Highly Resilient Peer-To-Peer Botnets Are Here: an Analysis of Gameover Zeus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ransom Where?
Ransom where? Holding data hostage with ransomware May 2019 Author With the evolution of digitization and increased interconnectivity, the cyberthreat landscape has transformed from merely a security and privacy concern to a danger much more insidious by nature — ransomware. Ransomware is a type of malware that is designed to encrypt, Imani Barnes Analyst 646.572.3930 destroy or shut down networks in exchange [email protected] for a paid ransom. Through the deployment of ransomware, cybercriminals are no longer just seeking to steal credit card information and other sensitive personally identifiable information (PII). Instead, they have upped their games to manipulate organizations into paying large sums of money in exchange for the safe release of their data and control of their systems. While there are some business sectors in which the presence of this cyberexposure is overt, cybercriminals are broadening their scopes of potential victims to include targets of opportunity1 across a multitude of industries. This paper will provide insight into how ransomware evolved as a cyberextortion instrument, identify notorious strains and explain how companies can protect themselves. 1 WIRED. “Meet LockerGoga, the Ransomware Crippling Industrial Firms” March 25, 2019; https://www.wired.com/story/lockergoga-ransomware-crippling-industrial-firms/. 2 Ransom where? | May 2019 A brief history of ransomware The first signs of ransomware appeared in 1989 in the healthcare industry. An attacker used infected floppy disks to encrypt computer files, claiming that the user was in “breach of a licensing agreement,”2 and demanded $189 for a decryption key. While the attempt to extort was unsuccessful, this attack became commonly known as PC Cyborg and set the archetype in motion for future attacks. -
Identifying Threats Associated with Man-In-The-Middle Attacks During Communication Between a Mobile Device and the Back End Server in Mobile Banking Applications
IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. IX (Mar-Apr. 2014), PP 35-42 www.iosrjournals.org Identifying Threats Associated With Man-In-The-Middle Attacks during Communication between a Mobile Device and the Back End Server in Mobile Banking Applications Anthony Luvanda1,*Dr Stephen Kimani1 Dr Micheal Kimwele1 1. School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, PO Box 62000-00200 Nairobi Kenya Abstract: Mobile banking, sometimes referred to as M-Banking, Mbanking or SMS Banking, is a term used for performing balance checks, account transactions, payments, credit applications and other banking transactions through a mobile device such as a mobile phone or Personal Digital Assistant (PDA). Mobile banking has until recently most often been performed via SMS or the Mobile Web. Apple's initial success with iPhone and the rapid growth of phones based on Google's Android (operating system) have led to increasing use of special client programs, called apps, downloaded to the mobile device hence increasing the number of banking applications that can be made available on mobile phones . This in turn has increased the popularity of mobile device use in regards to personal banking activities. Due to the characteristics of wireless medium, limited protection of the nodes, nature of connectivity and lack of centralized managing point, wireless networks tend to be highly vulnerable and more often than not they become subjects of attack. This paper proposes to identify potential threats associated with communication between a mobile device and the back end server in mobile banking applications. -
Recent Developments in Cybersecurity Melanie J
American University Business Law Review Volume 2 | Issue 2 Article 1 2013 Fiddling on the Roof: Recent Developments in Cybersecurity Melanie J. Teplinsky Follow this and additional works at: http://digitalcommons.wcl.american.edu/aublr Part of the Law Commons Recommended Citation Teplinsky, Melanie J. "Fiddling on the Roof: Recent Developments in Cybersecurity." American University Business Law Review 2, no. 2 (2013): 225-322. This Article is brought to you for free and open access by the Washington College of Law Journals & Law Reviews at Digital Commons @ American University Washington College of Law. It has been accepted for inclusion in American University Business Law Review by an authorized administrator of Digital Commons @ American University Washington College of Law. For more information, please contact [email protected]. ARTICLES FIDDLING ON THE ROOF: RECENT DEVELOPMENTS IN CYBERSECURITY MELANIE J. TEPLINSKY* TABLE OF CONTENTS Introduction .......................................... ..... 227 I. The Promise and Peril of Cyberspace .............. ........ 227 II. Self-Regulation and the Challenge of Critical Infrastructure ......... 232 III. The Changing Face of Cybersecurity: Technology Trends ............ 233 A. Mobile Technology ......................... 233 B. Cloud Computing ........................... ...... 237 C. Social Networking ................................. 241 IV. The Changing Face of Cybersecurity: Cyberthreat Trends ............ 244 A. Cybercrime ................................. ..... 249 1. Costs of Cybercrime -
