 1 R~pc.n :J :·::: ~r s PhD O(C'L\.R:HIO:--: Of ORIGI);_\L \,"ORb. dar ot ._ ;':II I S .Studt-nt's Decl"l'.1(1oD r . ICI"YtYl)!h (J 1f O. ~7.)~m fa(,tlt'r° fAr p.ii~4~f). (((r.e~ ~y'e, Arts IPLZ-l..t: =: e\"Dl8::..r ::: ~~ l·D ~:\T~~,.'\.:J:::. :-"L';'IRJC:--:O :1...'\-n f..I,.C"""L n"! htrebr dtcl:m' ~hat the wcrt tr~m i l'd .. [a.(!d.t' .J..r ~ r. ,;. o::Mh:. ... P..e.~ .d ...... _......... _..... ................... !"i Ill)" " n~l!Ji\ l we.rk I han: c o, Or:'le- j n- ot::. ilDr othH S'tud .. n;:~ wort vr trow any other sourcE' __ t :': c~ p: \\h~lt dut refH t'o{'e or lC' t.no":lt'd~tI1l ..nt!i ~l dt t::pJ.i.C1tl~ · t.n [he te:;:l on ha~ anr part been ';\,III('n for Ill t by " o. -
Geoducks—A Compendium
34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A. -
Colored Gemstones Cultured Pearls
Cultured Pearls Colored Gemstones Diamond Council of America ©2016 Cultured Pearls In This Lesson: •A World Apart • Pearl Traditions • Natural Pearls • Cultured Pearls •Value Factors •Product Highlights • Culturing Sales A WORLD APART In Lesson 1 you learned that any kind of gem except diamond is considered a colored gem. Although pearls are included in that broad classification, they really belong to a world apart. Most customers recognize this instinctively, sensing a special appeal about pearls. There are several themes you can use in a sales presenta- tion to evoke or enhance pearl’s separate place in the gem kingdom: • Pearls are born in water. This intuitive contrast with other gems, which are dug from the ground, gives pearls an aura of gentleness, freshness, and fluid grace. • Pearls originate from life. While most gems are minerals produced by inanimate geology, pearls are organic. They come from living beings. Much of pearls’ mystique arises from this connection. • Pearls possess a beauty that’s all their own. Most gems depend on cutting or carving to reveal their charms, but pearls emerge gleaming from their shells. Cultured pearls are born in water and originate from living organisms. They Though certain factors of pearl value are comparable are natural in their beauty and classic to those of other gems, key considerations are unique. as a gem. Colored Gemstones 5 1 Cultured Pearls Cultured pearls are modern forms of a classic gem. They ® combine Nature’s creative power with human art and JA SPC SKILLS If you’re participating in the JA® science. You could even say that cultured pearls show how Sales Professional Certification people can work with the environment to make age-old Program™, this lesson presents infor- mation related to the following Skill beauty available now, and for future generations as well. -
Adsea91p122-128.Pdf (62.13Kb)
In:F Lacanilao, RM Coloso, GF Quinitio (Eds.). Proceedings of the Seminar-Workshop on Aquaculture Development in Southeast Asia and Prospects for Seafarming and Searanching; 19-23 August 1991; Iloilo City, Philippines. SEAFDEC Aquaculture Department, Iloilo, Philippines. 1994. 159 p. SEAFARMING AND SEARANCHING IN THAILAND Panit Sungkasem Rayong Coastal Aquaculture Station Rayong Province, Thailand Siri Tookwinas Coastal Aquaculture Division, Department of Fisheries, Bangkhen, Bangkok, 10900, Thailand ABSTRACT Seafarming is undertaken in the coastal sublittoral zone. Dif- ferent marine organisms such as molluscs, estuarine fishes, shrimps (pen culture), and seaweeds are cultured along the coast of Thailand. Seafarming, especially for mollusc, is the main activity in Thailand. The important species are blood cockle, oyster, green mussel, and pearl oyster. In 1988, production was approximately 51,000 metric tons in a culture area of 2,252 hectares. Artificial reefs have been constructed in Thailand since 1987 to enhance coastal habitats. Larvae of marine organisms have also been restocked in the artificial reef area. INTRODUCTION The total coastline along the Gulf of Thailand and Andaman sea is approximately 2,600 kilometers. A relatively long period has been spent in surveying coastal area for suitable aquaculture and this resulted in the rapid expansion of coastal aquaculture in Thailand. Different marine organisms such as molluscs, estuarine fish, and seaweeds are cultured along the coast of Thailand. Thailand 123 MOLLUSC FARMING Mollusc culture has been practiced in Thailand for more than 100 years. In the early days, fishermen cultured molluscs by collecting spats from natural grounds. At that time, culture practices were traditional, developed by people living along coastal areas suitable for mollusc farming. -
Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain. -
Japanese Pearl Oysters Pinctada Fucata Martensii
