Imaging Application Platform Using MB86S62 Application Processor

Total Page:16

File Type:pdf, Size:1020Kb

Imaging Application Platform Using MB86S62 Application Processor Imaging Application Platform Using MB86S62 Application Processor Atsuhiro Suga Hidetoshi Nakahara Masato Hyodo Shinichi Takimoto Imaging solutions using application processors means providing customers with an application platform that includes software and evaluation boards based on Fujitsu’s extensive image- processing technologies. Customers who manufacture assembled products (set makers) can use this platform to develop and market multi-function products in a shorter period of time. In combination with Fujitsu’s Milbeaut image processor, this platform provides a high-perfor- mance image processing system that can provide customers with a competitive edge over other makers. This paper presents a specific example of this imaging application platform using Fujitsu’s MB86S62 application processor. 1. Introduction the development period and increasing the develop- Today’s smartphones and tablets are evolving at a ment costs compared to existing technologies. As a dramatic pace. Being capable of functions and applica- result, the development of LSI circuits using advanced tions that were inconceivable just a few years ago, they technologies increases risk and becomes a major fac- are now becoming an integral part of business and tor in reducing the customer’s return on investment everyday life. This epic development can be attributed (ROI) when developing individual products. In short, it to the use of application processors on the terminal makes new development projects all the more difficult. side to maintain sufficient processing speeds and to This state of affairs suggests a new business op- stress-free, routine Internet access made possible by portunity in providing new solutions for easing the the creation of a communication infrastructure cen- customer’s load (development costs, software devel- tered around Long Term Evolution (LTE).1) As a result, opment) in relation to 40-nm and beyond process a wide variety of compelling services are coming to be technologies. provided by interlinking terminal-side applications with Against this background, semiconductor manu- the cloud. facturers who develop application processors are, of Looking forward, we can expect advanced user course, targeting the smartphone and tablet markets, interfaces developed for smartphones and tablets to but they are also indicating a desire to participate be applied to a variety of products, which suggests that in the on-vehicle and digital-consumer-electronics image processing using application processors will be- markets. In contrast, customers who are makers of as- come increasingly important. sembled products (set makers) are beginning to move At the same time, a company would need cutting- in the direction of system integration using existing edge process technologies to fabricate such application application processors to reduce development costs processors for achieving novel products in a demanding and risks instead of developing new, proprietary LSI market and to enable it to differentiate itself from its circuits. This trend is providing Fujitsu—which excels in competitors. However, the development of LSI circuits the application-specific integrated circuit (ASIC) busi- using 40-nm and beyond process technologies means ness—an impetus for revolutionizing the way it supports an explosive increase in the difficulty of layout and set makers. the amount of labor for testing, thereby extending In particular, Fujitsu is focusing on applications FUJITSU Sci. Tech. J., Vol. 49, No. 1, pp. 49–58 (January 2013) 49 A. Suga et al.: Imaging Application Platform Using MB86S62 Application Processor that can exploit the company’s extensive expertise over many years and its image processing technology in image processing technology and is providing its centered about its Milbeaut image processor. In addi- customers with an application platform that includes tion to excelling in power consumption, performance, software and evaluation boards. In this way, Fujitsu has and device area (and therefore lowering costs) by in- achieved a solution for providing application-processor- tegrating software and hardware based on advanced based development while enabling the customer to CPU/GPU devices, this platform provides a highly com- incorporate its proprietary logic to achieve original petitive multimedia framework featuring a sequence of functions in much the same way as can be done with image processing functions including sensing, analysis conventional ASICs. Furthermore, by combining this and processing, compression and decompression, and platform with Fujitsu’s Milbeaut image processor, cus- display and output. The platform provides customers tomers can use this application platform as an imaging with value by reducing costs and accelerating delivery platform in a manner different from what can be of- through a platform geared to imaging-related appli- fered by other application processor vendors. cation-specific standard products (ASSPs), by boosting This paper presents a specific example of using existing business and facilitating the creation of high- this imaging application platform in conjunction