Splits, Lumps and Shuffles Splits, Lumps and Shuffles Alexander C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topazes and Hermits
Trochilidae I: Topazes and Hermits Fiery Topaz, Topaza pyra Topazini Crimson Topaz, Topaza pella Florisuginae White-necked Jacobin, Florisuga mellivora Florisugini Black Jacobin, Florisuga fusca White-tipped Sicklebill, Eutoxeres aquila Eutoxerini Buff-tailed Sicklebill, Eutoxeres condamini Saw-billed Hermit, Ramphodon naevius Bronzy Hermit, Glaucis aeneus Phaethornithinae Rufous-breasted Hermit, Glaucis hirsutus ?Hook-billed Hermit, Glaucis dohrnii Threnetes ruckeri Phaethornithini Band-tailed Barbthroat, Pale-tailed Barbthroat, Threnetes leucurus ?Sooty Barbthroat, Threnetes niger ?Broad-tipped Hermit, Anopetia gounellei White-bearded Hermit, Phaethornis hispidus Tawny-bellied Hermit, Phaethornis syrmatophorus Mexican Hermit, Phaethornis mexicanus Long-billed Hermit, Phaethornis longirostris Green Hermit, Phaethornis guy White-whiskered Hermit, Phaethornis yaruqui Great-billed Hermit, Phaethornis malaris Long-tailed Hermit, Phaethornis superciliosus Straight-billed Hermit, Phaethornis bourcieri Koepcke’s Hermit, Phaethornis koepckeae Needle-billed Hermit, Phaethornis philippii Buff-bellied Hermit, Phaethornis subochraceus Scale-throated Hermit, Phaethornis eurynome Sooty-capped Hermit, Phaethornis augusti Planalto Hermit, Phaethornis pretrei Pale-bellied Hermit, Phaethornis anthophilus Stripe-throated Hermit, Phaethornis striigularis Gray-chinned Hermit, Phaethornis griseogularis Black-throated Hermit, Phaethornis atrimentalis Reddish Hermit, Phaethornis ruber ?White-browed Hermit, Phaethornis stuarti ?Dusky-throated Hermit, Phaethornis squalidus Streak-throated Hermit, Phaethornis rupurumii Cinnamon-throated Hermit, Phaethornis nattereri Little Hermit, Phaethornis longuemareus ?Tapajos Hermit, Phaethornis aethopygus ?Minute Hermit, Phaethornis idaliae Polytminae: Mangos Lesbiini: Coquettes Lesbiinae Coeligenini: Brilliants Patagonini: Giant Hummingbird Lampornithini: Mountain-Gems Tro chilinae Mellisugini: Bees Cynanthini: Emeralds Trochilini: Amazilias Source: McGuire et al. (2014).. -
Systematic Relationships and Biogeography of the Tracheophone Suboscines (Aves: Passeriformes)
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 23 (2002) 499–512 www.academicpress.com Systematic relationships and biogeography of the tracheophone suboscines (Aves: Passeriformes) Martin Irestedt,a,b,* Jon Fjeldsaa,c Ulf S. Johansson,a,b and Per G.P. Ericsona a Department of Vertebrate Zoology and Molecular Systematics Laboratory, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden b Department of Zoology, University of Stockholm, SE-106 91 Stockholm, Sweden c Zoological Museum, University of Copenhagen, Copenhagen, Denmark Received 29 August 2001; received in revised form 17 January 2002 Abstract Based on their highly specialized ‘‘tracheophone’’ syrinx, the avian families Furnariidae (ovenbirds), Dendrocolaptidae (woodcreepers), Formicariidae (ground antbirds), Thamnophilidae (typical antbirds), Rhinocryptidae (tapaculos), and Conop- ophagidae (gnateaters) have long been recognized to constitute a monophyletic group of suboscine passerines. However, the monophyly of these families have been contested and their interrelationships are poorly understood, and this constrains the pos- sibilities for interpreting adaptive tendencies in this very diverse group. In this study we present a higher-level phylogeny and classification for the tracheophone birds based on phylogenetic analyses of sequence data obtained from 