The Biological and Toxin Weapons Convention Implications of Advances in Science and Technology Acknowledgments

Total Page:16

File Type:pdf, Size:1020Kb

The Biological and Toxin Weapons Convention Implications of Advances in Science and Technology Acknowledgments TECHNICAL REPORT The Biological and Toxin Weapons Convention Implications of advances in science and technology Acknowledgments This project was supported by the United Kingdom Foreign and Commonwealth Office under award from the Strategic Programme Fund to the Royal Society, the Naval Postgraduate School’s Project on Advanced Systems and Concepts for Countering Weapons of Mass Destruction (PASCC) via grant N00244-15-1- 0039 awarded to the U.S. National Academy of Sciences, and IAP: The Global Network of Science Academies. This summary is designed as a record of issues that were discussed during the international workshop on advances in science and technology for the BWC, held 13 – 15 September 2015. The views expressed are those of the authors and do not necessarily represent the consensus opinions of workshop participants, the organizations that provided support for the project, or the 107 academies of science that form IAP nor mention of trade names, commercial practices, or organisations imply endorsement by the US or UK governments or other sponsors. Biosecure was commissioned to produce the background documents and initial drafts of the report documents. iapbwg.pan.pl The Biological and Toxin Weapons Convention 2 Contents Introduction 6 Executive summary 7 1. Scope of the BWC 10 2. Monitoring developments in science and technology 12 3. The global ability to deal with disease 13 3.1 Understanding disease 13 3.1.1 Transmissibility and host range 13 3.1.2 Pathogenicity and virulence 14 3.1.3 Toxins 15 3.1.4 Unusual disease agents (including prions and fungi) 16 3.1.5 Immunology and host-pathogen interactions 17 3.1.6 Improved tools to characterise disease 18 3.1.7 The role of the microbiome in disease 19 3.1.8 The role of biofilms in pathogenesis 19 3.2 Detection of disease 19 3.2.1 Differentiating between deliberate and natural outbreaks 20 3.2.2 Biosensors 20 3.2.3 Biomarkers 21 3.2.4 Mass Spectrometry 21 3.2.5 Microscopy and imaging 22 3.3 Diagnosis and surveillance 22 3.3.1 Diagnosis of unknown pathogens 23 3.3.2 Bioforensics 23 3.3.3 Sequencing 23 3.3.4 PCR diagnostics 24 3.3.5 Distributed diagnostics (including point-of-care diagnostics) 25 3.3.6 Laboratory capacity 26 The Biological and Toxin Weapons Convention 3 3.3.7 Genetic and Molecular epidemiology 26 3.3.8 Cheap and disposable equipment 26 3.3.9 Diagnostic speed and accuracy 26 3.4 Preventing, mitigating and treating disease using vaccines and drugs 27 3.4.1 Drug development 29 3.4.2 Novel drugs 30 3.4.3 Vaccine design 30 3.4.4 Vaccine and drug production 31 3.4.5 Vaccine and drug delivery 33 3.4.6 Antimicrobials and drug resistance 36 3.5 Responding to, rolling back, and recovering from disease 37 3.5.1 Improving community buy-in for responders 38 3.5.2 Medical management and infection control (including quarantine) 38 3.5.3 Protective equipment 39 3.5.4 Decontamination 39 4. Advances that reduce risks relevant to the BWC 40 5. Developments in science and technology posing future risks for the BWC 41 5.1 Developing a biological agent 41 5.1.1 Obtaining agents from nature 42 5.1.2 Synthesizing an existing agent 42 5.1.3 Adding functions to existing agents - Pathogenicity 43 5.1.4 Adding functions to existing agents – Circumventing host immunity 43 5.1.5 Adding functions to existing agents – Transmissibility and host range 44 5.1.6 Adding functions to existing agents – Antimicrobial and drug resistance 45 5.1.7 Adding functions to existing agents – Environmental stability 46 5.1.8 Designing a novel agent 46 5.1.9 Toxins 48 The Biological and Toxin Weapons Convention 4 5.2 Producing and stockpiling biological agents 48 5.2.1 Changing footprint of production 49 5.2.2 Industrial scale up 49 5.2.3 Microengineering and microfluidics 50 5.2.4 Bio-based production and biosynthesis 50 5.2.5 Scaffolds 51 5.2.6 Biopharming 51 5.2.7 Outsourced production and modular facilities 51 5.2.8 Disposable, synthesized and repurposed equipment 52 5.2.9 Modification of agents, freeze-drying and non-cold chain storage 53 5.2.10 Microencapsulation and smart particles 53 5.3 Dispersal and delivery of biological agents 55 5.3.1 Aerobiology and modeling a release 55 5.3.2 Targeted and improved delivery 55 5.3.3 Alimentary delivery 55 6. Advances that increase risks relevant to the BWC 56 Appendices 57 Staff 57 Organising Committee 57 Topics covered during the intersessional process 2012 – 2014 58 Annotated references 59 The Biological and Toxin Weapons Convention 5 Introduction The Biological and Toxin Weapons Convention (BWC) will hold its Eighth Review Conference late in 2016 which will consider ‘new scientific and technological developments relevant to