with value-added products, and by contributing to the Fujitsu’s MB86S62 application processor. creation of new businesses. The configuration of this platform is shown in 2. Imaging application platform using Figure 2. It consists of a system-on-a-chip (SoC) based MB86S62 on application processors, Linux2) and Android3) board The concept of an imaging application platform is support packages (BSPs), and a multimedia framework shown in Figure 1. comprised of Fujitsu image processing functions. This The idea here is to provide a user-friendly plat- platform makes for easy system development since it form that exploits Fujitsu’s ASIC technology developed allows the customer to create original applications on Imaging application platform Reduces costs and Provides competitive Provides APIs for easily accelerates delivery multimedia framework in an open implementing applications by using a platform geared to environment on target system imaging-related ASSPs Linux OS Boosts existing business Has high driver-level efficiency and facilitates creation of high-value-added SoC for imaging application platform products CPU GPU DSP Accelerator Connections Contributes to creation of new businesses High-efficiency architecture (power, performance, area, ease of use) Fujitsu imaging technology Analysis/ Compression/ Sensing processing decompression Display/output Multimedia framework (comprehensive environment including video/audio media) GPU: Graphics processing unit DSP: Digital signal processor Figure 1 Concept of imaging application platform. Figure 1 50 Concept of imaging application platform. FUJITSU Sci. Tech. J., Vol. 49, No. 1 (January 2013) A. Suga et al.: Imaging Application Platform Using MB86S62 Application Processor Android BSP Set-maker development section Options Application Test application Google supplied Expanded Application framework application framework ARM supplied OpenGL ES Expanded Standard library API library library Linux BSP Hardware architecture Multimedia framework FSL ISP section Imaging Computing subsystem High-bandwidth USB CSI SATA Audio Display Standard ISP Other subsystem connectivity HAL HAL HALs HAL HALs GMII/Ether CPU GPU PCIe ISP cluster cluster Cache coherent interconnect System control Clock Codec Reset I2C Generic kernel DSI Post DRAM Power-supply proc. interface UART control HDMI Platform specific (V4) Display GPIO Low-bandwidth UART connectivity Audio I2C High-bandwidth interconnect with QoS with interconnect High-bandwidth SPI Device drivers FSL ISP I2S section Standard Display GPU Other driver driver driver drivers FSL: Fujitsu Semiconductor ISP: Inter-chip connection DRAM HAL: Hardware abstraction layer QoS: Quality of service Figure 2 MB86S6Figure platform 2 confi guration. MB86S6 platform configuration. top of these Linux and Android BSPs. and a secondary cache of 256 KB. The following subsections describe the hardware 3) Powerful and extensive multimedia functions and software confi guration of this platform and associ- The MB86S62 features two camera input ated features. interfaces. The main interface supports up to 8 megapixels (Mpixels) using a MIPI (Mobile Industry 2.1 MB86S62 Processor Interface)4) camera serial interface (CSI) or an A block diagram of the MB86S62 application pro- 8-bit parallel interface. The sub-interface supports up cessor is shown in Figure 3, and its main specifi cations to 3 Mpixels using an 8-bit parallel interface. The video are listed in Table 1. In developing this platform, much codec supports a variety of video standards including attention was paid to achieving greatly reduced power MPEG-2,5) H.264,6) and VC-1.7) It supports, in particular, consumption and high-performance image processing. Full HD 1080p at 30 fps encoding/decoding and 720p The hardware measures taken to achieve these goals dual encoding. The audio codec supports various audio and key MB86S62 features are described below. standards such as MP38) and AAC and various interfaces 1) Low-power process including I2S9) and SPDIF.10) The use of an advanced 45-nm, low-power pro- 4) 3D graphics engine cess in this application processor has reduced power The MB86S62 integrates a 2D/3D graphics hard- consumption and lowered costs. ware accelerator supporting OpenVG1.111) and OpenGL 2) ARM Cortex™-A8 processor ES2.0 and featuring a dual core having a processing The MB86S62 incorporates an ARM core, a ability of 30 MPoly/s and 400
Recommended publications
  • GLSL 4.50 Spec
    The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • Khronos Data Format Specification
    Khronos Data Format Specification Andrew Garrard Version 1.3.1 2020-04-03 1 / 281 Khronos Data Format Specification License Information Copyright (C) 2014-2019 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. This version of the Data Format Specification is published and copyrighted by Khronos, but is not a Khronos ratified specification. Accordingly, it does not fall within the scope of the Khronos IP policy, except to the extent that sections of it are normatively referenced in ratified Khronos specifications. Such references incorporate the referenced sections into the ratified specifications, and bring those sections into the scope of the policy for those specifications. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible.
