TAXON:Combretum Indicum SCORE:10.0 RATING:High Risk

Total Page:16

File Type:pdf, Size:1020Kb

TAXON:Combretum Indicum SCORE:10.0 RATING:High Risk TAXON: Combretum indicum SCORE: 10.0 RATING: High Risk Taxon: Combretum indicum Family: Combretaceae Common Name(s): Burma creeper Synonym(s): Quisqualis indica L. (basionym) quisqualis Rangoon creeper Assessor: Assessor Status: Assessor Approved End Date: 12 Sep 2014 WRA Score: 10.0 Designation: H(HPWRA) Rating: High Risk Keywords: Tropical Liana, Naturalized, Thorny, Suckers, Water-dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) y 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 y 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle Creation Date: 12 Sep 2014 (Combretum indicum) Page 1 of 15 TAXON: Combretum indicum SCORE: 10.0 RATING: High Risk Qsn # Question Answer Option Answer Tolerates a wide range of soil conditions (or limestone 410 y=1, n=0 y conditions if not a volcanic island) 411 Climbing or smothering growth habit y=1, n=0 y 412 Forms dense thickets 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n Geophyte (herbaceous with underground storage organs 504 y=1, n=0 n -- bulbs, corms, or tubers) Evidence of substantial reproductive failure in native 601 y=1, n=0 n habitat 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally 604 Self-compatible or apomictic 605 Requires specialist pollinators y=-1, n=0 y 606 Reproduction by vegetative fragmentation y=1, n=-1 y 607 Minimum generative time (years) Propagules likely to be dispersed unintentionally (plants 701 growing in heavily trafficked areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant y=1, n=-1 n 704 Propagules adapted to wind dispersal y=1, n=-1 n 705 Propagules water dispersed y=1, n=-1 y 706 Propagules bird dispersed y=1, n=-1 n 707 Propagules dispersed by other animals (externally) y=1, n=-1 n 708 Propagules survive passage through the gut 801 Prolific seed production (>1000/m2) y=1, n=-1 n Evidence that a persistent propagule bank is formed (>1 802 yr) 803 Well controlled by herbicides 804 Tolerates, or benefits from, mutilation, cultivation, or fire y=1, n=-1 y Effective natural enemies present locally (e.g. introduced 805 biocontrol agents) Creation Date: 12 Sep 2014 (Combretum indicum) Page 2 of 15 TAXON: Combretum indicum SCORE: 10.0 RATING: High Risk Supporting Data: Qsn # Question Answer 101 Is the species highly domesticated? n Source(s) Notes [No evidence of domestication] "Combretum indicum is native to Schmelzer, G.H. & Gurib-Fakim, A. (Eds.). 2013. Plant tropical Asia. There is still doubt whether it is indigenous to East Resources of Tropical Africa 11(1). Medicinal Plants 2. Africa or was introduced there long ago. It is nowadays widely PROTA Foundation, Wageningen, Netherlands cultivated throughout the tropics and subtropics, mainly as an ornamental plant, and has become naturalized in many localities." 102 Has the species become naturalized where grown? Source(s) Notes WRA Specialist. 2014. Personal Communication NA 103 Does the species have weedy races? Source(s) Notes WRA Specialist. 2014. Personal Communication NA Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet High tropical" for "tropical or subtropical" Source(s) Notes "Rain forests, low woods, thickets, hedges, mountains, dry hillsides, riversides, roadsides, wasteland, also cultivated; below 1500 m. Wu, Z.Y., Raven, P.H. & Hong, D.Y. (eds.). 