32 ingroup taxa. Both mitochondrial (cytochrome b) and nuclear genes (c-myc, RAG-1, and myoglobin) have been sequenced, and more than 3000 bp were subjected to parsimony and maximum-likelihood analyses. The phylogenetic signals in the mitochondrial and nuclear genes were compared and found to be very similar. The results from the analysis of the combined dataset (all genes, but with transitions at third codon positions in the cytochrome b excluded) partly corroborate previous phylogenetic hypotheses, but several novel arrangements were also suggested. -
Nesting Behavior of Reddish Hermits (Phaethornis Ruber) and Occurrence of Wasp Cells in Nests
NESTING BEHAVIOR OF REDDISH HERMITS (PHAETHORNIS RUBER) AND OCCURRENCE OF WASP CELLS IN NESTS YOSHIKA ONIKI REDraSHHermits (Phaethornisruber) are small hummingbirdsof the forested tropical lowlands east of the Andes and south of the Orinoco (Meyer de Schauensee,1966: 161). Five birds mist-nettedat Belem (1 ø 28' S, 48ø 27' W, altitude 13 m) weighed2.0 to 2.5 g (average2.24 g). I studiedtheir nestingfrom 14 October1966 to October1967 at Belem, Brazil, in the Area de PesquisasEco16gicas do Guam•t (APEG) and MocamboForest reserves,in the Instituto de Pesquisase Experimentaqfio Agropecu•triasdo Norte (IPEAN). Names of forest types used and the Portugueseequivalents are: tidal swamp forest (vdrze'a), mature upland forest (terra-/irme) and secondgrowth (capoeira). In all casescapo.eira has been in mature upland situations. At Belem Phaethornisruber is commonall year in the lower levels of secondgrowth (capoeira) where thin branchesare plentiful. Isolated males call frequently from thin horizontal branches,never higher than 2.5-3.0 m. The male sits erect and wags his tail forward and backward as he squeaksa seriesof insectlike"pi-pi-pipipipipipi" notes, 18-20 times per minute; the first two or three notesare short and separated,the rest are run togetherrapidly. The bird sometimesstops calling for someseconds and flasheshis tongue in and out several times during the interval. I foundno singingassemblies of malehermits such as Davis (1934) describes for both the Reddishand Long-tailedHermits (Phaethornissuperciliosus). and Snow (1968) for the Little Hermit (P. longuemareus). Breeding season.--The monthly rainfall at Belem in the year of the study was 350 to 550 mm from January to May and 25 to 200 mm from June to December,with lows in October and November and highs in March and April. -
Provisional List of Birds of the Rio Tahuauyo Areas, Loreto, Peru
Provisional List of Birds of the Rio Tahuauyo areas, Loreto, Peru Compiled by Carol R. Foss, Ph.D. and Josias Tello Huanaquiri, Guide Status based on expeditions from Tahuayo Logde and Amazonia Research Center TINAMIFORMES: Tinamidae 1. Great Tinamou Tinamus major 2. White- throated Tinamou Tinamus guttatus 3. Cinereous Tinamou Crypturellus cinereus 4. Little Tinamou Crypturellus soui 5. Undulated Tinamou Crypturellus undulates 6. Variegated Tinamou Crypturellus variegatus 7. Bartlett’s Tinamou Crypturellus bartletti ANSERIFORMES: Anhimidae 8. Horned Screamer Anhima cornuta ANSERIFORMES: Anatidae 9. Muscovy Duck Cairina moschata 10. Blue-winged Teal Anas discors 11. Masked Duck Nomonyx dominicus GALLIFORMES: Cracidae 12. Spix’s Guan Penelope jacquacu 13. Blue-throated Piping-Guan Pipile cumanensis 14. Speckled Chachalaca Ortalis guttata 15. Wattled Curassow Crax globulosa 16. Razor-billed Curassow Mitu tuberosum GALLIFORMES: Odontophoridae 17. Marbled Wood-Quall Odontophorus gujanensis 18. Starred Wood-Quall Odontophorus stellatus PELECANIFORMES: Phalacrocoracidae 