Journal of Systematics JSE and Evolution doi: 10.1111/jse.12247 Research Article A preliminary species-level phylogeny of the alpine ginger Roscoea: Implications for speciation Jian-Li Zhao1,2, Jinshun Zhong3, Yong-Li Fan2,4, Yong-Mei Xia2, and Qing-Jun Li1* 1Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China 2Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China 3Department of Plant Biology, University of Vermont, 63 Carrigan Drive, Burlington, VT 05405, USA 4China Forest Exploration and Design Institute of Kunming, Kunming 650216, China *Author for correspondence. E-mail:
[email protected]. Tel.: 86-871-65030660. Received 13 December 2016; Accepted 1 March 2017; Article first published online xx Month 2017 Abstract Speciation, the evolutionary process forming new species, is a key mode generating biodiversity on the Earth. In this study, we produced a species-level phylogeny of Roscoea using one nuclear ribosomal and two chloroplast DNA fragments based on Bayesian inference and maximum likelihood. We then explored the possible speciation processes using the species-level phylogeny and the heterozygous sites in the nuclear DNA. The incongruence between nuclear and chloroplast phylogenies, and several heterozygous sites in the nuclear DNA, suggested that R. auriculata might have a hybrid origin with R. purpurea and R. alpina being two possible parental progenitors; however, one alternative possibility through incomplete lineage sorting cannot be ruled out. In addition, R. kunmingensis likely originated from R. tibetica Batalin through the process of “budding speciation”. These results provided a valuable framework to draw testable hypotheses for future in-depth comparative studies to further our understanding of the underpinning speciation and adaptation mechanisms that contribute to ultrahigh biodiversity in the Himalayas and the Hengduan Mountains.