2007. Flora of Fujian, Guangdong, Guangxi, Guizhou, Hainan, Hunan, S Jiangxi, China. Vol. 13 (Clusiaceae through Araliaceae). Science Sichuan, Taiwan, Yunnan; cultivated in Zhejiang [Bangladesh, Press, Beijing, and Missouri Botanical Garden Press, St. Cambodia, India (including Andaman Islands), Indonesia, Laos, Louis Malaysia, Myanmar, Nepal, Pakistan, Papua New Guinea, Philippines, Singapore, Sri Lanka, Thailand, Vietnam; coastal E Africa, Indian Ocean islands, Pacific islands" 202 Quality of climate match data High Source(s) Notes Wu, Z.Y., Raven, P.H. & Hong, D.Y. (eds.). 2007. Flora of China. Vol. 13 (Clusiaceae through Araliaceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis Creation Date: 12 Sep 2014 (Combretum indicum) Page 3 of 15 TAXON: Combretum indicum SCORE: 10.0 RATING: High Risk Qsn # Question Answer 203 Broad climate suitability (environmental versatility) y Source(s) Notes [Elevation range in tropical climates exceeds 1000 m, demonstrating Schmelzer, G.H. & Gurib-Fakim, A. (Eds.). 2013. Plant environmental versatility] "Combretum indicum occurs in shrub and Resources of Tropical Africa 11(1). Medicinal Plants 2. tree savanna, forest margins, along stream banks, also in disturbed PROTA Foundation, Wageningen, Netherlands habitats, including roadsides, waste places, rice fields and railway tracks, from sea-level up to 1800 m altitude." Native or naturalized in regions with tropical or 204 y subtropical climates Source(s) Notes "Rain forests, low woods, thickets, hedges, mountains, dry hillsides, riversides, roadsides, wasteland, also cultivated; below 1500 m. Wu, Z.Y., Raven, P.H. & Hong, D.Y. (eds.). 2007. Flora of Fujian, Guangdong, Guangxi, Guizhou, Hainan, Hunan, S Jiangxi, China. Vol. 13 (Clusiaceae through Araliaceae). Science Sichuan, Taiwan, Yunnan; cultivated in Zhejiang [Bangladesh, Press, Beijing, and Missouri Botanical Garden Press, St. Cambodia, India (including Andaman Islands), Indonesia, Laos, Louis Malaysia, Myanmar, Nepal, Pakistan, Papua New Guinea, Philippines, Singapore, Sri Lanka, Thailand, Vietnam; coastal E Africa, Indian Ocean islands, Pacific islands" Does the species have a history of repeated 205 y introductions outside its natural range? Source(s) Notes Wu, Z.Y., Raven, P.H. & Hong, D.Y. (eds.). 2007. Flora of China. Vol. 13 (Clusiaceae through Araliaceae). Science "introduced to other parts of tropical Africa and Central and South Press, Beijing, and Missouri Botanical Garden Press, St. America; widely cultivated and often naturalized in the tropics" Louis 301 Naturalized beyond native range y Source(s) Notes "Appendix 1 Exotic vascular plant species naturalized in Singapore, with habit, region of origin, probable reason for introduction (orn. Corlett, R.T. 1988. The Naturalized Flora of Singapore. =as ornamental), date of first record in Singapore (R=first record in Journal of Biogeography 15(4): 657-663 Ridley (1922-25) and current status (c=common, l=local, r=rare)." [Quisqualis indica included in list as rare] Wu, Z.Y., Raven, P.H. & Hong, D.Y. (eds.). 2007. Flora of China. Vol. 13 (Clusiaceae through Araliaceae). Science "introduced to other parts of tropical Africa and Central and South Press, Beijing, and Missouri Botanical Garden Press, St. America; widely cultivated and often naturalized in the tropics" Louis "Quisqualis indica L. New naturalized record. Quisqualis indica, a rampant climber native to Malaysia and possibly Africa (Staples & Herbst 2005), was found spreading sparingly outside a home site and Frohlich, D.