Wireless Network Security: 802.11, Bluetooth and Handheld Devices

Total Page:16

File Type:pdf, Size:1020Kb

Wireless Network Security: 802.11, Bluetooth and Handheld Devices Archived NIST Technical Series Publication The attached publication has been archived (withdrawn), and is provided solely for historical purposes. It may have been superseded by another publication (indicated below). Archived Publication Series/Number: NIST Special Publication 800-48 Title: Wireless Security: 802.11, Bluetooth and Handheld Devices Publication Date(s): November 2002 Withdrawal Date: July 2008 Withdrawal Note: SP 800-48 is superseded in its entirety by the publication of SP 800-48 Revision 1 (July 2008). Superseding Publication(s) The attached publication has been superseded by the following publication(s): Series/Number: NIST Special Publication 800-48 Revision 1 Title: Guide to Securing Legacy IEEE 802.11 Wireless Networks Author(s): Karen Scarfone, Derrick Dicoi, Matthew Sexton, Cyrus Tibbs Publication Date(s): July 2008 URL/DOI: http://dx.doi.org/10.6028/NIST.SP.800-48r1 Additional Information (if applicable) Contact: Computer Security Division (Information Technology Lab) Latest revision of the SP 800-48 Revision 1 (as of August 7, 2015) attached publication: Related information: http://csrc.nist.gov/ Withdrawal N/A announcement (link): Date updated: ƵŐƵƐƚϳ, 2015 Special Publication 800-48 Wireless Network Security 802.11, Bluetooth and Handheld Devices Tom Karygiannis Les Owens NIST Special Publication 800-48 Wireless Network Security 802.11, Bluetooth and Handheld Devices Recommendations of the National Institute of Standards and Technology Tom Karygiannis and Les Owens C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 November 2002 U.S. Department of Commerce Donald L. Evans, Secretary Technology Administration Phillip J. Bond, Under Secretary for Technology National Institute of Standards and Technology Arden L. Bement, Jr., Director WIRELESS NETWORK SECURITY Note to Readers This document is a publication of the National Institute of Standards and Technology (NIST) and is not subject to U.S. copyright. Certain commercial products are described in this document as examples only. Inclusion or exclusion of any product does not imply endorsement or non-endorsement by NIST or any agency of the U.S. Government. Inclusion of a product name does not imply that the product is the best or only product suitable for the specified purpose. Acknowledgments The authors wish to express their sincere thanks to numerous members of government, industry, and academia who have commented on this document. First, the authors wish to express their thanks to the staff at Booz Allen Hamilton who contributed to this document. In particular, their appreciation goes to Rick Nicholson, Brendan Goode, Christine Kerns, Sharma Aditi, and Brian Miller for their research, technical support, and contributions to this document. The authors express their appreciation to Bill Burr, Murugiah Souppaya, Tim Grance, Ray Snouffer, Sheila Frankel, and John Wack of NIST, for providing valuable contributions to the technical content of this publication. The authors would also like to express their thanks to security experts Russ Housley, Markus Jacobsson, Jan-Ove Larsson, Simon Josefsson, Stephen Whitlock, Brian Seborg, Pascal Meunier, William Arbaugh, Joesph Kabara, David Tipper, and Prashanth Krishnanmurthy for their valuable comments and suggestions. Finally, the authors wish to thank especially Matthew Gast, Keith Rhodes, and the Bluetooth Special Interest Group for their critical review and feedback during the public comments period. Contributions were also made by Rick Doten, Jerry Harold, Stephen Palmer, Michael D. Gerdes, Wally Wilhoite, Ben Halpert, Susan Landau, Sandeep Dhameja, Robert Moskowitz, Dennis Volpano, David Harrington, Bernard Aboba, Edward Block, Carol Ann Widmayer, Harold J. Podell, Mike DiSabato, Pieter Kasselman, Rick E. Morin, Chall McRoberts, and Kevin L. Perez. i WIRELESS NETWORK SECURITY Table of Contents Executive Summary................................................................................................................. 1 1. Introduction ................................................................................................................... 1-1 1.1 Authority ................................................................................................................ 1-1 1.2 Document Purpose and Scope .............................................................................. 1-1 1.3 Audience and Assumptions ................................................................................... 1-2 1.4 Document Organization ......................................................................................... 1-2 2. Overview of Wireless Technology................................................................................ 2-1 2.1 Wireless Networks................................................................................................. 2-1 2.1.1 Wireless LANs ........................................................................................... 2-1 2.1.2 Ad Hoc Networks ....................................................................................... 2-1 2.2 Wireless Devices ................................................................................................... 2-2 2.2.1 Personal Digital Assistants......................................................................... 2-2 2.2.2 Smart Phones ............................................................................................ 2-3 2.3 Wireless Standards................................................................................................ 