Flash Memory Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 3 Semiconductor Memories
Chapter 3 Semiconductor Memories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction Random Access Memories Content Addressable Memories Read Only Memories Flash Memories Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2 Overview of Memory Types Semiconductor Memories Read/Write Memory or Random Access Memory (RAM) Read Only Memory (ROM) Random Access Non-Random Access Memory (RAM) Memory (RAM) •Mask (Fuse) ROM •Programmable ROM (PROM) •Erasable PROM (EPROM) •Static RAM (SRAM) •FIFO/LIFO •Electrically EPROM (EEPROM) •Dynamic RAM (DRAM) •Shift Register •Flash Memory •Register File •Content Addressable •Ferroelectric RAM (FRAM) Memory (CAM) •Magnetic RAM (MRAM) Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3 Memory Elements – Memory Architecture Memory elements may be divided into the following categories Random access memory Serial access memory Content addressable memory Memory architecture 2m+k bits row decoder row decoder 2n-k words row decoder row decoder column decoder k column mux, n-bit address sense amp, 2m-bit data I/Os write buffers Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4 1-D Memory Architecture S0 S0 Word0 Word0 S1 S1 Word1 Word1 S2 S2 Word2 Word2 A0 S3 S3 A1 Decoder Ak-1 Sn-2 Storage Sn-2 Wordn-2 element Wordn-2 Sn-1 Sn-1 Wordn-1 Wordn-1 m-bit m-bit Input/Output Input/Output n select signals are reduced n select signals: S0-Sn-1 to k address signals: A0-Ak-1 Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5 Memory Architecture S0 Word0 Wordi-1 S1 A0 A1 Ak-1 Row Decoder Sn-1 Wordni-1 A 0 Column Decoder Aj-1 Sense Amplifier Read/Write Circuit m-bit Input/Output Advanced Reliable Systems (ARES) Lab. -
Advanced NAND Flash Memory Single-Chip Storage Solution
SOLUTION SHEET: ADVANCED SOLID STATE MEMORY CONTROLLER Advanced NAND Flash Memory Single-Chip Storage Solution ? The growing complexity of flash memory management algorithms has made controller designs complex and has impacted the performance and the diversity of NAND devices that a single controller can support. As the complexity of the controller design increases, there comes a point where hardware acceleration is necessary. We see this trend for partial FTL (Flash Translation Layer) layers, addressing and wear leveling, and command queuing. At the same time, algorithms and flash device characteristics constantly change through the life of the controller. But data center managers expect the controller to constantly make design tradeoffs in order to improve in-system performance. These changes are also impacted by the traffic patterns of the application. The challenge is to provide hardware-accelerated algorithms that can change frequently in the field. The Context Solid-state storage based on NAND flash technology has become an important new lever for improving data-center performance and predictability. But the solid-state drives also present cost and predictability issues of their own. Surprisingly, these issues can be addressed through design of the flash memory controller. The NAND array has become the dominating factor for the cost of the drive. Increasing the life expectancy of the NAND array obviously reduces the total cost of ownership of the system. Also, the ability to reconfigure the controller to implement improved algorithms or to adapt to a new generation of flash chips extends the system life. Performance predictability and throughput are key concerns for data-center managers. -
Section 10 Flash Technology
10 FLASH TECHNOLOGY Overview Flash memory technology is a mix of EPROM and EEPROM technologies. The term “flash” was chosen because a large chunk of memory could be erased at one time. The name, therefore, distinguishes flash devices from EEPROMs, where each byte is erased individually. Flash memory technology is today a mature technology. Flash memory is a strong com- petitor to other memories such as EPROMs, EEPROMs, and to some DRAM applications. Figure 10-1 shows the density comparison of a flash versus other memories. 64M 16M 4M DRAM/EPROM 1M SRAM/EEPROM Density 256K Flash 64K 1980 1982 1984 1986 1988 1990 1992 1994 1996 Year Source: Intel/ICE, "Memory 1996" 18613A Figure 10-1. Flash Density Versus Other Memory How the Device Works The elementary flash cell consists of one transistor with a floating gate, similar to an EPROM cell. However, technology and geometry differences between flash devices and EPROMs exist. In particular, the gate oxide between the silicon and the floating gate is thinner for flash technology. It is similar to the tunnel oxide of an EEPROM. Source and INTEGRATED CIRCUIT ENGINEERING CORPORATION 10-1 Flash Technology drain diffusions are also different. Figure 10-2 shows a comparison between a flash cell and an EPROM cell with the same technology complexity. Due to thinner gate oxide, the flash device will be more difficult to process. CMOS Flash Cell CMOS EPROM Cell Mag. 10,000x Mag. 10,000x Flash Memory Cell – Larger transistor – Thinner floating gate – Thinner oxide (100-200Å) Photos by ICE 17561A Figure 10-2. -
Storage Systems and Technologies - Jai Menon and Clodoaldo Barrera