& Lau, A. 2014. New plant records for the at a nearby wetland, where it reached over 7 m into the canopy of a Hawaiian Islands ϮϬϭϮʹϮϬϭϯ͘Bishop Museum Occasional tree. This species can be differentiated from other members of the Papers 115: ϳʹϭϳ Combretaceae family in Hawai͚i by its climbing habit and tube- shaped flowers, which start out white and turn red with age (Staples & Herbst 2005). Material examined. O͚AHU: Kailua, near 1659 Kanapu͚u Dr., Jul 2013, US Army 319." Creation Date: 12 Sep 2014 (Combretum indicum) Page 4 of 15 TAXON: Combretum indicum SCORE: 10.0 RATING: High Risk Qsn # Question Answer Queensland Government. 2014. Weeds of Australia - "This species is occasionally naturalised in northern Queensland and Rangoon creeper - Quisqualis indica. the northern parts of the Northern Territory. It is possibly also http://keyserver.lucidcentral.org/weeds/data/03030800- naturalised in south-eastern Queensland. Naturalised overseas in 0b07-490a-8d04- New Caledonia, south-eastern USA (i.e. Florida) and the Caribbean 0605030c0f01/media/Html/Quisqualis_indica.htm. (e.g. Puerto Rico and the Virgin Islands)." [Accessed 12 Sep 2014] 302 Garden/amenity/disturbance weed y Source(s) Notes "Q.indica is a semi-climbing shrub possessing heads of sweetly scented flowers. Introduced as an ornamental, it has shown invasive Dunlop, E., Hardcastle, J. & Shah, N.J. 2005. Cousin and tendencies, climbing onto the crowns of Ficus, Euphorbia and Cousine Islands Status and Management of Alien Invasive Pisonia trees. Through vegetative propagation it has the potential to Species. World Bank / GEF funded project: ͚Improving dominate large areas as it has in regions of Mahe and Praslin management of NGO and privately-owned Nature (Schumacher and Wuthrich, 2000).
Recommended publications
  • Australian Tropical Rainforest Plants - Online Edition
    Australian Tropical Rainforest Plants - Online edition Family Profile Combretaceae Family Description A family of about 20 genera and nearly 500 species, pantropic, well developed in Africa; five genera occur naturally in Australia. Genera Combretum - A genus of about 250 species, pantropic; one species occurs naturally in Australia. Exell (1954); Pedley (1990). Dansiea - A genus of two species endemic to Australia. Byrnes (1981); Pedley (1990). Macropteranthes - A genus of five species endemic to Australia. Cooper & Cooper (2004); Forster (1994); Harden et al. (2014); Pedley (1990); Stace (2007). Quisqualis - A genus of about 17 species in Africa, Asia and Malesia. Exell (1954). One species may have become naturalised in Australia. Terminalia - A genus of about 200 species, pantropic; 24 species occur naturally in Australia. Byrnes (1977); Coode (1973, 1978); Pedley (1990), Stace (2007). References Byrnes, N.B. (1977). A revision of Combretaceae in Australia. Contributions from the Queensland Herbarium No. 20:1-88. Byrnes, N.B. (1981). Addition to Combretaceae (Lagunclurieae) from Australia. Austrobaileya 1:385-387. Coode, M.J.E. (1973). Notes on Terminalia L. (Combretaceae) in Papuasia. Contributions from Herbarium Australiense 2:1-33. Coode, M.J.E. (1978). Combretaceae. In Womersley, J.S. (Ed.) 'Handbooks of the flora of Papua New Guinea.' Vol. 1, (Melbourne University Press: Melbourne.), pp. 43-110. Cooper, Wendy & Cooper, William T. (2004) Fruits of the Australian tropical rainforest, Nokomis Publications, Clifton Hill, Vic. Exell, A.W.C. (1954). Combretaceae. In 'Flora Malesiana.' Ser. 1, Vol. 4, (P. Noordhoff Ltd: Groningen.), pp. 533-589. Forster, P.I. (1994). Notes on Dansiea Byrnes and Macropteranthes F.
