Martynas Yčas: the “Archivist” of the RNA Tie Club

Total Page:16

File Type:pdf, Size:1020Kb

Martynas Yčas: the “Archivist” of the RNA Tie Club | PERSPECTIVES Martynas Ycas:ˇ The “Archivist” of the RNA Tie Club Bernard S. Strauss1 Department of Molecular Genetics and Cell Biology, The University of Chicago, Illinois 60637 ORCID ID: 0000-0001-7548-6461 (B.S.S.) ABSTRACT Between about 1951 and the early 1960s, the basic structure of molecular biology was revealed. Central to our understanding was the unraveling of the various roles of RNA, culminating in the identification of messenger RNA (mRNA) and the deciphering of the genetic code. We know a great deal about the role of Brenner, Crick, Jacob, and Nirenberg in these discoveries, but many others played important supporting parts. One of these is a little-known scientist, Martynas Ycas,ˇ who appears in histories, generally without explanation, as the “archivist of the RNA Tie Club.” Ycasˇ was born in Lithuania. His father helped write the Lithuanian Constitution in 1919. He studied Roman Law and served in the Lithuanian army before escaping from the Russians in 1940. The records of correspondence of Ycasˇ with the physicist George Gamow and with Francis Crick throw some light on the genesis of our understanding of the role of mRNA. The story of the “RNA Tie Club” illustrates the difficulty in assigning credit for important discoveries and underscores the importance of a free exchange of information, even (or especially) among competitors. istory may be written by the winners, and it certainly connected in some way.The experiments of Beadle and Tatum Hemphasizes their role. Still, in 1676, or maybe 1675 de- and their followers had provided reasons for believing that a pending on whether one uses the Julian or Gregorian calendar, single gene determined, or controlled, a single enzyme (Beadle Isaac Newton wrote to Robert Hooke “If I have seen further it 1950). But just what that meant in biochemical, or even ge- is by standing on ye sholders of Giants.” Scientific discovery is netic, terms was not clear. The evidence pointed more and not so different 400 years later. My story has as its background more to DNA as the genetic material, but how a substance with the elucidation of the genetic code and the understanding of (apparently) so dull a structure could manage this “control” the roles of the different RNA molecules, particularly mRNA. was unknown. Blackboards were full of balloons labeled There is no dearth of rightful claimants to the discoveries: “gene” with arrows leading to rectangles labeled “protein” Francis Crick, Sydney Brenner, James Watson, François Jacob, but what any of that meant in molecular terms was mysterious. Jacques Monod, and Matt Meselson come to mind. This nar- Not only was the structure of DNA an unknown, the structure rative is an attempt to explain the contribution of two largely of proteins was not clear. It was not even certain that proteins overlooked scientists: George Gamow, a well-known astro- were specific molecules with a definite structure. It was not physicist and, particularly, Martynas Yˇcas, a little known bi- until 1952 that Sanger and Tuppy (Sanger 1952; Stretton ologist. There are others who contributed importantly, but, in 2002) showed that insulin was a protein of specific amino acid my mind, these two are special in representing one of the rare sequence, thereby defining primary structure. The major fea- benefits that accrued to the United States from the tragedy of ture of the secondary structure of proteins—the coplanar ar- the second World War: the migration of foreign scientists, in rangement of the atoms in the peptide bond—had been this case scientists from Russia and the Baltic countries. discovered by Pauling, Corey, and Branson in 1951 (Pauling A graduate student in genetics or in biochemistry in and Corey 1951; Pauling et al. 1951; Eisenberg 2003). 