the Convention’. This review will draw upon work undertaken in a standing agenda item in the BWC’s 2012 – 2015 work programme. Each year, States Parties have reviewed developments In September 2015, a Trends Symposium to review in science and technology relevant to the BWC, relevant developments in the science and technology focusing on advances that could have benefits for, was organised by the Royal Society, the US National or which could possibly be used in contravention to Academies of Sciences and the IAP: Global Network this international instrument. During the course of of Science Academies, represented by the current their work, States Parties supported by international Chair of the IAP Biosecurity Working Group, the Polish organizations, scientific bodies, companies and Academy of Sciences. The Symposium was attended individual experts, have reviewed developments in: by 72 participants from 30 countries. enabling technologies; for dealing with disease; in the understanding of pathogenicity, virulence, toxicology, A series of background documentsi were commissioned immunology and related issues; as well as production, to inform the discussions at the Trends Symposium, dispersal and delivery technologies. which were then reviewed in light of the presentations and discussions to produce this technical document and accompanying summary documents.ii i. The background documents that this technical report draws on include the background information documents compiled by the BWC ISU, research on the BTWC process, presentations, statements and other contributions by States Parties, international organizations and Guests of the Meeting at meetings of the BWC from 2012 to 2014, and reports and outputs from international scientific and techni- cal workshops and were commissioned from Biosecure. ii. Available at iapbwg.pan.pl The Biological and Toxin Weapons Convention 6 Executive summary The Trends Symposium and background documents noted many issues of relevance to the Review Conference and reached several overarching conclusions which are outlined below. The Trends Symposium concluded that: There were four themes that arose from the • Technological barriers to acquiring and background papers and during the Trends using a biological weapon have been significantly Symposium around which this report is structured: eroded since the Seventh Review Conference, • Biosciences are developing at an unprecedented there had been no further novel developments rate. that could enable activities inconsistent with the • The BWC should continue to monitor these aims and objectives of the BWC. developments. • Likewise, there were no developments that • Global ability to detect and treat disease has would not be covered by the treaty or additional been enhanced. supplementary understandings, but • Recent advances could facilitate the development • The speed at which the life sciences and of biological weapons. technology are advancing, and the rate of convergence of disciplines, is still accelerating. Summaries of these sections are provided below This increases the likelihood of such and each is considered in detail in each chapter in developments in the foreseeable future. the reminder of this report, including a synopsis of the • Such potential problems, as well as any research papers which lie behind the developments appropriate responses could be discussed provided in the annotated references. prior to the 9th Review Conference. The biosciences are developing at an • Biotechnology is increasingly important around unprecedented rate the world as a manufacturing technology and has The rate and scale of progress in the life sciences therefore become a potential target for biological and biotechnology continues to grow rapidly. There weapons itself. It should be explored whether is an increasing diffusion of knowledge around the there are any risks not already captured by existing world and more interconnection between knowledge treaties and laws of weapons that cause damage to hubs, many of them ‘virtual’. Laboratories operate in equipment supplies, or material associated with the more diverse geographic locations and across different bio-economy. sectors of our societies. • There was an increased need for education and outreach to promote the aims and objectives of the The character of life sciences and biotechnology BWC amongst the scientific community. is evolving with greater focus on rational design, biological engineering, and more flexible production. Moving from ‘concept’ to ‘application’ is becoming ever simpler, unlocking further potential for progress. The adoption of engineering paradigms has contributed to progress. All these factors have both positive and negative implications for the BWC. The Biological and Toxin Weapons Convention 7 The BWC should continue to monitor these Increasing ‘digitization’ of pathogen data enables developments. the identification and characterisation by centralised For this reason, the BWC should continue to ensure facilities of the infectious agent facilitating development that such developments are not used in prohibited of countermeasures and the use of ‘distributed activities, whilst facilitating their use for peaceful diagnostics’ at the site of the outbreak. This concept has purposes. It could achieve this by devising an effective, already been partially implemented in both developed on-going, and suitably resourced mechanism to: and developing countries.