2-3 2.3.1 IEEE 802.11............................................................................................... 2-3 2.3.2 Bluetooth.................................................................................................... 2-3 2.4 Wireless Security Threats and Risk Mitigation ....................................................... 2-4 2.5 Emerging Wireless Technologies........................................................................... 2-6 2.6 Federal Information Processing Standards ............................................................ 2-6 3. Wireless LANs ............................................................................................................... 3-8 3.1 Wireless LAN Overview ......................................................................................... 3-8 3.1.1 Brief History ............................................................................................... 3-8 3.1.2 Frequency and Data Rates ........................................................................ 3-9 3.1.3 802.11 Architecture.................................................................................... 3-9 3.1.4 Wireless LAN Components ...................................................................... 3-11 3.1.5 Range ...................................................................................................... 3-11 3.2 Benefits ................................................................................................................3-12 3.3 Security of 802.11 Wireless LANs.........................................................................3-13 3.3.1 Security Features of 802.11 Wireless LANs per the Standard.................. 3-13 3.3.2 Problems With the IEEE 802.11 Standard Security.................................. 3-17 3.4 Security Requirements and Threats......................................................................3-19 3.4.1 Loss of Confidentiality .............................................................................. 3-20 3.4.2 Loss of Integrity........................................................................................ 3-21 3.4.3 Loss of Network Availability...................................................................... 3-22 3.4.4 Other Security Risks ................................................................................ 3-22 3.5 Risk Mitigation ......................................................................................................3-22 3.5.1 Management Countermeasures............................................................... 3-23 3.5.2 Operational Countermeasures ................................................................. 3-23 3.5.3 Technical Countermeasures .................................................................... 3-24 3.6 Emerging Security Standards and Technologies ..................................................3-36 3.7 Case Study: Implementing a Wireless LAN in the Work Environment..................3-37 3.8 Wireless LAN Security Checklist...........................................................................3-40 3.9 Wireless LAN Risk and Security Summary ...........................................................3-42 4. Wireless Personal Area Networks................................................................................ 4-1 ii WIRELESS NETWORK SECURITY 4.1 Bluetooth Overview................................................................................................ 4-1 4.1.1 Brief History ............................................................................................... 4-3 4.1.2 Frequency and Data Rates ........................................................................ 4-3 4.1.3 Bluetooth Architecture and Components .................................................... 4-4 4.1.4 Range .......................................................................................................
Recommended publications
  • RUCKUS® R550 Indoor Wi-Fi 6 (802.11Ax) Access Point for Dense Environments
    DATA SHEET RUCKUS® R550 Indoor Wi-Fi 6 (802.11ax) Access Point for Dense Environments Wi-Fi capacity requirements in classrooms, office spaces, and medium-size venues are rising due to the increase in the number of Wi-Fi connected devices. An increase in bandwidth requirements for applications and an ever-growing assortment of IoT devices puts further strain on already stretched Wi-Fi Benefits networks. Stunning Wi-Fi performance The RUCKUS® R550 access point (AP) with the latest Wi-Fi 6 (802.11 ax) technology delivers the Mitigate interference and extend coverage with patented BeamFlex®+ adaptive antenna technology ideal combination of increased capacity, improved coverage and affordability in dense utilizing several directional antenna patterns. environments. The R550 is our mid- range dual-band, dual-concurrent AP that supports four spatial streams (2x2:2 in 2.4GHz/5GHz). The R550 supports peak data rates of up to 1774 Mbps and Serve more devices efficiently manages up to 512 clients connections. Connect more devices simultaneously with four MU- MIMO spatial streams and concurrent dual-band Also, wireless requirements within enterprises are expanding beyond Wi-Fi with BLE, Zigbee and 2.4/5GHz radios while enhancing device performance. many other non-Wi-Fi wireless technologies resulting in creation of network silos. Enterprises need a unified platform to eliminate network silos. The RUCKUS AP portfolio is equipped to solve these Converged Access Point challenges. Allows customers to eliminate siloed networks and unify WiFi and non-WiFi wireless technologies into one single The R550 has built-in IoT radios with onboard BLE and Zigbee capabilities.