Mobile Financial Fraud April 2013
White Paper: Mobile Financial Fraud April 2013 Mobile Threats and the Underground Marketplace Principal Investigator and Corresponding Author Jart Armin Contributing Researchers Andrey Komarov, Mila Parkour, Raoul Chiesa, Bryn Thompson, Will Rogofsky Panel & Review Dr. Ray Genoe (UCD), Robert McArdle (Trend Micro), Dave Piscitello (ICANN), Foy Shiver (APWG), Edgardo Montes de Oca (Montimage), Peter Cassidy (APWG) APWG Mobile Fraud web site http://ecrimeresearch.org/wirelessdevice/Fraud/ Table of Contents Abstract ..................................................................................................................................... 2 Introduction and Starting Position ........................................................................................ 2 A Global Overview .................................................................................................................. 3 Vulnerabilities Overview ....................................................................................................... 3 The Underground Mobile Market ....................................................................................... 13 Mobile DNS & Traffic ........................................................................................................... 15 iBots & the Pocket Botnet ..................................................................................................... 18 Mobile Intrusion ................................................................................................................... -
Marked for Disruption: Tracing the Evolution of Malware Delivery Operations Targeted for Takedown
Marked for Disruption: Tracing the Evolution of Malware Delivery Operations Targeted for Takedown Colin C. Ife¢, Yun Sheny, Steven J. Murdoch¢, and Gianluca Stringhiniz ¢University College London, yNorton Research Group, zBoston University ¢yUnited Kingdom, zUnited States {colin.ife,s.murdoch}@ucl.ac.uk,[email protected],[email protected] ABSTRACT 1 INTRODUCTION The malware and botnet phenomenon is among the most signif- Malware delivery has evolved into a major business for the cyber- icant threats to cybersecurity today. Consequently, law enforce- criminal economy and a complex problem for the security commu- ment agencies, security companies, and researchers are constantly nity. The botnet – a network of malware-infected devices that is seeking to disrupt these malicious operations through so-called controlled by a single actor through one or more command and takedown counter-operations. Unfortunately, the success of these control (C&C) servers – is one phenomenon that has benefited takedowns is mixed. Furthermore, very little is understood as to from the malware delivery revolution. Diverse distribution vectors how botnets and malware delivery operations respond to takedown have enabled such malicious networks to expand more quickly and attempts. We present a comprehensive study of three malware de- efficiently than ever before. Once established, these botnets canbe livery operations that were targeted for takedown in 2015–16 using leveraged to commit a wide array of secondary computer crimes, global download metadata provided by Symantec. In summary, we such as data theft, financial fraud, coercion (ransomware), send- found that: (1) Distributed delivery architectures were commonly ing spam messages, distributed denial of service (DDoS) attacks, used, indicating the need for better security hygiene and coordina- and unauthorised cryptocurrency mining [1, 14, 17, 47, 48]. -
Mcafee Labs Threats Report August 2014
McAfee Labs Threats Report August 2014 Heartbleed Heartbleed presents a new cybercrime opportunity. 600,000 To-do lists The Heartbleed vulnerability Lists of Heartbleed-vulnerable exposed an estimated 600,000 websites are helpful to users but websites to information theft. can also act as “to-do” lists for cyber thieves. Unpatched websites Black market Despite server upgrades, many Criminals continue to extract websites remain vulnerable. information from Heartbleed- vulnerable websites and are selling it on the black market. McAfee Phishing Quiz Phishing continues to be an effective tactic for infiltrating enterprise networks. Average Score by Department (percent of email samples correctly identified) Only 6% of all test takers correctly 65% identified all ten email samples as phishing or legitimate. 60% 80% 55% of all test takers fell for at least one of the seven phishing emails. 50% 88% of test takers in Accounting & 0 Finance and HR fell for at least one of the seven phishing emails. Accounting & Finance Human Resources Other Departments The McAfee Phishing Quiz tested business users’ ability to detect online scams. Operation Tovar During Operation Tovar—The Gameover Zeus and CryptoLocker takedown: For CryptoLocker For Gameover Zeus more than 125,000 more than 120,000 domains were blocked. domains were sinkholed. Since the announcement of Operation Tovar: 80,000 times Copycats ****** McAfee Stinger, a free ****** are on the rise, creating tool that detects and ****** new ransomware or removes malware financial-targeting (including Gameover Zeus malware using the leaked and CryptoLocker), was Zeus source code. downloaded more than 80,000 times. McAfee joined global law enforcement agencies and others to take down Gameover Zeus and CryptoLocker. -