Recommended publications
  • Bacillus Anthracis Edema Factor Substrate Specificity: Evidence for New Modes of Action
    Toxins 2012, 4, 505-535; doi:10.3390/toxins4070505 OPEN ACCESS toxins ISSN 2072–6651 www.mdpi.com/journal/toxins Review Bacillus anthracis Edema Factor Substrate Specificity: Evidence for New Modes of Action Martin Göttle 1,*, Stefan Dove 2 and Roland Seifert 3 1 Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA 2 Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany; E-Mail: [email protected] 3 Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-404-727-1678; Fax: +1-404-727-3157. Received: 23 April 2012; in revised form: 15 June 2012 / Accepted: 27 June 2012 / Published: 6 July 2012 Abstract: Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5′-triphosphate, uridine 5′-triphosphate and inosine 5′-triphosphate, in addition to adenosine 5′-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3′:5′-monophosphate, cyclic uridine 3′:5′-monophosphate and cyclic inosine 3′:5′-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
    [Show full text]
  • Animal Biosafety Level
    Biological Safety Manual Prepared by: Environmental Health and Safety Office April 2012 Table of Contents Table of Contents .................................................................................................................... ii Tables and Figures ................................................................................................................. vii Acronyms ........................................................................................................................... viii Foreword ............................................................................................................................... x Document History .................................................................................................................... x 1.0 Introduction ........................................................................................................ 1-1 1.1 Biological Material ............................................................................................. 1-1 1.1.1 Biohazardous Material ........................................................................................ 1-1 1.1.2 Nonbiohazardous Material .................................................................................. 1-2 1.2 Regulations, Guidelines, and Permit Requirements ............................................. 1-2 1.3 Roles and Responsibilities ................................................................................... 1-4 1.3.1 Vice President for Research and Economic Development
    [Show full text]
  • Batrachotoxin Time-Resolved Absorption And
    Dental, Oral and Maxillofacial Research Mini Review ISSN: 2633-4291 Batrachotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-gum cancer drug Alireza Heidari1,2*, Jennifer Esposito1 and Angela Caissutti1 1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA 2American International Standards Institute, Irvine, CA 3800, USA Abstract Gum cancers are cancers that arise from the gum. They are due to the development of abnormal cells that have the ability to invade or spread to other parts of the body. There are three main types of gum cancers: basal-cell gum cancer (BCC), squamous-cell gum cancer (SCC) and melanoma. Batrachotoxin (BTX) is an anti- gum cancer extremely potent cardiotoxic and neurotoxic steroidal alkaloid found in certain species of beetles, birds, and frogs. Batrachotoxin was derived from the Greek word βάτραχος bátrachos "frog". Structurally-related chemical compounds are often referred to collectively as batrachotoxins. It is an extremely poisonous alkaloid. In certain frogs this alkaloid is present mostly on the gum. Such frogs are among those used for poisoning darts. Batrachotoxin binds to and irreversibly opens the sodium channels of nerve cells and prevents them from closing, resulting in paralysis-no antidote is known. Parameters such as FT -IR and Raman vibrational wavelengths and intensities for single crystal Batrachotoxin are calculated using density functional theory and were compared with empirical results. The investigation about vibrational spectrum of cycle dimers in crystal with carboxyl groups from each molecule of acid was shown that it leads to create Hydrogen bonds for adjacent molecules.