INFORMATION TECHNOLOGY AND COMMUNICATIONS RESOURCES FOR SUSTAINABLE DEVELOPMENT - Storage Systems and Technologies - Jai Menon and Clodoaldo Barrera STORAGE SYSTEMS AND TECHNOLOGIES Jai Menon IBM Academy of Technology, San Jose, CA, USA Clodoaldo Barrera IBM Systems Group, San Jose, CA, USA Keywords: Storage Systems, Hard disk drives, Tape Drives, Optical Drives, RAID, Storage Area Networks, Backup, Archive, Network Attached Storage, Copy Services, Disk Caching, Fiber Channel, Storage Switch, Storage Controllers, Disk subsystems, Information Lifecycle Management, NFS, CIFS, Storage Class Memories, Phase Change Memory, Flash Memory, SCSI, Caching, Non-Volatile Memory, Remote Copy, Storage Virtualization, Data De-duplication, File Systems, Archival Storage, Storage Software, Holographic Storage, Storage Class Memory, Long-Term data preservation Contents 1. Introduction 2. Storage devices 2.1. Storage Device Industry Overview 2.2. Hard Disk Drives 2.3. Digital Tape Drives 2.4. Optical Storage 2.5. Emerging Storage Technologies 2.5.1. Holographic Storage 2.5.2. Flash Storage 2.5.3. Storage Class Memories 3. Block Storage Systems 3.1. Storage System Functions – Current 3.2. Storage System Functions - Emerging 4. File and Archive Storage Systems 4.1. Network Attached Storage 4.2. Archive Storage Systems 5. Storage Networks 5.1. SAN Fabrics 5.2. IP FabricsUNESCO – EOLSS 5.3. Converged Networking 6. Storage SoftwareSAMPLE CHAPTERS 6.1. Data Backup 6.2. Data Archive 6.3. Information Lifecycle Management 6.4. Disaster Protection 7. Concluding Remarks Acknowledgements Glossary Bibliography Biographical Sketches ©Encyclopedia of Life Support Systems (EOLSS) INFORMATION TECHNOLOGY AND COMMUNICATIONS RESOURCES FOR SUSTAINABLE DEVELOPMENT - Storage Systems and Technologies - Jai Menon and Clodoaldo Barrera Summary Our world is increasingly becoming a data-centric world. -
Nanotechnology ? Nram (Nano Random Access
International Journal Of Engineering Research and Technology (IJERT) IFET-2014 Conference Proceedings INTERFACE ECE T14 INTRACT – INNOVATE - INSPIRE NANOTECHNOLOGY – NRAM (NANO RANDOM ACCESS MEMORY) RANJITHA. T, SANDHYA. R GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE 13. containing elements, nanotubes, are so small, NRAM technology will Abstract— NRAM (Nano Random Access Memory), is one of achieve very high memory densities: at least 10-100 times our current the important applications of nanotechnology. This paper has best. NRAM will operate electromechanically rather than just been prepared to cull out answers for the following crucial electrically, setting it apart from other memory technologies as a questions: nonvolatile form of memory, meaning data will be retained even What is NRAM? when the power is turned off. The creators of the technology claim it What is the need of it? has the advantages of all the best memory technologies with none of How can it be made possible? the disadvantages, setting it up to be the universal medium for What is the principle and technology involved in NRAM? memory in the future. What are the advantages and features of NRAM? The world is longing for all the things it can use within its TECHNOLOGY palm. As a result nanotechnology is taking its head in the world. Nantero's technology is based on a well-known effect in carbon Much of the electronic gadgets are reduced in size and increased nanotubes where crossed nanotubes on a flat surface can either be in efficiency by the nanotechnology. The memory storage devices touching or slightly separated in the vertical direction (normal to the are somewhat large in size due to the materials used for their substrate) due to Van der Waal's interactions. -
Use External Storage Devices Like Pen Drives, Cds, and Dvds
External Intel® Learn Easy Steps Activity Card Storage Devices Using external storage devices like Pen Drives, CDs, and DVDs loading Videos Since the advent of computers, there has been a need to transfer data between devices and/or store them permanently. You may want to look at a file that you have created or an image that you have taken today one year later. For this it has to be stored somewhere securely. Similarly, you may want to give a document you have created or a digital picture you have taken to someone you know. There are many ways of doing this – online and offline. While online data transfer or storage requires the use of Internet, offline storage can be managed with minimum resources. The only requirement in this case would be a storage device. Earlier data storage devices used to mainly be Floppy drives which had a small storage space. However, with the development of computer technology, we today have pen drives, CD/DVD devices and other removable media to store and transfer data. With these, you store/save/copy files and folders containing data, pictures, videos, audio, etc. from your computer and even transfer them to another computer. They are called secondary storage devices. To access the data stored in these devices, you have to attach them to a computer and access the stored data. Some of the examples of external storage devices are- Pen drives, CDs, and DVDs. Introduction to Pen Drive/CD/DVD A pen drive is a small self-powered drive that connects to a computer directly through a USB port. -
MSP430 Flash Memory Characteristics (Rev. B)