19. Neotropic Cormorant Phalacrocorax brasilianus PELECANIFORMES: Anhingidae 20. Anhinga Anhinga anhinga CICONIIFORMES: Ardeidae 21. Rufescent Tiger-Heron Tigrisoma lineatum 22. Agami Heron Agamia agami 23. Boat-billed Heron Cochlearius cochlearius 24. Zigzag Heron Zebrilus undulatus 25. Black-crowned Night-Heron Nycticorax nycticorax 26. Striated Heron Butorides striata 27. Cattle Egret Bubulcus ibis 28. Cocoi Heron Ardea cocoi 29. Great Egret Ardea alba 30. Cappet Heron Pilherodius pileatus 31. Snowy Egret Egretta thula 32. Little Blue Heron Egretta caerulea CICONIIFORMES: Threskiornithidae 33. Green Ibis Mesembrinibis cayennensis 34. Roseate Spoonbill Platalea ajaja CICONIIFORMES: Ciconiidae 35. Jabiru Jabiru mycteria 36. Wood Stork Mycteria Americana CICONIIFORMES: Cathartidae 37. Turkey Vulture Cathartes aura 38. Lesser Yellow-headed Vulture Cathartes burrovianus 39. -
The Behavior and Ecology of Hermit Hummingbirds in the Kanaku Mountains, Guyana
THE BEHAVIOR AND ECOLOGY OF HERMIT HUMMINGBIRDS IN THE KANAKU MOUNTAINS, GUYANA. BARBARA K. SNOW OR nearly three months, 17 January to 5 April 1970, my husband and I F camped at the foot of the Kanaku Mountains in southern Guyana. Our camp was situated just inside the forest beside Karusu Creek, a tributary of Moco Moco Creek, at approximately 80 m above sea level. The period of our visit was the end of the main dry season which in this part of Guyana lasts approximately from September or October to April or May. Although we were both mainly occupied with other observations we hoped to accumulate as much information as possible on the hermit hummingbirds of the area, particularly their feeding niches, nesting and social organization. Previously, while living in Trinidad, we had studied various aspects of the behavior and biology of the three hermit hummingbirds resident there: the breeding season (D. W. Snow and B. K. Snow, 1964)) the behavior at singing assemblies of the Little Hermit (Phaethornis Zonguemareus) (D. W. Snow, 1968)) the feeding niches (B. K. Snow and D. W. Snow, 1972)) the social organization of the Hairy Hermit (Glaucis hirsuta) (B. K. Snow, 1973) and its breeding biology (D. W. Snow and B. K. Snow, 1973)) and the be- havior and breeding of the Guys’ Hermit (Phuethornis guy) (B. K. Snow, in press). A total of six hermit hummingbirds were seen in the Karusu Creek study area. Two species, Phuethornis uugusti and Phaethornis longuemureus, were extremely scarce. P. uugusti was seen feeding once, and what was presumably the same individual was trapped shortly afterwards. -
Reference File
References added since publication of 2007 CRC Handbook of Avian Body Masses Abadie, K. B., J. Pérez Z., and M. Valverde. 2006. Primer reporte de colonias del Martín Peruano Progne murphyi. Cotinga 24:99-101. Ackerman, J. T., J. Y. Takekawa, J. D. Bluso, J. L. Yee, and C. A. Eagles-Smith. 2008. Gender identification of Caspian Terns using external morphology and discriminant function analysis. Wilson Journal of Ornithology 120:378-383. Alarcos, S., C. de la Cruz, E. Solís, J. Valencia, and M. J. García-Baquero. 2007. Sex determination of Iberian Azure-winged Magpies Cyanopica cyanus cooki by discriminant analysis of external measurements. Ringing & Migration 23:211-216. Albayrak, T., A. Besnard, and A. Erdoğan. 2011. Morphometric variation and population relationships of Krüeper’s Nuthatch (Sitta krueperi) in Turkey. Wilson Journal of Ornithology 123:734-740. Aleixo, A., C. E. B. Portes, A. Whittaker, J. D. Weckstein, L. Pedreira Gonzaga, K. J. Zimmer, C. C. Ribas, and J. M. Bates. 