    [Show full text]
  • Medical Aspects of Biological Warfare
    Epidemiology of Biowarfare and Bioterrorism Chapter 2 EPIDEMIOLOGY OF BIOWARFARE AND BIOTERRORISM ZYGMUNT F. DEMBEK, PhD, MS, MPH, LHD*; JULIE A. PAVLIN, MD, PhD, MPH†; MARTINA SIWEK, PhD‡; and MARK G. KORTEPETER, MD, MPH§ INTRODUCTION THE EPIDEMIOLOGY OF EPIDEMICS Definition Recognition Potential Epidemiological Clues to an Unnatural Event Outbreak Investigation EPIDEMIOLOGICAL CASE STUDIES Bioterrorism Events Accidental Release of Biological Agents Studies of Natural Outbreaks for Potential Bioweapon Use EPIDEMIOLOGICAL ASSESSMENT TOOL IMPROVING RECOGNITION AND SURVEILLANCE OF BIOTERRORISM POTENTIAL IMPACT OF ADVANCED MOLECULAR TECHNIQUES ON THE EPIDEMIOLOGY OF BIOWARFARE AND BIOTERRORISM SUMMARY *Colonel (Retired), Medical Service Corps, US Army Reserve; Associate Professor, Department of Military and Emergency Medicine, Uniformed Ser- vices University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814; formerly, Chief, Biodefense Epidemiology and Education & Training Programs, Division of Medicine, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland †Colonel (Retired), Medical Corps, US Army; Deputy Director, Armed Forces Health Surveillance Center, 11800 Tech Road, Silver Spring, Maryland 20904 ‡Chief Scientist, Cherokee Nation Technology Solutions in Support of Global Emerging Infections Surveillance and Response System, Armed Forces Health Surveillance Center, 11800 Tech Road, Silver Spring, Maryland 20904; formerly, Science Manager/Liaison, Biosurveillance
    [Show full text]
  • Quorum Sensing
    SBT1103 / MICROBIOLOGY / UNIT V / BIOTECH/BIOMED/BIOINFO II SEMESTER / I YEAR UNIT – V APPLICATIONS OF MICROBIOLOGY 1 SBT1103 / MICROBIOLOGY / UNIT V / BIOTECH/BIOMED/BIOINFO II SEMESTER / I YEAR Microbial ecology The great plate count anomaly. Counts of cells obtained via cultivation are orders of magnitude lower than those directly observed under the microscope. This is because microbiologists are able to cultivate only a minority of naturally occurring microbes using current laboratory techniques, depending on the environment.[1] Microbial ecology (or environmental microbiology) is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life—Eukaryota, Archaea, and Bacteria—as well as viruses. Microorganisms, by their omnipresence, impact the entire biosphere. Microbial life plays a primary role in regulating biogeochemical systems in virtually all of our planet's environments, including some of the most extreme, from frozen environments and acidic lakes, to hydrothermal vents at the bottom of deepest oceans, and some of the most familiar, such as the human small intestine.[3][4] As a consequence of the quantitative magnitude of microbial life (Whitman and coworkers calculated 5.0×1030 cells, eight orders of magnitude greater than the number of stars in the observable universe[5][6]) microbes, by virtue of their biomass alone, constitute a significant carbon sink.[7] Aside from carbon fixation, microorganisms’ key collective metabolic processes (including
    [Show full text]
  • Senate Commerce Committee Republican Members: Democratic Members: Thune, John (SD), Chairman Nelson, Bill (FL), Ranking Member Wicker, Roger F