    [Show full text]
  • 모바일 그래픽스 라이브러리들: 크로노스 그룹의 표준을 중심으로 Mobile Graphics Libraries: Focusing on the Standards from Khronos Group
    50 한국콘텐츠학회 제8권 제2호 모바일 그래픽스 라이브러리들: 크로노스 그룹의 표준을 중심으로 Mobile Graphics Libraries: focusing on the standards from Khronos Group 백낙훈 (경북대학교), 이환용 (㈜휴원 CTO, 경북대학교 박사과정) 차 례 1. 서론 2. OpenGL ES 3. OpenGL SC 4. OpenVG 5. 결론 1. 서론 전력 소모가 낮은 기기를 채택할 수 밖에 없는 것이다. 액정뿐만 아니라, 모든 컴퓨팅 자원들이 궁극적으로 전 컴퓨터는 그 출현 이후, 계속해서 그 크기를 줄여 왔고, 력 문제에 민감하여야 하고, 이 때문에, 제한된 기능만을 현재는 휴대폰, 네비게이터, 휴대용 게임기 등의 형태로 제공할 수 밖에 없는 상황이다. 모바일 컴퓨팅 환경을 제공하고 있다. 모바일 컴퓨팅 환 경의 대두와 함께, 이를 이용한 그래픽스 출력이 요구되 었고, 모바일 환경에서의 그래픽스 기능을 의미하는, 모 바일 그래픽스 환경이 구축되었다. 이 글에서는 현재의 모바일 그래픽스 환경 중에서도 특히 표준 라이브러리들 에 대해 이야기하고자 한다. 지난 10여년 사이에 모바일 그래픽스 분야는 눈부신 발전을 이루었다. 가장 대표적 인 기기인 휴대폰을 기준으로 본다면, 최초에 나온, 저해 상도에 흑백의 투박한 액정을 가진 모델이 불과 몇 년 사 이에 상당한 수준의 컬러 액정을 가진 제품으로 변했고, 3차원 그래픽스를 지원하는 특별한 하드웨어 칩들을 사 (a) 저해상도 2D (b) 3D 용하는 것도 이상하지 않은 상황이 되었다. 이에 따라, 소프트웨어 기술들도 눈부시게 발전하여, 그림 1에서 보 는 바와 같이, 2차원 저해상도에서 3차원 화면을 거쳐, 거의 PC 화면에 필적하는 수준의 고해상도 3차원 화면 이 급속히 사용되고 있다. 모바일 그래픽스 환경은 태생 상, 기존의 데스크 탑 또는 그 이상의 고급 기종들에 비 해, 상대적으로 열등한 하드웨어 환경을 제공할 수 밖에 없다. 가장 문제가 되는 것은 제한된 용량의 전원, 즉 배 터리의 수명을 고려해야 한다는 점이다. PC급의 고해상 (c) 하드웨어로 가속되는 3D 도 액정이 기술적으로 문제가 있는 것이 아니라, 채택하 ▶▶ 그림 1.
    [Show full text]
  • The Opengl ES Shading Language
    The OpenGL ES® Shading Language Language Version: 3.20 Document Revision: 12 246 JuneAugust 2015 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost 1 Copyright (c) 2013-2015 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • The Opengl ES Shading Language
    The OpenGL ES® Shading Language Language Version: 3.00 Document Revision: 6 29 January 2016 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright © 2008-2016 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • News Release for More Information: Neil Trevett, President, Khronos | [email protected] | Phone: +1 (408) 464 7053
    News Release For more information: Neil Trevett, President, Khronos | [email protected] | Phone: +1 (408) 464 7053 Khronos Releases OpenVX 1.1 Specification for High Performance, Low Power Computer Vision Acceleration Expanded range of processing functions; Enhanced flexibility for data access and processing; Full conformance tests available; Safety Critical specification in development May 2nd 2016 – Embedded Vision Summit, Santa Clara, CA – The Khronos™ Group, an open consortium of leading hardware and software companies, announces the immediate availability of the OpenVX™ 1.1 specification for cross platform acceleration of computer vision applications and libraries. OpenVX enables performance and power optimized computer vision algorithms for use cases such as face, body and gesture tracking, smart video surveillance, automatic driver assistance systems, object and scene reconstruction, augmented reality, visual inspection, robotics and more. Conformant OpenVX 1.0 implementations and tools are shipping from AMD, Imagination, Intel, NVIDIA, Synopsis and VeriSilicon. OpenVX 1.1 builds on this momentum by adding new processing functions for use cases such as computational photography, and enhances application control over how data is accessed and processed. An open source OpenVX 1.1 sample implementation and full conformance tests will be available before mid-2016. Details on the OpenVX specifications and Adopters Program are available at: www.khronos.org/openvx. “More and more products are incorporating computer vision, and OpenVX
    [Show full text]
  • Development of С/С++ Applications for Android* OS Alexey Moskalev About.Me/Moslex
    Intel, Delta Course. Nizhny Novgorod, 2015 Development of С/С++ applications for Android* OS Alexey Moskalev About.me/moslex Moskalev Alexey PRM at Intel. Product: Intel® Threading Building Blocks (Intel® TBB) Experience: 7 years Education: NNSU - CMC (2005-2010) HSE - MBA (2011-2013) Summary: • Android* development ecosystem: • Specific of development process for Android* OS • Developer’s tools: • IDE: Eclipse; Android System Studio • SDK, NDK • Developer’s tools from Intel: • Intel ® C++ Compiler for Android • Intel® Cilk™ Plus • Intel® Threading Building Blocks (Intel® TBB) • Intel® SDK for OpenCL™ Applications • Intel® Integrated Native Developer Experience • Samples & Tips: • hello-jni • TBB examples: • Simple & Deterministic reduce • Tachyon Programming methods for Android ? HTML5 Dalvik / ART Libs Tools NDK http://habrahabr.ru/post/201346/ http://habrahabr.ru/company/intel/blog/263873/ Specific of development process for Android OS Host Target Device Emulator (+HAXM*) Windows OS Linux OS (Ubuntu) ADT Bundle OSX IDE + Android SDK + NDK http://habrahabr.ru/company/intel/blog/146114/ http://habrahabr.ru/company/intel/blog/265791/ 5 Specific