    [Show full text]
  • The Effects of Linear Developments on Wildlife
    Bibliography Rec# 5. LeBlanc, R. 1991. The aversive conditioning of a roadside habituated grizzly bear within Banff Park: progress report 1991. 6 pp. road impacts/ grizzly bear/ Ursus arctos/ Banff National Park/ aversive conditions/ Icefields Parkway. Rec# 10. Forman, R.T.T. 1983. Corridors in a landscape: their ecological structure and function. Ekologia 2 (4):375-87. corridors/ landscape/ width. Rec# 11. McLellan, B.N. 1989. Dymanics of a grizzly bear population during a period of industrial resource extraction. III Natality and rate of increase. Can. J. Zool. Vol. 67 :1865-1868. reproductive rate/ grizzly bear/ Ursus arctos/ British Columbia/ gas exploration/ timber harvest. Rec# 14. McLellan, B.N. 1989. Dynamics of a grizzly bear population during a period of industrial resource extraction. II.Mortality rates and causes of death. Can. J. Zool. Vol. 67 :1861-1864. British Columbia/ grizzly bear/ Ursus arctos/ mortality rate/ hunting/ outdoor recreation/ gas exploration/ timber harvest. Rec# 15. Miller, S.D., Schoen, J. 1993. The Brown Bear in Alaska . brown bear/ grizzly bear/ Ursus arctos middendorfi/ Ursus arctos horribilis/ population density/ distribution/ legal status/ human-bear interactions/ management/ education. Rec# 16. Archibald, W.R., Ellis, R., Hamilton, A.N. 1987. Responses of grizzly bears to logging truck traffic in the Kimsquit River valley, British Columbia. Int. Conf. Bear Res. and Manage. 7:251-7. grizzly bear/ Ursus / arctos/ roads/ traffic/ logging/ displacement/ disturbance/ carnivore/ BC/ individual disruption / habitat displacement / habitat disruption / social / filter-barrier. Rec# 20. Kasworm, W.F., Manley, T.L. 1990. Road and trail influences on grizzly bears and black bears in northwest Montana.
    [Show full text]
  • Chemistry and Pharmacology of Kinkéliba (Combretum
    CHEMISTRY AND PHARMACOLOGY OF KINKÉLIBA (COMBRETUM MICRANTHUM), A WEST AFRICAN MEDICINAL PLANT By CARA RENAE WELCH A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Medicinal Chemistry written under the direction of Dr. James E. Simon and approved by ______________________________ ______________________________ ______________________________ ______________________________ New Brunswick, New Jersey January, 2010 ABSTRACT OF THE DISSERTATION Chemistry and Pharmacology of Kinkéliba (Combretum micranthum), a West African Medicinal Plant by CARA RENAE WELCH Dissertation Director: James E. Simon Kinkéliba (Combretum micranthum, Fam. Combretaceae) is an undomesticated shrub species of western Africa and is one of the most popular traditional bush teas of Senegal. The herbal beverage is traditionally used for weight loss, digestion, as a diuretic and mild antibiotic, and to relieve pain. The fresh leaves are used to treat malarial fever. Leaf extracts, the most biologically active plant tissue relative to stem, bark and roots, were screened for antioxidant capacity, measuring the removal of a radical by UV/VIS spectrophotometry, anti-inflammatory activity, measuring inducible nitric oxide synthase (iNOS) in RAW 264.7 macrophage cells, and glucose-lowering activity, measuring phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression in an H4IIE rat hepatoma cell line. Radical oxygen scavenging activity, or antioxidant capacity, was utilized for initially directing the fractionation; highlighted subfractions and isolated compounds were subsequently tested for anti-inflammatory and glucose-lowering activities. The ethyl acetate and n-butanol fractions of the crude leaf extract were fractionated leading to the isolation and identification of a number of polyphenolic ii compounds.