Kaspersky Security Bulletin 2020. Statistics Kaspersky Security Bulletin 2020
Kaspersky Security Bulletin 2020. Statistics Kaspersky Security Bulletin 2020. Statistics Contents Figures of the year 3 Financial threats 4 Number of users attacked by banking malware 4 Attack geography 5 Top 10 financial malware families 6 Ransomware programs 7 Number of users attacked by ransomware Trojans 7 Attack geography 8 Miners 10 Number of users attacked by miners 10 Attack geography 11 Vulnerable applications used by cybercriminals during cyber attacks 12 Attacks on macOS 14 Threat geography 15 IoT attacks 17 IoT threat statistics 17 Threats loaded into traps 19 Attacks via web resources 20 Countries that are sources of web-based attacks: 20 Countries where users faced the greatest risk of online infection 21 Top 20 malicious programs most actively used in online attacks 22 Local threats 24 Top 20 malicious objects detected on user computers 24 Countries where users faced the highest risk of local infection 25 2 Kaspersky Security Bulletin 2020. Statistics Figures of the year • During the year, 10.18% of Internet user computers worldwide experienced at least one Malware-class attack. • Kaspersky solutions blocked 666,809,967 attacks launched from online resources in various countries across the world. • 173,335,902 unique URLs were recognized as malicious by Web Anti-Virus. • Our Web Anti-Virus blocked 33,412,568 unique malicious objects. • Ransomware attacks were defeated on the computers of 549,301 unique users. • During the reporting period, miners attacked 1,523,148 unique users. • Attempted infections by malware designed to steal money via online access to bank accounts were logged on the devices of 668,619 users. -
Detecting Botnets Using File System Indicators
Detecting botnets using file system indicators Master's thesis University of Twente Author: Committee members: Peter Wagenaar Prof. Dr. Pieter H. Hartel Dr. Damiano Bolzoni Frank Bernaards LLM (NHTCU) December 12, 2012 Abstract Botnets, large groups of networked zombie computers under centralised control, are recognised as one of the major threats on the internet. There is a lot of research towards ways of detecting botnets, in particular towards detecting Command and Control servers. Most of the research is focused on trying to detect the commands that these servers send to the bots over the network. For this research, we have looked at botnets from a botmaster's perspective. First, we characterise several botnet enhancing techniques using three aspects: resilience, stealth and churn. We see that these enhancements are usually employed in the network communications between the C&C and the bots. This leads us to our second contribution: we propose a new botnet detection method based on the way C&C's are present on the file system. We define a set of file system based indicators and use them to search for C&C's in images of hard disks. We investigate how the aspects resilience, stealth and churn apply to each of the indicators and discuss countermeasures botmasters could take to evade detection. We validate our method by applying it to a test dataset of 94 disk images, 16 of which contain C&C installations, and show that low false positive and false negative ratio's can be achieved. Approaching the botnet detection problem from this angle is novel, which provides a basis for further research. -
European Cyber Security Perspectives 2015 | 3 Preface
European Cyber Security Perspectives 2015 | 3 Preface Dear reader, Following the success of last year’s publication, we are proud to present the second edition of our European Cyber Security Perspectives report. Through this collection of articles, we aim to share our different perspectives and insights, the latest developments and achievements in the field of cyber security, cybercrime investigations and cyber resilience. By uniting the expertise of four parties with diverse roles in the cyber security domain, we hope to offer some fresh perspectives on issues and developments that we believe to be relevant for society. Rather than presenting you with bare facts and figures, we describe real-life cases and experiences from our professional practice. Topics include the trends to watch in 2015, responses to high-profile vulnerabilities and advances in the detection and investigation of targeted cyber attacks. Each article in the report can be read independently, allowing you to focus on the