of development process for Android OS Setup Development Debugging and testing Publishing https://developer.android.com/tools/workflow/index.html 6 Developer’s tools: IDE: Eclipse ADT bundle with Android SDK IDE (Integrated Development Environment): http://eclipse.org/mobile/ ADT (Android Developer Tools): https://developer.android.com/sdk/installing/installing-adt.html SDK (Software Development Kit): https://developer.android.com/sdk/installing/adding-packages.html 7 Developer’s tools: Android Studio IDE http://developer.android.com/sdk/index.html 8 Developer’s tools: Android NDK (Native Development Kit) https://developer.android.com/tools/sdk/ndk/index.html The NDK is a toolset that allows you to implement parts of your app using native-code languages such as C and C++.
    [Show full text]
  • Khronos Group SYCL 1.2.1 Specification
    SYCL™ Specification SYCL™ integrates OpenCL™ devices with modern C++ Version 1.2.1 Document Revision: 6 Revision Date: May 14, 2019 Git revision: heads/travis-0-g4f9a12d-dirty Khronos® OpenCL™ Working Group — SYCL™ subgroup Editors: Ronan Keryell, Maria Rovatsou & Lee Howes Copyright 2011-2019 The Khronos® Group Inc. All Rights Reserved SYCL 1.2.1 Copyright© 2013-2019 The Khronos® Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos® Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or other- wise exploited in any manner without the express prior written permission of Khronos® Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos® Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos® to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller.
    [Show full text]
  • The Opengl ES Shading Language
    The OpenGL ES® Shading Language Language Version: 3.00 Document Revision: 4 6 March 2013 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2013 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re-formatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions.
    [Show full text]
  • Openkode 1.0.2 Specification
    OpenKODE 1.0.2 Specification Edited by Tim Renouf OpenKODE 1.0.2 Specification: Copyright © 2006,2007,2008 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re-formatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions. Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this specification, including, without limitation, any implied warranties of merchantability or fitness for a particular purpose or non-infringement of any intellectual property.
    [Show full text]
  • Openmax Application Layer 1.0 Specification
    OpenMAX™ Application Layer Application Programming Interface Specification Version 1.0.1 Specification Copyright © 2009 The Khronos Group Inc. March 12, 2010 Document version 1.0.1 Copyright © 2009 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of the Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions. Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this specification, including, without limitation, any implied warranties of merchantability or fitness for a particular purpose or non-infringement of any intellectual property.
    [Show full text]
  • Openwf Whitepaper
    Updated 28 November 2011 Table of Contents 1. Overview........................................................................................................................ 2 2. APIs for the Windowing System ..................................................................................... 3 2.1. OpenWF Composition ........................................................................................... 4 2.2. OpenWF Display ................................................................................................... 5 3. Features and Benefits .................................................................................................... 6 4. Memory Bandwidth Savings........................................................................................... 7 4.1. GPU-based Composition (without YUV support) .................................................... 7 4.2. GPU-based Composition (with YUV support) ........................................................ 8 4.3. Overlay Composition ............................................................................................. 9 4.4. Conclusions on Memory Bandwidth ..................................................................... 10 5. Optimized Control Paths .............................................................................................. 11 6. Deployment Possibilities .............................................................................................. 12 7. Compliance and Conformance Testing .......................................................................
    [Show full text]