    [Show full text]
  • Phytochemical Constituents of Combretum Loefl. (Combretaceae)
    Send Orders for Reprints to [email protected] 38 Pharmaceutical Crops, 2013, 4, 38-59 Open Access Phytochemical Constituents of Combretum Loefl. (Combretaceae) Amadou Dawe1,*, Saotoing Pierre2, David Emery Tsala2 and Solomon Habtemariam3 1Department of Chemistry, Higher Teachers’ Training College, University of Maroua, P.O.Box 55 Maroua, Cameroon, 2Department of Earth and Life Sciences, Higher Teachers’ Training College, University of Maroua, P.O.Box 55 Ma- roua, Cameroon, 3Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Cen- tral Avenue, Chatham-Maritime, Kent ME4 4TB, UK Abstract: Combretum is the largest and most widespread genus of Combretaceae. The genus comprises approximately 250 species distributed throughout the tropical regions mainly in Africa and Asia. With increasing chemical and pharma- cological investigations, Combretum has shown its potential as a source of various secondary metabolites. Combretum ex- tracts or isolates have shown in vitro bioactivitities such as antibacterial, antifungal, antihyperglycemic, cytotoxicity against various human tumor cell lines, anti-inflammatory, anti-snake, antimalarial and antioxidant effects. In vivo studies through various animal models have also shown promising results. However, chemical constituents and bioactivities of most species of this highly diversified genus have not been investigated. The molecular mechanism of bioactivities of Combretum isolates remains elusive. This review focuses on the chemistry of 261 compounds isolated and identified from 31 species of Combretum. The phytochemicals of interest are non-essential oil compounds belonging to the various struc- tural groups such as terpenoids, flavonoids, phenanthrenes and stilbenoids. Keywords: Combretum, phytochemistry, pharmacology, terpenoids, polyphenolic compounds, antibacterial activity, antifungal activity. INTRODUCTION is sometimes persistant, and especially in climbers it forms a hooked wooded spine when the leaf abscises.
    [Show full text]
  • The Conservation Biology of Tortoises
    The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1.
    [Show full text]
  • Pharmacoinformatics and UPLC-QTOF/ESI-MS-Based Phytochemical Screening of Combretum Indicum Against Oxidative Stress and Alloxan-Induced Diabetes in Long–Evans Rats
    molecules Article Pharmacoinformatics and UPLC-QTOF/ESI-MS-Based Phytochemical Screening of Combretum indicum against Oxidative Stress and Alloxan-Induced Diabetes in Long–Evans Rats Md. Shaekh Forid 1, Md. Atiar Rahman 2,* , Mohd Fadhlizil Fasihi Mohd Aluwi 3, Md. Nazim Uddin 4 , Tapashi Ghosh Roy 5 , Milon Chandra Mohanta 6 , AKM Moyeenul Huq 7,* and Zainul Amiruddin Zakaria 8,* 1 Department of Pharmacy, School of Science and Engineering, Southeast University, Dhaka 1213, Bangladesh; [email protected] 2 Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh 3 Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia; [email protected] 4 Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh; [email protected] 5 Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh; [email protected] 6 Department of Chemistry, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA; [email protected] 7 Citation: Forid, M.S.; Rahman, M.A.; Department of Pharmacy, School of Medicine, University of Asia Pacific, 74/A, Green Road, Dhaka 1205, Bangladesh Aluwi, M.F.F.M.; Uddin, M.N.; Roy, 8 Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, T.G.; Mohanta, M.C.; Huq, A.M.; UPM Serdang, Serdang 43400, Selangor, Malaysia Amiruddin Zakaria, Z. * Correspondence: [email protected] (M.A.R.); [email protected] (A.M.H.); [email protected] (Z.A.Z.); Pharmacoinformatics and UPLC- Tel.: +880-3126-060011-4 (M.A.R.); +880-1906-790224 (A.M.H.); +60-1-9211-7090 (Z.A.Z.) QTOF/ESI-MS-Based Phytochemical Screening of Combretum indicum Abstract: This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Com- against Oxidative Stress and bretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic Alloxan-Induced Diabetes in effects in a Long–Evans rat model.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Components from the Leaves and Twigs of Mangrove Lumnitzera Racemosa with Anti-Angiogenic and Anti-Inflammatory Effects