    Senate Commerce Committee Republican Members: Democratic Members: Thune, John (SD), Chairman Nelson, Bill (FL), Ranking Member Wicker, Roger F. (MS) Cantwell, Maria (WA) Blunt, Roy (MO) Klobuchar, Amy (MN) Cruz, Ted (TX) Blumenthal, Richard (CT) Fischer, Deb (NE) Schatz, Brian (HI) Moran, Jerry (KS) Markey, Edward J. (MA) Sullivan, Dan (AK) Udall, Tom (NM) Heller, Dean (NV) Peters, Gary C. (MI) Inhofe, James M. (OK) Baldwin, Tammy (WI) Lee, Mike (UT) Duckworth, Tammy (IL) Johnson, Ron (WI) Hassan, Margaret Wood (NH) CaPito, Shelley Moore (WV) Cortez Masto, Catherine (NV) Gardner, Cory (CO) Tester, Jon (Montana) Young, Todd (IN) John Thune CHAIRMAN (56) R-SD elected 2004 United States Senate SD-511 Phone: (202) 224-2321 Director of Scheduling: [email protected] [email protected] Chief of Staff: Brendon Plack [email protected] Telecommunications Legislative Aide: [email protected] Health Legislative Correspondent: [email protected] Senior Policy Advisor Agriculture, Environment [email protected] Committees and Subcommittees: Senate Committee on Agriculture, Nutrition, and Forestry Senate Subcommittee on Commodities, Risk Management and Trade Senate Subcommittee on Livestock, Marketing and Agriculture Security Senate Subcommittee on Rural DeveloPment and Energy Bios Senate Commerce Committee – 115th Congress 1 Senate Committee on Commerce, Science, and Transportation Senate Subcommittee on Aviation OPerations, Safety, and Security Senate Subcommittee on Communications,
    [Show full text]
  • Anthrax Toxin Time-Resolved Absorption and Resonance Ft-Ir And
    Trends in Research Image Article ISSN: 2516-7138 Anthrax toxin time-resolved absorption and resonance ft-ir and raman biospectroscopy and density functional theory (dft) investigation of vibronic-mode coupling structure in vibrational spectra analysis Alireza Heidari1,2*, Jennifer Esposito1 and Angela Caissutti2 1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA 2American International Standards Institute, Irvine, CA 3800, USA Abstract Anthrax toxin is a three-protein exotoxin secreted by virulent strains of the bacterium, Bacillus anthracis—the causative agent of anthrax. The toxin was first discovered by Harry Smith in 1954. Anthrax toxin is composed of a cell-binding protein, known as protective antigen (PA), and two enzyme components, called edema factor (EF) and lethal factor (LF). These three protein components act together to impart their physiological effects. Assembled complexes containing the toxin components are endocytosed. In the endosome, the enzymatic components of the toxin translocate into the cytoplasm of a target cell. Once in the cytosol, the enzymatic components of the toxin disrupt various immune cell functions, namely cellular signaling and cell migration. The toxin may even induce cell lysis, as is observed for macrophage cells. Anthrax toxin allows the bacteria to evade the immune system, proliferate, and ultimately kill the host animal. Research on anthrax toxin also provides insight into the generation of macromolecular assemblies, and on protein translocation, pore formation, endocytosis, and other biochemical processes. Parameters such as FT -IR and Raman vibrational wavelengths and intensities for single crystal Anthrax Toxin are calculated using density functional theory and were compared with empirical results.