Application Report SLAA334B–September 2006–Revised August 2018 MSP430 Flash Memory Characteristics ........................................................................................................................ MSP430 Applications ABSTRACT Flash memory is a widely used, reliable, and flexible nonvolatile memory to store software code and data in a microcontroller. Failing to handle the flash according to data-sheet specifications can result in unreliable operation of the application. This application report explains the physics behind these specifications and also gives recommendations for the correct management of flash memory on MSP430™ microcontrollers (MCUs). All examples are based on the flash memory used in the MSP430F1xx, MSP430F2xx, and MSP430F4xx microcontroller families. Contents 1 Flash Memory ................................................................................................................ 2 2 Simplified Flash Memory Cell .............................................................................................. 2 3 Flash Memory Parameters ................................................................................................. 3 3.1 Data Retention ...................................................................................................... 3 3.2 Flash Endurance.................................................................................................... 5 3.3 Cumulative Program Time......................................................................................... 5 4 -
Using Data Postcompensation and Predistortion to Tolerate Cell-To-Cell
2718 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 57, NO. 10, OCTOBER 2010 Using Data Postcompensation and Predistortion to Tolerate Cell-to-Cell Interference in MLC NAND Flash Memory Guiqiang Dong, Student Member, IEEE, Shu Li, and Tong Zhang, Senior Member, IEEE Abstract—With the appealing storage-density advantage, mul- than 1 bit in each memory cell (or floating-gate MOS tran- tilevel-per-cell (MLC) NAND Flash memory that stores more than sistor) by programming the cell threshold voltage into one 1 bit in each memory cell now largely dominates the global Flash of voltage windows, has been widely used to further memory market. However, due to the inherent smaller noise NAND margin, the MLC NAND Flash memory is more subject to various improve the Flash memory storage density. Because of device/circuit variability and noise, particularly as the industry is its obvious advantages in terms of storage density and, hence, pushing the limit of technology scaling and a more aggressive use cost, MLC NAND Flash memory now largely dominates the of MLC storage. Cell-to-cell interference has been well recognized global Flash memory market. In current design practice, most as a major noise source responsible for raw-memory-storage MLC NAND Flash memories store 2 bits per cell, while 3- and reliability degradation. Leveraging the fact that cell-to-cell in- terference is a deterministic data-dependent process and can even 4-bit-per-cell NAND Flash memories have been recently be mathematically described with a simple formula, we present reported in the open literature [2]–[6]. -
Control Design and Implementation of Hard Disk Drive Servos by Jianbin
Control Design and Implementation of Hard Disk Drive Servos by Jianbin Nie A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Roberto Horowitz, Chair Professor Masayoshi Tomizuka Professor David Brillinger Spring 2011 Control Design and Implementation of Hard Disk Drive Servos ⃝c 2011 by Jianbin Nie 1 Abstract Control Design and Implementation of Hard Disk Drive Servos by Jianbin Nie Doctor of Philosophy in Engineering-Mechanical Engineering University of California, Berkeley Professor Roberto Horowitz, Chair In this dissertation, the design of servo control algorithms is investigated to produce high-density and cost-effective hard disk drives (HDDs). In order to sustain the continuing increase of HDD data storage density, dual-stage actuator servo systems using a secondary micro-actuator have been developed to improve the precision of read/write head positioning control by increasing their servo bandwidth. In this dissertation, the modeling and control design of dual-stage track-following servos are considered. Specifically, two track-following control algorithms for dual-stage HDDs are developed. The designed controllers were implemented and evaluated on a disk drive with a PZT-actuated suspension-based dual-stage servo system. Usually, the feedback position error signal (PES) in HDDs is sampled on some spec- ified servo sectors with an equidistant sampling interval, which implies that HDD servo systems with a regular sampling rate can be modeled as linear time-invariant (LTI) systems. However, sampling intervals for HDD servo systems are not always equidistant and, sometimes, an irregular sampling rate due to missing PES sampling data is unavoidable. -
USB Floppy Emulator V3 Replace Floppy Disks with USB Flash Drive