    marine drugs Article Components from the Leaves and Twigs of Mangrove Lumnitzera racemosa with Anti-Angiogenic and Anti-Inflammatory Effects Szu-Yin Yu 1,†, Shih-Wei Wang 1,2,† , Tsong-Long Hwang 3,4,5 , Bai-Luh Wei 6, Chien-Jung Su 1, Fang-Rong Chang 1,7,* and Yuan-Bin Cheng 1,8,* 1 Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; [email protected] (S.-Y.Y.); [email protected] (S.-W.W.); [email protected] (C.-J.S.) 2 Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan 3 Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; [email protected] 4 Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan 5 Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan 6 Department of Life Science, National Taitung University, Taitung 950, Taiwan; [email protected] 7 National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan 8 Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan * Correspondence: [email protected] (F.-R.C.); [email protected] (Y.-B.C.); Tel.: +886-7-312-1101 (ext. 2162) (F.-R.C.); +886-7-312-1101 (ext. 2197) (Y.-B.C.) † These authors contributed equally to this work. Received: 5 October 2018; Accepted: 23 October 2018; Published: 25 October 2018 Abstract: One new neolignan, racelactone A (1), together with seven known compounds (2−8) were isolated from the methanolic extract of the leaves and twigs of Lumnitzera racemosa.
    [Show full text]
  • Morphology and Vascular Anatomy of the Flower of Lagerstroemia Indica L
    © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 15 (2008): 51–62 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Morphology and vascular anatomy of the fl ower of Lagerstroemia indica L. (Lythraceae) with some phylogenetic implications Anastasiya Odintsova Summary: The main patterns of the fl oral vascular system and the structure of the syncarpous gynoecium of one of the most primitive members of Lythraceae, Lagerstroemia indica, have been studied. The vascular system of the fl ower consists of a vascular cylinder, in which consequently closed gaps with diverged traces to fl oral organs or composed vascular stands appear. The histological diff erentiation and vascular anatomy confi rm the prevalence of appendicular features in the fl oral tube of Lagerstroemia indica. The syncarpous gynoecium of Lagerstroemia indica is composed of fertile synascidiate and symplicate structural zones without an apocarpous zone. The most characteristic features of the gynoecium are a secretory epidermis on a massive placenta and on incomplete septa, prominent dorsal ridges inside the locules, and continuation of septal bundles into the style. Keywords: Lagerstroemia indica, Lythraceae, Myrtales, fl ower morphology, vascular anatomy, hypanthium, gynoecium Lythraceae, with 31 genera and 585 species, the third largest family of the Myrtales, are distributed worldwide and show a relatively great range of morphological variation (Conti et al. 1997). It is the only non-monotypic family within Myrtales with a superior ovary (Eichler 1878) and a multicellular archesporium in ovule (Tobe & Raven 1983) – both rather primitive characters for Myrtales. In contrast to most families of the Myrtales, in Lythraceae developmental studies of the fl owers are rare (Cheung & Sattler 1967; Ronse Decraene & Smets 1991), and vascular-anatomical data are incomplete: they concern certain problems of comparative fl oral morphology, e.g.
    [Show full text]
  • Diversity Complex of Plant Species Spread in Nasarawa State, Nigeria
    Vol. 8(12), pp. 334-350, December 2016 DOI: 10.5897/IJBC2016.1016 Article Number: ACDA83761991 International Journal of Biodiversity ISSN 2141-243X Copyright © 2016 and Conservation Author(s) retain the copyright of this article http://www.academicjournals.org/IJBC Full Length Research Paper Diversity complex of plant species spread in Nasarawa State, Nigeria Kwon-Ndung, E. H., Akomolafe, G. F.*, Goler, E. E., Terna, T. P., Ittah, M.A., Umar, I.D., Okogbaa, J. I., Waya, J. I. and Markus, M. Department of Botany, Federal University, Lafia, PMB 146, Lafia, Nasarawa State, Nigeria. Received 12 July, 2016; Accepted 15 October, 2016 This research was carried out to assess the plant species diversity in Nasarawa State, Nigeria with a view to obtain an accurate database and inventory of the naturally occurring plant species in the state for reference and research purposes. This preliminary report covers a total of nine local government areas in the state. The work involved intensive survey and visits to the sample sites for this exercise. The diversity status of each plant and the distribution across the state were also determined using standard method. A total of number of 244 plant species belonging to 57 plant families were identified out of which the families, Asteraceae, Poaceae, Combretaceae, Euphorbiaceae, Moraceae and Papilionaceae were the most highly distributed across the entire study area. There was great extent of diversity in the distribution of plants across all the areas sampled with the highest in Wamba LGA. The most predominant food crop across the state was Sorgum spp. followed by Sesame indica and then Zea mays.