    [Show full text]
  • Life Cycle of Municipal Wi-Fi
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Tseng, Chien-Kai; Huang, Kuang-Chiu Conference Paper Life Cycle of Municipal Wi-Fi 14th Asia-Pacific Regional Conference of the International Telecommunications Society (ITS): "Mapping ICT into Transformation for the Next Information Society", Kyoto, Japan, 24th-27th June, 2017 Provided in Cooperation with: International Telecommunications Society (ITS) Suggested Citation: Tseng, Chien-Kai; Huang, Kuang-Chiu (2017) : Life Cycle of Municipal Wi- Fi, 14th Asia-Pacific Regional Conference of the International Telecommunications Society (ITS): "Mapping ICT into Transformation for the Next Information Society", Kyoto, Japan, 24th-27th June, 2017, International Telecommunications Society (ITS), Calgary This Version is available at: http://hdl.handle.net/10419/168493 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence.
    [Show full text]
  • BC510 Wireless Gateway User Guide- V100R001 01
    Wonderful Communication, Mobile Life. Welcome to HUAWEI BC510 Wireless Gateway. HUAWEI BC510 Wireless Gateway User Guide Copyright © 2007 Huawei Technologies Co., Ltd. All Rights Reserved No part of this manual may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd. Trademarks and HUAWEI are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this manual are the property of their respective holders. Notice The information in this manual is subject to change without notice. Every effort has been made in the preparation of this manual to ensure accuracy of the contents, but all statements, information, and recommendations in this manual do not constitute the warranty of any kind, expressed or implied. Safety Precautions Read the safety precautions carefully to ensure the correct and safe use of your wireless device. For detailed information, see Chapter 15 "Warnings and Precautions." Do not switch on your device when the device use is prohibited or when the device use may cause interference or danger. Do not use your device while driving. Follow the rules or regulations in hospitals and health care facilities. Switch off your device near medical apparatus. Switch off your device in an aircraft. The device may cause interference to control signals of the aircraft. Switch off your device near high-precision electronic devices. The device may affect the performance of these devices. Do not attempt to disassemble your device or its accessories. Only qualified personnel are allowed to service or repair the device. Do not place your device or its accessories in containers with strong electromagnetic field.
    [Show full text]
  • IEEE 802.11 Standard Has Been Around Since 1997, Work Continues to Make It More Adaptable to the Demand for Higher Data Rates and True Wireless flexibility
    Although the IEEE 802.11 standard has been around since 1997, work continues to make it more adaptable to the demand for higher data rates and true wireless flexibility. William Stallings IEEE 802.11: Moving Closer to Practical Wireless LANs ireless LANs have quickly be- began relying more on inexpensive twisted-pair come a significant niche in the cabling for LANs—in particular Category 3 and LAN market. As adjuncts to Category 5 unshielded twisted pair. Category 3 traditional wired LANs, they sat- wiring is the traditional telephone wiring found Wisfy mobility, relocation, and ad hoc networking in every office building; category 5 wiring is requirements and provide a way to cover loca- higher-performance wiring able to carry higher tions that are difficult to wire. data rates. Many older buildings are prewired As the name suggests, a wireless LAN uses a with an abundance of Category 3 cable, and many wireless transmission medium. Until relatively newer buildings are prewired with Category 5. recently, few organizations used wireless LANs Thus, there was little motivation to replace wired because they cost too much, their data rates were LANs with wireless. too low,they posed occupational safety problems This is not true of all environments, how- because of concerns about the health effects of ever. For some, the motivation to use wireless electromagnetic radiation, and the spectrum used LANs is much higher. Buildings with large open required a license. Today, however, these prob- areas, such as manufacturing plants, stock lems have largely diminished, and wireless LAN exchange trading floors, and warehouses, make popularity is skyrocketing.