    [Show full text]
  • Anthrax Toxins in Context of Bacillus Anthracis Spores and Spore Germination
    Toxins 2015, 7, 3167-3178; doi:10.3390/toxins7083167 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination Christopher K. Cote * and Susan L. Welkos United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-301-619-4936; Fax: +1-301-619-2152. Academic Editor: Shihui Liu Received: 29 July 2015 / Accepted: 11 August 2015 / Published: 17 August 2015 Abstract: The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions. Keywords: anthrax; Bacillus anthracis; spores; anthrax toxins; PA; germination 1. Toxins Are Crucial for Bacillus anthracis Pathogenesis Bacillus anthracis, a gram-positive spore-forming bacterium, is the etiologic agent of anthrax [1–4]. It is important to note that, outside of the laboratory, the spore is the only infectious form of B. anthracis [5–8]. In most cases of anthrax acquired by inhalation, the spores are thought to be transported from their site of deposition in the lungs to regional lymph nodes where they germinate and outgrow into the vegetative bacilli [9–15].
    [Show full text]
  • The Evolving Field of Biodefence: Therapeutic Developments and Diagnostics
    REVIEWS THE EVOLVING FIELD OF BIODEFENCE: THERAPEUTIC DEVELOPMENTS AND DIAGNOSTICS James C. Burnett*, Erik A. Henchal‡,Alan L. Schmaljohn‡ and Sina Bavari‡ Abstract | The threat of bioterrorism and the potential use of biological weapons against both military and civilian populations has become a major concern for governments around the world. For example, in 2001 anthrax-tainted letters resulted in several deaths, caused widespread public panic and exerted a heavy economic toll. If such a small-scale act of bioterrorism could have such a huge impact, then the effects of a large-scale attack would be catastrophic. This review covers recent progress in developing therapeutic countermeasures against, and diagnostics for, such agents. BACILLUS ANTHRACIS Microorganisms and toxins with the greatest potential small-molecule inhibitors, and a brief review of anti- The causative agent of anthrax for use as biological weapons have been categorized body development and design against biotoxins is and a Gram-positive, spore- using the scale A–C by the Centers for Disease Control mentioned in TABLE 1. forming bacillus. This aerobic and Prevention (CDC). This review covers the discovery organism is non-motile, catalase and challenges in the development of therapeutic coun- Anthrax toxin. The toxin secreted by BACILLUS ANTHRACIS, positive and forms large, grey–white to white, non- termeasures against select microorganisms and toxins ANTHRAX TOXIN (ATX), possesses the ability to impair haemolytic colonies on sheep from these categories. We also cover existing antibiotic innate and adaptive immune responses1–3,which in blood agar plates. treatments, and early detection and diagnostic strategies turn potentiates the bacterial infection.
    [Show full text]
  • BMBL) Quickly Became the Cornerstone of Biosafety Practice and Policy in the United States Upon First Publication in 1984
    Biosafety in Microbiological and Biomedical Laboratories 5th Edition U.S. Department of Health and Human Services Public Health Service Centers for Disease Control and Prevention National Institutes of Health HHS Publication No. (CDC) 21-1112 Revised December 2009 Foreword Biosafety in Microbiological and Biomedical Laboratories (BMBL) quickly became the cornerstone of biosafety practice and policy in the United States upon first publication in 1984. Historically, the information in this publication has been advisory is nature even though legislation and regulation, in some circumstances, have overtaken it and made compliance with the guidance provided mandatory. We wish to emphasize that the 5th edition of the BMBL remains an advisory document recommending best practices for the safe conduct of work in biomedical and clinical laboratories from a biosafety perspective, and is not intended as a regulatory document though we recognize that it will be used that way by some. This edition of the BMBL includes additional sections, expanded sections on the principles and practices of biosafety and risk assessment; and revised agent summary statements and appendices. We worked to harmonize the recommendations included in this edition with guidance issued and regulations promulgated by other federal agencies. Wherever possible, we clarified both the language and intent of the information provided. The events of September 11, 2001, and the anthrax attacks in October of that year re-shaped and changed, forever, the way we manage and conduct work