I DISEASES OF AQUATIC ORGANISMS Vol. 37: 1-12,1999 Published June 23 Dis Aquat Org Mass mortalities associated with a virus disease in Japanese pearl oysters Pinctada fucata martensii Teruo Miyazaki*, Kuniko Goto, Tatsuya Kobayashi, Tetsushi Kageyama, Masato Miyata Faculty of Bioresources, Mie University, 1515 Kamihama. Tsu, Mie 514-8509, Japan ABSTRACT: The annual mortality of cultured Japanese pearl oysters Pinctada fucata martensii in all western regions of Japan was over 400 million in both 1996 and 1997. The main pathological signs of the diseased oysters were atrophy in the adductor muscle, the mantle lobe and the body accompanied by a yellowish to brown coloration. Histological studies revealed necrosis and degeneration of muscle fibers of the adductor, pallial and foot musculatures as well as the cardiac muscle. Electron microscopy revealed the presence of small round virions approximately 30 nm in diameter within intrasarcoplasmic inclusion bodies in necrotized muscle fibers of the adductor and pallial musculatures, and the heart. The causative virus was isolated and cultured in EK-1 (eel kidney) and EPC (epithelioma papilosum cyprini) fish cell lines. Marked mortalities occurred in pearl oysters that had been experimentally inoculated with the cultured virus; these oyster displayed the same pathological signs of the disease as oysters in natural infections. These results inbcate that a previously undescribed virus caused the mass mortalities in cultured pearl oysters. KEY WORDS: New virus disease - Japanese pearl oyster. Mass mortality . Virus in musc1.e fiber INTRODUCTION results of histopathological and electron microscopic studies, and report the isolation and culture of the Mass mortalities of the cultured Japanese pearl oys- causative virus. -
Spatial Genetic Structure of the Surf Clam Paphia Undulata in Thailand
Zoological Studies 50(2): 211-219 (2011) Spatial Genetic Structure of the Surf Clam Paphia undulata in Thailand Waters Patipon Donrung1, Suriyan Tunkijjanukij1, Padermsak Jarayabhand2, and Supawadee Poompuang3,* 1Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand 2Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand (Accepted October 19, 2010) Patipon Donrung, Suriyan Tunkijjanukij, Padermsak Jarayabhand, and Supawadee Poompuang (2011) Spatial genetic structure of the surf clam Paphia undulata in Thailand waters. Zoological Studies 50(2): 211-219. The surf clam Paphia undulata has supported an offshore fishery in Thailand since the 1970s. However, most fishing sites have experienced declines in production over the past 2 decades. Overexploitation and low levels of genetic variation of surf clam populations may be responsible for the low productivity of the species. Inter- simple sequence repeat (ISSR) markers were used to assess the genetic diversity of surf clams sampled from 4 fishing areas in the Gulf of Thailand and 1 location in the Andaman Sea. In total, 300 ISSR loci were analyzed in 500 individuals. Three neighboring populations (SG, SS, and SP) in the upper Gulf of Thailand exhibited moderate genetic variation and similar Nei’s gene diversity (Hj) values of 0.12-0.14, while populations from the lower Gulf of Thailand (SR) and the Andaman Sea (ST) had relatively low genetic variability with respective Hj values of 0.053 and 0.047. Different analyses, including FST, AMOVA, phylogenetic networks, and an assignment test revealed high levels of population substructuring, implying that gene flow may occur between stocks in the upper Gulf of Thailand, whereas the SR and ST populations were more geographically isolated. -
Ž Culture Potential of the Pearl Oyster Pinctada / Imbricata from The
Aquaculture 189Ž. 2000 375±388 www.elsevier.nlrlocateraqua-online Culture potential of the pearl oyster žPinctada imbricata/ from the Caribbean. II. Spat collection, and growth and mortality in culture systems H.-JorgÈ Urban) Facultad de Ciencias, Departamento de Biologõa, Seccion de Biologõa  Marina, UniÕersidad del Valle, A.A. 25360, Cali, Colombia Received 26 August 1999; received in revised form 23 February 2000; accepted 4 April 2000 Abstract Temporal variation in abundance of larvae and spat of the pearl oyster Pinctada imbricata was studied at several locations on the Colombian coast from May 1997 to June 1998. Larvae were sampled with bongo nets and spat were harvested from collectors at monthly intervals. Abun- dances of predators Ž.Cymatium gastropods, and portunid, xanthid and majiid crabs were also recorded. A relationship between salinity, particulate organic matter and larvae abundance was observed, leading to peaks in abundance of spat on collectors some weeks later. Average catch rates of 10 spat collectory1 monthy1, using collectors made of cheap easily accessible materials, indicate that availability of P. imbricata is sufficient to initiate and support aquaculture of this species. Growth and mortality rates of juveniles in three different culture systems at two densities Ž.20% and 30%, i.e. percentage of available area covered by juveniles showed that density within the same culture system had no effect on growth, but that growth differed significantly among the three culture systems. Growth in ``bag'' systems was lower than in boxes whereas growth in ``suspended'' and ``bottom'' boxes was similar and comparable to the growth of a natural population. -