    [Show full text]
  • Wireless Gateway
    hp digital home networking wireless gateway model hn200w wireless gateway acknowledgements and notices hewlett-packard company notices The information contained in this document is subject to change without notice. Hewlett-Packard (HP) makes no warranty of any kind with regard to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. All rights reserved. Reproduction, adaptation, or translation of this material is prohibited without prior written permission of Hewlett-Packard, except as allowed under copyright laws. acknowledgements Microsoft, MS, MS-DOS, and Windows are registered trademarks of Microsoft Corporation. conventions The following conventions are used in this guide: symbols The > symbol guides you through a series of software steps. For example: Click Start > Settings > Control Panel to view the active control panels. warnings A Warning indicates possible damage to the HP Gateway or to other equipment. A Warning can also indicate a possible harm to yourself or to others. For example: Warning: Plugging into a nongrounded electrical socket can damage your Gateway. Copyright 2001 Hewlett-Packard Company 2 contents introduction .............................................................5 hp digital home networking wireless gateway .................... 5 features ........................................................................
    [Show full text]
  • Lab Report: 2.1.3 Connect to an Ethernet Network
    Lab Report: 2.1.3 Connect to an Ethernet Network Performance Your Score: 0 of 2 (0%) Elapsed Time: 9 seconds Task Summary Actions you were required to perform: In In Office 1, connect the twisted pair cable between the workstation and the wall plate In In Office 1, confirm that the workstation has a connection to the local network and the Internet Explanation To complete this lab, use twisted pair cable with RJ45 connectors to connect to a wired Ethernet network. RJ45 connectors have eight wires (as seen below) and are larger than RJ11 connectors. Complete the following steps: 1. Under Office 1, select Hardware to go to the workstation. 2. Above the computer, select Back to switch to the back view of the computer. 3. On the Shelf, expand the Cables category. 4. Select the RJ45 cable. 5. In the Selected Component window, drag and drop the connector to the Ethernet port on the computer. 6. In the Selected Component window, drag the other connector to the Ethernet port on the wall outlet. 7. Select Click to view Windows 10 on the monitor to confirm that the workstation has a connection to the local network and the internet. 8. In the notification area, right-click the Network icon and select Open Network and Sharing Center. The diagram should indicate an active connection to the network and the internet. Lab Report: 2.2.3 Connect a Cable Modem Performance Your Score: 0 of 4 (0%) Elapsed Time: 6 seconds Task Summary Actions you were required to perform: In Connect the cable modem to the Internet using the RG-6 cable In Connect the computer to the cable modem using the Ethernet cable In Plug in the cable modem In Confirm that the computer is properly connected to the Internet Explanation In this lab, your task is to complete the following: Connect the components to make the internet connection.
    [Show full text]
  • Book IG 1800 British Telecom Rev A.Book
    Notice to Users ©2003 2Wire, Inc. All rights reserved. This manual in whole or in part, may not be reproduced, translated, or reduced to any machine-readable form without prior written approval. 2WIRE PROVIDES NO WARRANTY WITH REGARD TO THIS MANUAL, THE SOFTWARE, OR OTHER INFORMATION CONTAINED HEREIN AND HEREBY EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE WITH REGARD TO THIS MANUAL, THE SOFTWARE, OR SUCH OTHER INFORMATION, IN NO EVENT SHALL 2WIRE, INC. BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL, OR SPECIAL DAMAGES, WHETHER BASED ON TORT, CONTRACT, OR OTHERWISE, ARISING OUT OF OR IN CONNECTION WITH THIS MANUAL, THE SOFTWARE, OR OTHER INFORMATION CONTAINED HEREIN OR THE USE THEREOF. 2Wire, Inc. reserves the right to make any modification to this manual or the information contained herein at any time without notice. The software described herein is governed by the terms of a separate user license agreement. Updates and additions to software may require an additional charge. Subscriptions to online service providers may require a fee and credit card information. Financial services may require prior arrangements with participating financial institutions. © British Telecommunications Plc 2002. BTopenworld and the BTopenworld orb are registered trademarks of British Telecommunications plc. British Telecommunications Plc registered office is at 81 Newgate Street, London EC1A 7AJ, registered in England No. 180000. ___________________________________________________________________________________________________________________________ Owner’s Record The serial number is located on the bottom of your Intelligent Gateway. Record the serial number in the space provided here and refer to it when you call Customer Care. Serial Number:__________________________ Safety Information • Use of an alternative power supply may damage the Intelligent Gateway, and will invalidate the approval that accompanies the Intelligent Gateway.