    [Show full text]
  • Combinations of Monoclonal Antibodies to Anthrax Toxin Manifest New Properties in Neutralization Assays
    Combinations of Monoclonal Antibodies to Anthrax Toxin Manifest New Properties in Neutralization Assays Mary Ann Pohl, Johanna Rivera, Antonio Nakouzi, Siu-Kei Chow, Arturo Casadevall Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA Monoclonal antibodies (MAbs) are potential therapeutic agents against Bacillus anthracis toxins, since there is no current treat- ment to counteract the detrimental effects of toxemia. In hopes of isolating new protective MAbs to the toxin component lethal factor (LF), we used a strain of mice (C57BL/6) that had not been used in previous studies, generating MAbs to LF. Six LF-bind- ing MAbs were obtained, representing 3 IgG isotypes and one IgM. One MAb (20C1) provided protection from lethal toxin (LeTx) in an in vitro mouse macrophage system but did not provide significant protection in vivo. However, the combination of two MAbs to LF (17F1 and 20C1) provided synergistic increases in protection both in vitro and in vivo. In addition, when these MAbs were mixed with MAbs to protective antigen (PA) previously generated in our laboratory, these MAb combinations pro- duced synergistic toxin neutralization in vitro. But when 17F1 was combined with another MAb to LF, 19C9, the combination resulted in enhanced lethal toxicity. While no single MAb to LF provided significant toxin neutralization, LF-immunized mice were completely protected from infection with B. anthracis strain Sterne, which suggested that a polyclonal response is required for effective toxin neutralization. In total, these studies show that while a single MAb against LeTx may not be effective, combi- nations of multiple MAbs may provide the most effective form of passive immunotherapy, with the caveat that these may dem- onstrate emergent properties with regard to protective efficacy.
    [Show full text]
  • 20 Years of Communicating Facts and Figures 2 2008 Increasing Prevalence of ESBL-Producing Steffens I Enterobacteriaceae in Europe 48 Coque T Et Al
    Europe’s journal on infectious disease epidemiology, prevention and control YEARS • Featuring a selection of articles published between 1996 and 2016 www.eurosurveillance.org Editorial team Editorial advisors Based at the European Centre for Albania: Alban Ylli, Tirana Disease Prevention and Control (ECDC), Austria: Maria Paulke-Korinek, Vienna 171 65 Stockholm, Sweden Belgium: Koen de Schrijver; Tinne Lernout, Antwerp Telephone number Bosnia and Herzegovina: Sanjin Musa, Sarajevo +46 (0)8 58 60 11 38 Bulgaria: Iva Christova, Sofia E-mail Croatia: Sanja Music Milanovic, Zagreb [email protected] Cyprus: Maria Koliou, Nicosia Czech Republic: Jan Kynčl, Prague Editor-in-chief Denmark: Peter Henrik Andersen, Copenhagen Dr Ines Steffens Estonia: Kuulo Kutsar, Tallinn Senior editor Finland: Outi Lyytikäinen, Helsinki Kathrin Hagmaier France: Judith Benrekassa, Paris Germany: Jamela Seedat, Berlin Scientific editors Greece: Rengina Vorou, Athens Karen Wilson Hungary: Ágnes Hajdu, Budapest Williamina Wilson Iceland: Thorolfur Gudnason, Reykjavík Assistant editors Ireland: Lelia Thornton, Dublin Alina Buzdugan Italy: Paola De Castro, Rome Ingela Rumenius Latvia: Dzintars Mozgis, Riga Cecilia Silfverling Lithuania: Milda Zygutiene, Vilnius Associate editors Luxembourg: Thérèse Staub, Luxembourg Andrea Ammon, European Centre for Disease Prevention and The former Yugoslav Republic of Macedonia: Aziz Pollozhani, Control (ECDC), Stockholm, Sweden (resting associate editor- Skopje ship during tenure as acting Director of ECDC) Malta: Tanya
    [Show full text]