2013. Molecular systematics and taxonomic revision of the Curve-billed Scythebill complex (Campylorhamphus procurvoides: Dendrocolaptidae), with description of a new species from western Amazonian Brazil. Pp. 253-257, In: del Hoyo, J., A Elliott, J. Sargatal, and D.A. Christie (eds). Handbook of the birds of the world. Special volume: new species and global index. Lynx Edicions, Barcelona, Spain. Volume 1. Alfano, A. 2014. Pygmy Nightjar (Nyctopolus hirundinaeus). Neotropical Birds Online (T.S. Schulenberg, ed.). Cornell Laboratory of Ornithology, Ithaca, NY. Alvarenga, H. M. F., E. Höfling, and L. F. Silveira. 2002. Notharchus swainsoni (Gray, 1846) é uma espécie válida. -
A Conservation Vision for the Tapajos Basin
STUDY BR 2016 A conservation vision for the Tapajos basin © Zig Koch/WWF Living Amazon Initiative © Zig Koch/WWF Living WWF-BRAZIL General Secretary Carlos Nomoto Conservation Supervisor Mario Barroso Science Programme Coordinator Mariana Napolitano e Ferreira Amazon Programme Coordinator Marco Lentini WWF – Living Amazon Initiative Leader Sandra Charity Coordinator of the Responsible Hydropower Development Strategy Damian Fleming Communication Coordinator Denise Oliveira PUBLICATION Technical Coordination: Maps: Mariana Napolitano Ferreira and Paula Hanna Valdujo Science Programme/WWF-Brazil Technical Team: Photography: Mariana Soares, Bernardo Caldas Oliveira, Alessandra Adriano Gambarini e Zig Koch Manzur, Mario Barroso, Sidney Rodrigues Cover photo: Collaborators: Salto São Simão, Rio Juruena, states of Mato Grosso André Nahur, André Dias, Marco Lentini, Frederico and Amazonas, Brazil. Credit: © Zig Koch/ WWF Living Machado, Glauco Kimura, Aldem Bourscheit, Jean Amazon Initiative François Timmers, Jaime Gesisky Graphic Design: Interviewees: Talita Ferreira Enrico Bernard, Arnaldo Carneiro, Cláudio Maretti Writing and Editing: Maura Campanilli Cataloguing C755c A conservation vision for the Tapajos basin. WWF Brazil. Brasilia, 2016. 54p.;il; color 29.7 cm. ISBN 978-85-5574-029-9 1. Basin of the Tapajos – Mato Grosso, Para and Amazonas 2. Hydroelectric Energy - Brazil 3. Impacts 4. Systematic Conservation Planning 1. WWF Brazil II. Title CDU 556 (81) (05) =690 A CONSERVATION VISION FOR THE TAPAJOS BASIN 1st edition Brasilia, Brazil -
An Update of Wallacels Zoogeographic Regions of the World
REPORTS To examine the temporal profile of ChC produc- specification of a distinct, and probably the last, 3. G. A. Ascoli et al., Nat. Rev. Neurosci. 9, 557 (2008). tion and their correlation to laminar deployment, cohort in this lineage—the ChCs. 4. J. Szentágothai, M. A. Arbib, Neurosci. Res. Program Bull. 12, 305 (1974). we injected a single pulse of BrdU into pregnant A recent study demonstrated that progeni- CreER 5. P. Somogyi, Brain Res. 136, 345 (1977). Nkx2.1 ;Ai9 females at successive days be- tors below the ventral wall of the lateral ventricle 6. L. Sussel, O. Marin, S. Kimura, J. L. Rubenstein, tween E15 and P1 to label mitotic progenitors, (i.e., VGZ) of human infants give rise to a medial Development 126, 3359 (1999). each paired with a pulse of tamoxifen at E17 to migratory stream destined to the ventral mPFC 7. S. J. Butt et al., Neuron 59, 722 (2008). + 18 8. H. Taniguchi et al., Neuron 71, 995 (2011). label NKX2.1 cells (Fig. 3A). We first quanti- ( ). Despite species differences in the develop- 9. L. Madisen et al., Nat. Neurosci. 13, 133 (2010). fied the fraction of L2 ChCs (identified by mor- mental timing of corticogenesis, this study and 10. J. Szabadics et al., Science 311, 233 (2006). + phology) in mPFC that were also BrdU+. Although our findings raise the possibility that the NKX2.1 11. A. Woodruff, Q. Xu, S. A. Anderson, R. Yuste, Front. there was ChC production by E15, consistent progenitors in VGZ and their extended neurogenesis Neural Circuits 3, 15 (2009). -