    [Show full text]
  • Long Term Evolution (LTE)
    IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735. Volume 7, Issue 3 (Sep. - Oct. 2013), PP 36-42 www.iosrjournals.org Long Term Evolution (LTE) 1 2 3 4 Emad Kazi , Rajan Pillai , Uzair Qureshi , Awab Fakih 1,2,3,4 (Electronics and Telecommunication, Anjuman-I-Islam’s Kalsekar technical campus (AIKTC), Mumbai University, India) Abstract:The number of people using mobile phone in the world has exceeded 4.5 billion and this figure is continuing to grow. For the past several years, mobile data traffic such as internet access, the downloading of music and video communication has been nearly tripling every year. With the popularity of smartphones, mobile data traffic will increase 200 times in the 7 to 8 years upto 2020.There are high expectations that Long Term Evolution (LTE) which is known as 3.9G wireless system will be a new service platform that can support a huge amount of mobile data traffic. This paper describes the features, technology and network architecture of LTE & also provides an overview of next generation telecommunication network LTE, which is started commercially in December 2010 in Japan (started by DOCOMO), realizing high speed wireless access. It also outlines the further trends towards a further speed increase. Keywords-Circuit Switching, GSM, HSPA, LTE, Packet Switching, WiMAX I. Introduction In times when mobile devices are getting more popular the mobile network are becoming more and more important too. Websites are not same they used to be 10 years ago. They consist of with quality pictures, animation, flash application and more.
    [Show full text]
  • Wireless Technologies and the SAFECOM Sor for Public Safety Communications
    Wireless Technologies and the SAFECOM SoR for Public Safety Communications Leonard E. Miller Wireless Communication Technologies Group Advanced Network Technologies Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, Maryland 2005 Cover photo: Santa Clara County antenna farm, from http://www.sccfd.org/frequencies.html ii Wireless Technologies and the SAFECOM SoR for Public Safety Communications Preface The Problem: Lack of Capacity, Interoperability, and Functionality National assessments of public safety communications (PSC) that were made in the 1990s found that the nation’s public safety agencies faced several important problems in their use of radio communications1: • First, the radio frequencies allocated for Public Safety use have become highly congested in many, especially urban, areas…. • Second, the ability of officials from different Public Safety agencies to communicate with each other is limited…. Interoperability is hampered by the use of multiple frequency bands, incompatible radio equipment, and a lack of standardization in repeater spacing and transmission formats. • Finally, Public Safety agencies have not been able to implement advanced features to aid in their mission. A wide variety of technologies—both existing and under development —hold substantial promise to reduce danger to Public Safety personnel and to achieve greater efficiencies in the performance of their duties. Broadband data systems, for example, offer greater access to databases and information that can save lives and contribute to keeping criminals “off the street.” Video systems promise better surveillance capabilities, increased use of robotics in toxic and hazardous environments, and better monitoring and tracking of both personnel and equipment. The national assessments of PSC have had significant impact on legislation, regulation, and funding.