Juvenile Production and Culture of the Silver-Lip Pearl Oyster, Pinctada Maxima (Jameson)
ResearchOnline@JCU This file is part of the following reference: Taylor, Joseph James Uel (1999) Juvenile production and culture of the silver-lip pearl oyster, Pinctada maxima (Jameson). PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/33794/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://researchonline.jcu.edu.au/33794/ Juvenile Production and Culture of the Silver-lip Pearl Oyster, Pinctada maxima (Jameson) Thesis submitted by Joseph James Uel Taylor BSc (Macquarie University) For the Degree of Doctor of Philosophy in the School of Marine Biology and Aquaculture James Cook University Frontispiece View over a pearl farm near Bacan Island, Indonesia. ii Statement of Access I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without written consent of the author; and to make proper public written acknowledgment for any assistance which I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis. X6.9.99 Joseph Taylor Date 111 Statement on Sources Declaration I declare that this thesis is my own work and has not been submitted in any other form for another degree or diploma at any university or other institution of tertiary education. -
Genomic Solutions for Shellfish Selective Breeding
GENOMIC SOLUTIONS FOR SHELLFISH SELECTIVE BREEDING Workshop Vivaldi Lucie Genestout & Romain Morvezen AQUA 2018 Montpellier – 29/08/2018 Overview • 300 000 analyzes / year • 40 000 for aquaculture • 1 200 m2 of facilities • 20 km from Paris • Since 1956 • 2 million samples in stock • Subsidiary of the cooperative Lucie GENESTOUT - LABOGENA - AQUA 2018 - VIVALDI An industrial genotyping platform • High throughput genotyping on DNA chips • 8 liquid handling robots (Tecan) • 5 extraction robots Qiasymphony (Qiagen) • Infinium XT chemistry (Illumina): 96 samples HD Chips • Management system LIMS • Barcode traceability from the sampling to the result • Standards • ISO17025 • ISAG interlaboratory tests rank 1 Lucie GENESTOUT - LABOGENA - AQUA 2018 - VIVALDI An efficient SNP panel for Pacific Oyster • 384 markers on new high throughput Illumina XT chemistry • Including OsHV-1 resistance markers • Assignments made with AccurAssign Labogena software • Taking into account mating plans • Using both likelihood and exclusion • Ranking of parents 96samples DNA chip Illumina Lucie GENESTOUT - LABOGENA - AQUA 2018 - VIVALDI project An efficient SNP panel for Pacific Oyster Assigned to 1 couple 466 514 577 408 Assigned to many couples 12 0 0 0 Not assigned 12 47 23 6 Inexploitable 31 35 12 152 Useful assignment rate 89% 86% 94% 72% Results from GenOyster Project, obtained with GigADN Project markers Lucie GENESTOUT - LABOGENA - AQUA 2018 - VIVALDI project An efficient SNP panel for Pacific Oyster Assigned to 1 couple 522 1098 Assigned to many couples 2 -
Part B: for Private and Commercial Use
RESTRICTED ANIMAL LIST (PART B) §4-71-6.5 PART B: FOR PRIVATE AND COMMERCIAL USE SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Haplotaxida FAMILY Lumbricidae Lumbricus rubellus earthworm, red PHYLUM Arthropoda CLASS Crustacea ORDER Amphipoda FAMILY Gammaridae Gammarus (all species in genus) crustacean, freshwater; scud FAMILY Hyalellidae Hyalella azteca shrimps, imps (amphipod) ORDER Cladocera FAMILY Sididae Diaphanosoma (all species in genus) flea, water ORDER Cyclopoida FAMILY Cyclopidae Cyclops (all species in genus) copepod, freshwater ORDER Decapoda FAMILY Alpheidae Alpheus brevicristatus shrimp, Japan (pistol) FAMILY Palinuridae Panulirus gracilis lobster, green spiny Panulirus (all species in genus lobster, spiny except Panulirus argus, P. longipes femoristriga, P. pencillatus) FAMILY Pandalidae Pandalus platyceros shrimp, giant (prawn) FAMILY Penaeidae Penaeus indicus shrimp, penaeid 49 RESTRICTED ANIMAL LIST (Part B) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Penaeus californiensis shrimp, penaeid Penaeus japonicus shrimp, wheel (ginger) Penaeus monodon shrimp, jumbo tiger Penaeus orientalis (chinensis) shrimp, penaeid Penaeus plebjius shrimp, penaeid Penaeus schmitti shrimp, penaeid Penaeus semisulcatus shrimp, penaeid Penaeus setiferus shrimp, white Penaeus stylirostris shrimp, penaeid Penaeus vannamei shrimp, penaeid ORDER Isopoda FAMILY Asellidae Asellus (all species in genus) crustacean, freshwater ORDER Podocopina FAMILY Cyprididae Cypris (all species in genus) ostracod, freshwater CLASS Insecta -
Shelled Molluscs
Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1.