topics that interest you most. A central theme in this year’s report is cooperation in cyber security. We strongly believe in the value of uniting cyber security capabilities across public and private organisations and even national borders. In fact, you will see that many of the articles in this publication have been co-authored by specialists from different parties. This reflects the growth in our collaborative projects when addressing the latest cyber security challenges. We aim to foster more of those partnerships in the coming year. We encourage you to build on our work and experiences and hope that this report will inspire further enhancements in cyber security, cybercrime investigations and cyber resilience, both in the Netherlands and abroad. -
The Dridex Swiss Army Knife: Big Data Dissolves the APT & Crime Grey Area
#RSAC SESSION ID: HT-W10 The Dridex Swiss Army knife: big data dissolves the APT & crime grey area Eward Driehuis Director of product Fox-IT @brakendelama #RSAC Understanding criminal evolution Global visibility Collaboration Investigations Feeds #RSAC May 2014 #RSAC Rewind 9 years… 2006 Slavik launches ZeuS 2009 SpyEye & Carberp compete for market share 2010 Slavik creates ZeuS2 Hands over ZeuS support to the SpyEye guy 2011 ZeuS2 code leaks 2012 Gribodemon & Carberp members arrested In 2009 Slavik had joined JabberZeuS And Evolved to GameOver / P2PZeuS #RSAC The Businessclub Legacy Businesslike Financial guy perfected money laundry Targeted commercial banking Perfected the Hybrid attack / Tokengrabber Perfected ransomware / Cryptolocker Did some “light espionage” #RSAC Business club after Slavik Dyre Businessclub (GameOver ZeuS gang until May 2014) EvilCorp (Dridex crew) #RSAC Dridex: EvilCorp’s Swiss Army knife #RSAC EvilCorp network expands Core businessclub members in EvilCorp & Dridex operators Leveraging existing money laundry networks Branching out: Dridex operators do ransomware, RATs, Credit Cards, high value targets Ties with Anunak / Carbanak #RSAC Dridex Malware Based on Bugat/Cridex/Feodo, since 2014 Speading: scattergun (spam / attachments) Modular architecture P2P, with 3 operating modes: Token Grabber, data mining, inter node comm Using businessclub technology Loader dropping many different malwares #RSAC #RSAC EvilCorp: Dridex Targets 2015 -2017 #RSAC EvilCorp: ”Gucci” accounts Harvesting data from victims Big data techniques -
An Analysis of the Nature of Groups Engaged in Cyber Crime
International Journal of Cyber Criminology Vol 8 Issue 1 January - June 2014 Copyright © 2014 International Journal of Cyber Criminology (IJCC) ISSN: 0974 – 2891 January – June 2014, Vol 8 (1): 1–20. This is an Open Access paper distributed under the terms of the Creative Commons Attribution-Non- Commercial-Share Alike License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. This license does not permit commercial exploitation or the creation of derivative works without specific permission. Organizations and Cyber crime: An Analysis of the Nature of Groups engaged in Cyber Crime Roderic Broadhurst,1 Peter Grabosky,2 Mamoun Alazab3 & Steve Chon4 ANU Cybercrime Observatory, Australian National University, Australia Abstract This paper explores the nature of groups engaged in cyber crime. It briefly outlines the definition and scope of cyber crime, theoretical and empirical challenges in addressing what is known about cyber offenders, and the likely role of organized crime groups. The paper gives examples of known cases that illustrate individual and group behaviour, and motivations of typical offenders, including state actors. Different types of cyber crime and different forms of criminal organization are described drawing on the typology suggested by McGuire (2012). It is apparent that a wide variety of organizational structures are involved in cyber crime. Enterprise or profit-oriented activities, and especially cyber crime committed by state actors, appear to require leadership, structure, and specialisation. By contrast, protest activity tends to be less organized, with weak (if any) chain of command. Keywords: Cybercrime, Organized Crime, Crime Groups; Internet Crime; Cyber Offenders; Online Offenders, State Crime. -
VULNERABLE by DESIGN: MITIGATING DESIGN FLAWS in HARDWARE and SOFTWARE Konoth, R.K
VU Research Portal VULNERABLE BY DESIGN: MITIGATING DESIGN FLAWS IN HARDWARE AND SOFTWARE Konoth, R.K. 2020 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Konoth, R. K. (2020). VULNERABLE BY DESIGN: MITIGATING DESIGN FLAWS IN HARDWARE AND SOFTWARE. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 07. Oct. 2021 VULNERABLE BY DESIGN: MITIGATING DESIGN FLAWS IN HARDWARE AND SOFTWARE PH.D. THESIS RADHESH KRISHNAN KONOTH VRIJE UNIVERSITEIT AMSTERDAM, 2020 Faculty of Science The research reported in this dissertation was conducted at the Faculty of Science — at the Department of Computer Science — of the Vrije Universiteit Amsterdam This work was supported by the MALPAY consortium, consisting of the Dutch national police, ING, ABN AMRO, Rabobank, Fox-IT, and TNO.