USB Floppy Emulator V3 Replace floppy disks with USB flash drive Nearly all manufacturers of disks and floppy disk drives have stopped their production. It is now possible to exchange your conventional floppy disk drive for a USB - floppy emulator. In place of the susceptible disks the data is stored on much more reliable USB sticks. This maximizes the remaining life of your machine, thus protecting your investments. Because of the complexity and diversity of the recent developments in recording formats most of them are incompatible with each other. Particularly in the computer industry itself many special formats exist alongside the standard disc formats; in total over 500 disc formats exist. The ipcas USB Floppy Emulator V3 works without file system interpretation. The disc data is stored onto container files; this means that proprietary recording formats are able to be implemented. Through simple configuration (Parameter data) it is possible to configure several parameters, for example rate of transmission, speed of rotation and pin assignment (including Drive Select, Disc Change, Ready and HD Output) By use of the USB-Stick the configuration can be transferred on to the floppy emulator. With a conventional floppy disk drive settings would have to be made over a jumper or would not be possible at all. The USB floppy emulator V3 allows for a full configuration without having to either open or take out the drives. The most significant features in summary: • Configuration without jumpers • Proprietary data formats are supported (no file system interpretation) • Discs are written as container files • Write-protection for floppy disc image • Recognition of last disc at power on • Template for new images (template image) • Various transmission rates • Various speeds • No movable parts Environmental influences such as magnet-fields, dust, humidity or even oil have almost no detrimental effect on the USB floppy emulator or the USB storage. -
Manufacturing Equipment Technologies for Hard Disk's
Manufacturing Equipment Technologies for Hard Disk’s Challenge of Physical Limits 222 Manufacturing Equipment Technologies for Hard Disk’s Challenge of Physical Limits Kyoichi Mori OVERVIEW: To meet the world’s growing demands for volume information, Brian Rattray not just with computers but digitalization and video etc. the HDD must Yuichi Matsui, Dr. Eng. continually increase its capacity and meet expectations for reduced power consumption and green IT. Up until now the HDD has undergone many innovative technological developments to achieve higher recording densities. To continue this increase, innovative new technology is again required and is currently being developed at a brisk pace. The key components for areal density improvements, the disk and head, require high levels of performance and reliability from production and inspection equipment for efficient manufacturing and stable quality assurance. To meet this demand, high frequency electronics, servo positioning and optical inspection technology is being developed and equipment provided. Hitachi High-Technologies Corporation is doing its part to meet market needs for increased production and the adoption of next-generation technology by developing the technology and providing disk and head manufacturing/inspection equipment (see Fig. 1). INTRODUCTION higher efficiency storage, namely higher density HDDS (hard disk drives) have long relied on the HDDs will play a major role. computer market for growth but in recent years To increase density, the performance and quality of there has been a shift towards cloud computing and the HDD’s key components, disks (media) and heads consumer electronics etc. along with a rapid expansion have most effect. Therefore further technological of data storage applications (see Fig. -
Information Theory in Usb Flash Memory Device Analysis
INFORMATION THEORY IN USB FLASH MEMORY DEVICE ANALYSIS 1JUANCHO D. ESPINELI, 2JASMIN NIQUIDULA Technological Institute of the Philippines 363 P. Casal St. Quiapo Manila E-mail: [email protected], [email protected] Abstract- As the prolific use of USB flash memory drives increases, the call to validate issues regarding non-conformity of these devices also rises, moving away from such factors like as operating systems, hardware features, dependability and power utilization. This paper presents a different form of analysis on a subset of USB flash memory drives. While using various analysis tools live trace will be performed to capture error related to the issue. More over root cause analysis will also be conducted to find what really causes the error then find its relation to information theory particularly the “noise on the channel” [6]. I. INTRODUCTION communication, uncertainty about the input is increased [3]. In order to conduct a comprehensive The extensive market for USB flash drives which is comparison of USB flash memory devices, Advance projected to exceed 555 million units by the year USB port monitor will be used together with 2020 had shown the increasing importance of the Microsoft Message Analyzer to display the packets technology in consumer applications [16]. Perhaps sent, decode the descriptors, detect errors drivers and because of its small size and continuous increase in measure USB flash memory device performance. memory capacity we could easily conclude that this The main objective of this research is to explore generation is now being swayed to move away from reasons why USB flash drives were considered the conventional use of storage devices.