    [Show full text]
  • Mobile Devices 1 Development of Mobile Devices Berker Sönmez
    Mobile Devices 1 Development of Mobile Devices Berker Sönmez Faculty of Computer and Informatics 040100101 Oğuz Onur Kul Faculty of Computer and Informatics 040100105 Erdem Emekligil Faculty of Computer and Informatics 150110702 English 201 Sueda Albayrak December 22, 2011 Mobile Devices 2 Thesis: The hardware, software and connection technologies of mobile devices have developed greatly in the recent years. I. Hardware A. Inside Components 1. Chips 2. Batteries B. Outside Components 1. Cameras 2. Touch sense technologies II. Software A. New operating systems 1. iOS 2. Android B. Functional applications 1. Medical applications 2. Game applications III. Connection technologies A. New generation wireless technologies 1. 802.11(Wifi) and 802.16(WiMax) 2. Bluetooth, IrDA and HomeRF B. Advanced communication protocols 1. 3G technology 2. 4G (LTE) technology Mobile Devices 3 Technology is one of the fastest growing entities in science. Day after day, many improvements are being made, many ideas and inventions are being added to this entity. In the recent years, mobile technology gained importance since people have started living in different places and it is important to provide communication among them. Mobile devices are small, portable equipments that are used to carry out various tasks without being obliged to stay in a certain place. In the recent years, the most popular mobile devices have been mobile phones since they have become everyday objects which people carry in their pockets to wherever they travel. Using mobile devices, it is possible to view e-mails, play games, read books and complete many other tasks on the go. Therefore, the importance of mobile phones can not be overlooked.
    [Show full text]
  • Components Selection Guide for Bluetooth® Low Energy
    Application Guide Components Selection Guide for Bluetooth® Low Energy Optimize designs, reduce time to market Ceramic Capacitors RF Inductors Power Inductors Timing Devices Bluetooth® Low Energy (BLE) is the next generation Bluetooth® release since version 4.0. Its low power consumption feature makes the BLE a popular choice across many applications. Knowledge of selecting the appropriate peripheral components greatly reduces design time and improves efficiency. System on Chip Power Inductor Battery DC/DC Antenna (Li/Coin Battery) Converter Wireless Ceramic Processor Communication Capacitor Memory (2.4GHz) RF Inductor Timing Devices Sensor Block diagram / Peripheral components Market / applications • IoT devices: Beacon, sensing device with wireless communication • Healthcare: Medical IoT devices, insulin pen, continuous glucose monitoring (CGM), medical tester, portable and personal devices • Industrial: Factory automation (FA), item tracking, monitoring Content Ceramic capacitors .................................. 3 Crystal units ............................................... 7 Ceramic capacitors .................................. 4 MEMS resonators ..................................... 8 RF inductors ............................................... 5 Design tools ................................................ 9 Power inductors ........................................ 6 Global locations ..................................... 10 2 Contents are subject to change without notice. © November 2020 Murata Manufacturing Co., Ltd. • BLE Component
    [Show full text]
  • Generating Signals for Wireless Lans, Part I: IEEE 802.11B
    Products: SMIQ, AMIQ, WinIQSIM™, SMIQK16, AMIQK16 Generating Signals for Wireless LANs, Part I: IEEE 802.11b With Wireless Local Area Networks (WLAN) already entering the mass markets, generating signals to WLAN standards will become increasingly important. Signal sources are needed in R&D (or production) to test RF modules, to evaluate basic receiver functionality or when new designs are being evolved. This Application Note focuses on the most commonly used standard IEEE 802.11b. Topics covered include technical aspects of the physical layers as well as details on configuring available signal sources. Subject to change – Gernot Bauer 8/2002 – 1GP49_1E Generating Signals for WLANs, Part I: 802.11b Contents 1 Introduction to Wireless LAN Systems......................................................................................3 2 The IEEE 802.11 and 11b Standards ..........................................................................................5 2.1 The 802.11 and 11b PHY ....................................................................................................6 2.1.1 Defined Transmission Methods.................................................................................6 2.1.1.1 Low Rate Modulation with Barker Spreading................................................7 2.1.1.2 High Rate CCK Modulation...........................................................................8 2.1.1.3 High Rate PBCC Modulation ........................................................................9 2.1.2 The PLCP..................................................................................................................9
    [Show full text]