    [Show full text]
  • Review on Combretaceae Family
    Int. J. Pharm. Sci. Rev. Res., 58(2), September - October 2019; Article No. 04, Pages: 22-29 ISSN 0976 – 044X Review Article Review on Combretaceae Family Soniya Rahate*, Atul Hemke, Milind Umekar Department of Quality Assurance, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, Dist-Nagpur 441002, India. *Corresponding author’s E-mail: [email protected] Received: 06-08-2019; Revised: 22-09-2019; Accepted: 28-09-2019. ABSTRACT Combretaceae, the family of flowering plants consisting of 20 genus and 600 important species in respective genus. The two largest genera of the family are Combretum and Terminalia which contains the more no. of species. The members of the family are widely distributed in tropical and subtropical regions of the world. Most members of the trees, shrubs or lianas of the combretaceae family are widely used medicinally. The members of this family contain the different phytoconstituents of medicinal value e.g tannins, flavonoids, terpenoids and alkaloids. Most of the species of this family are used as antimicrobial, antioxidant and antifungal. The biological activities of the some members of this family yet not found. Apart from the medicinal value many members of the Combretaceae are of culinary and ornamental value. Keywords: Combretaceae, Tannins, Flavonoid, Terminalia, Combretum. INTRODUCTION species of Combretum have edible kernels whereas Buchenavia species have edible succulent endocarps. he family combretaceae is a major group of Chemical constituents like tannins are also found in fruits, flowering plants (Angiosperms) included in the bark, leaves, roots and timber in buchenavia and order of Myrtales. Robert Brown established it in T terminalia genera. Many of the species are reputed to 1810 and its inclusion to the order is not in dispute.
    [Show full text]
  • Dicotyledons
    Dicotyledons COMBRETACEAE R. Br., nom. cons. 1810. COMBRETUM FAMILY Shrubs, trees, or woody vines. Leaves alternate or opposite, simple, pinnate-veined, petiolate, stipulate or estipulate. Flowers in terminal or axillary spikes, racemes, panicles, or heads, acti- nomorphic, bisexual or unisexual (staminate) (plants dioecious or polygamodioecious), brac- teate, bracteolate or ebracteolate; hypanthium prolonged beyond the ovary, the lower part adnate to the ovary, the upper part free; sepals 4 or 5, connate; petals 5 and free or absent; nec- taries present; stamens 5–10, the filaments free, the anthers 2-locular, versatile, longitudinally dehiscent; ovary 2- to 5-carpellate, 1-loculate, the style 1. Fruit a drupe. A family of 14 genera and about 500 species; nearly cosmopolitan. Terminaliaceae J. St.-Hil. (1805).proof Selected references: Graham (1964b); Stace (2010). 1. Leaves opposite, decussate. 2. Tree or erect shrub; petiole with nectar glands; flowers inconspicuous, the petals ca. 1 mm long, greenish white ...........................................................................................................................Laguncularia 2. Vine or scandent shrub; petiole without nectar glands; flowers showy, the petals 1–2 cm long, white to pink or red ..............................................................................................................................Combretum 1. Leaves alternate, spiral. 3. Flowers in dense spherical or oblong heads; fruits in a dry, conelike head ....................Conocarpus 3. Flowers
    [Show full text]