IGUAZU FALLS Extension 1-15 December 2016
Tropical Birding Trip Report NW Argentina & Iguazu Falls: December 2016 A Tropical Birding SET DEPARTURE tour NW ARGENTINA: High Andes, Yungas and Monte Desert and IGUAZU FALLS Extension 1-15 December 2016 TOUR LEADER: ANDRES VASQUEZ (All Photos by Andres Vasquez) A combination of breathtaking landscapes and stunning birds are what define this tour. Clockwise from bottom left: Cerro de los 7 Colores in the Humahuaca Valley, a World Heritage Site; Wedge-tailed Hillstar at Yavi; Ochre-collared Piculet on the Iguazu Falls Extension; and one of the innumerable angles of one of the World’s-must-visit destinations, Iguazu Falls. www.tropicalbirding.com +1-409-515-9110 [email protected] p.1 Tropical Birding Trip Report NW Argentina & Iguazu Falls: December 2016 Introduction: This is the only tour that I guide where I feel that the scenery is as impressive (or even surpasses) the birds themselves. This is not to say that the birds are dull on this tour, far from it. Some of the avian highlights included wonderfully jeweled hummingbirds like Wedge-tailed Hillstar and Red-tailed Comet; getting EXCELLENT views of 4 Tinamou species of, (a rare thing on all South American tours except this one); nearly 20 species of ducks, geese and swans, with highlights being repeated views of Torrent Ducks, the rare and oddly, parasitic Black-headed Duck, the beautiful Rosy-billed Pochard, and the mountain-dwelling Andean Goose. And we should not forget other popular bird features like 3 species of Flamingos on one lake, 11 species of Woodpeckers, including the hulking Cream-backed, colorful Yellow-fronted and minuscule Ochre-collared Piculet on the extension to Iguazu Falls. -
Espécies Potencialmente Ameaçadas 2019 VF4 Pivott.Xlsx
List of Potentially Impacted Species by EDP activities Legenda (1) threat levels: i. Critically endangered (CR); ii. Endangered (EN); iii. Vulnerable (VU); iv. Near threatened (NT) and v. Least concern (LC) 31/12/2019 Species IUCN Red List of Threatened Species (1) National Red List Occurrence Scientific name Common name (EN) Common name (country of occurrence) Reino/Kingdom Classe/Class 2020‐01 latest assessment National Red List Country Tecnology Acanthochelys spixii Black Spiny‐necked Swamp Turtle cágado‐feio Animalia Reptilia NT 1‐ago‐06 Brazil Windpower Acanthodactylus erythrurus Animalia Reptilia LC 14‐dez‐08 Portugal Windpower Spiny‐footed Lizard Lagartixa‐de‐dedos‐denteados NT Accipiter gentilis Northern Goshawk Açor Animalia Aves LC 31‐mar‐15 Portugal Windpower VU Accipiter gentilis Northern Goshawk Azor común Animalia Aves LC 31‐mar‐15 NE Spain Windpower Accipiter gentilis Animalia Aves LC 31‐mar‐15 n/a Poland Windpower Northern Goshawk Jastrząb zwyczajny Accipiter gentilis Northern Goshawk Azor común Animalia Aves LC 31‐mar‐15 NE Spain Transmision grid‐ Renew Accipiter gentilis Northern Goshawk Azor Aves LC 31‐mar‐15 Spain Solar FV Animalia NT Accipiter nisus Eurasian sparrowhawk Gavião Animalia Aves LC 1‐out‐16 Portugal Windpower LC Accipiter nisus Eurasian sparrowhawk Gavilán común Animalia Aves LC 1‐out‐16 NE Spain Windpower Accipiter nisus Eurasian sparrowhawk Eurasian sparrowhawk Animalia Aves LC 1‐out‐16 France Windpower LC Eurasian Sparrowhawk Eurasian Sparrowhawk Accipiter nisus Animalia Aves LC 1‐out‐16 Italy Windpower -
Supplemental Wing Shape and Dispersal Analysis
Data Supplement High dispersal ability inhibits speciation in a continental radiation of passerine birds Santiago Claramunt, Elizabeth P. Derryberry, J. V. Remsen, Jr. & Robb T. Brumfield Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA HAND-WING INDEX AND FLIGHT PERFORMANCE IN NEOTROPICAL FOREST BIRDS We investigated the relationship between wing shape and flight distances determined during 'dispersal challenge' experiments conducted in Gatun Lake in the Panama Canal (Moore et al. 2008). During the experiments, birds were released from a boat at incremental distances from shore and the distance flown or the success or failure in reaching the coast was recorded. To investigated the relationship between the hand-wing index and flight distance in Neotropical birds we used data on mean distance flown from table 3 in ref. We estimated hand-wing indices for the 10 species reported in those experiments (Table S1) . Wing measurements were taken by SC for four males of each species at LSUMNS. The relationship between the hand-wing index and distance flown was evaluated statistically using phylogenetic generalized least-squares (PGLS, Freckleton et al. 2002). We generated a phylogeny for the species involved in the experiment or an appropriate surrogate using DNA sequences of the slow-evolving RAG 1 gene from GenBank (Table S2). A maximum likelihood ultrametric tree was generated in PAUP* (Swofford 2003) using a GTR+! model of nucleotide substitution rates, empirical nucleotide frequencies, and enforcing a molecular clock. We found that the hand-wing index was strongly related to mean distance flown (R2 = 0.68, F = 20, d.f. -
Evolution of the Ovenbird-Woodcreeper Assemblage (Aves: Furnariidae) Б/ Major Shifts in Nest Architecture and Adaptive Radiatio
JOURNAL OF AVIAN BIOLOGY 37: 260Á/272, 2006 Evolution of the ovenbird-woodcreeper assemblage (Aves: Furnariidae) / major shifts in nest architecture and adaptive radiation Á Martin Irestedt, Jon Fjeldsa˚ and Per G. P. Ericson Irestedt, M., Fjeldsa˚, J. and Ericson, P. G. P. 2006. Evolution of the ovenbird- woodcreeper assemblage (Aves: Furnariidae) Á/ major shifts in nest architecture and adaptive radiation. Á/ J. Avian Biol. 37: 260Á/272 The Neotropical ovenbirds (Furnariidae) form an extraordinary morphologically and ecologically diverse passerine radiation, which includes many examples of species that are superficially similar to other passerine birds as a resulting from their adaptations to similar lifestyles. The ovenbirds further exhibits a truly remarkable variation in nest types, arguably approaching that found in the entire passerine clade. Herein we present a genus-level phylogeny of ovenbirds based on both mitochondrial and nuclear DNA including a more complete taxon sampling than in previous molecular studies of the group. The phylogenetic results are in good agreement with earlier molecular studies of ovenbirds, and supports the suggestion that Geositta and Sclerurus form the sister clade to both core-ovenbirds and woodcreepers. Within the core-ovenbirds several relationships that are incongruent with traditional classifications are suggested. Among other things, the philydorine ovenbirds are found to be non-monophyletic. The mapping of principal nesting strategies onto the molecular phylogeny suggests cavity nesting to be plesiomorphic within the ovenbirdÁ/woodcreeper radiation. It is also suggested that the shift from cavity nesting to building vegetative nests is likely to have happened at least three times during the evolution of the group.