1950 might be expected to know that genes and enzymes were Consider the situation in 1963, just 12 years later. The structure of molecular biology more or less the way we know it today had been ascertained. The nature of protein struc- Copyright © 2019 by the Genetics Society of America doi: https://doi.org/10.1534/genetics.118.301754 tures, whether primary, secondary, and tertiary, were no Manuscript received October 31, 2018; accepted for publication December 26, 2018; longer absolute mysteries. The role of genes in determin- published Early Online December 31, 2018. fi 1Address for correspondence: 5550 S.Shore Dr. #509, Chicago, IL 60637. E-mail: ing the speci city of proteins by serving as the source of in- [email protected] formation for amino acid sequence was understood. The Genetics, Vol. 211, 789–795 March 2019 789 biochemistry of protein synthesis was understood in essence, both of whom, I contend, were serious participants in the if not in detail, and, by 1963, there was real evidence for the effort to understand the genetic code and the mechanism way all this was regulated (Jacob and Monod 1961). Al- by which information traveled from the gene to the pro- though there have been major advances since, the first edi- tein-synthesizing machinery. Others made the final steps tion of Watson’s Molecular Biology of the Gene written in but Gamow and Yˇcas were important contributors to the en- 1965 still feels almost up-to-date as compared to any text vironment that made their discoveries possible. Gamow is written just a decade earlier. How did this spectacular leap perhaps best known for being the father (or at least one of in our knowledge happen in just one decade? the uncles) of the “Big Bang” theory in cosmology (Segre’ In retrospect, a convincing case could be made that these 2011). Yˇcas is often mentioned in histories of this period developments were the result of careful biochemical work but mostly in passing without any identification (Cobb from a number of laboratories. However, that was not the way 2015). Crick (1988) mentions Yˇcas, but without any identi- it seemed to a group of what came to be called “molecular fication or elaboration as to his role. I knew him as a fellow biologists,” practicing, as Chargaff wrote, “biochemistry with- graduate student, and afterward when we were both on fac- out license” (Chargaff 1963). It was the physicist George ulties in Syracuse. His role is interesting since it illustrates Gamow who immediately saw that the Watson-Crick struc- how close some of the minor players may be to a major dis- ture implied a code, which he thought could be deciphered, covery. It also illustrates how a series of discoveries can be and who recruited a group of theoretically minded scientists suddenly put together to clarify a whole series of phenomena. to work out the details from published data. And it was a The background work is essential, but it is simpler to ascribe Lithuanian refugee from the Russian occupation, Martynas the final result to one, or a very few, individual(s). Yˇcas, who provided Gamow with biological background and then provided Brenner and Crick with confirmatory ev- Martynas Ycasˇ idence for their concept of an RNA messenger. This is an account of how Yˇcas came to the United States, how he came Martynas came from a well-educated, upper class, Lithuanian to be a member of Gamow’s informal group, and what he family. His father (Martynas Sr.) was a lawyer who had been accomplished. elected to the Russian Duma, even though committed to the cause of Lithuanian independence. His mother Hypatia was an American citizen from Scranton Pennsylvania whose father The Effects of World War II and its Antecedent Years had been an agitator for Lithuanian independence. Martynas Whatever the cause, the second World War saw the introduc- Sr. met her (according to one of the Yˇcas family) during a tion of transformative technologies into biology. Radioactive round-the world-tour. The result was that Martynas and three isotopes became readily available. Less impressive, but no less younger sisters grew up bilingual (Yˇcas 2005). Martynas’ important, technologies, such as column and paper chroma- father participated in the 1919 Peace Conference as a Lithua- tography, made it possible to achieve quantitative analyses of nian delegate and was Lithuanian Finance Minister during proteins, nucleic acids, and their components. More impor- the 1920s. This was clearly an upper-class family as indicated tantly, and for a variety of reasons, the war directed a new by the following personal experience. During the 1960s I sort of scientist to study biological problems. Some were had invited Martynas to give a seminar at The University of intrigued by Schrödinger’s arguments in his book What is Life Chicago. Mrs. Musteikas, one of our laboratory technicians of (Schrödinger 1946), and, at the same time, were looking for Lithuanian ancestry saw the seminar notice and asked to an intellectual challenging field that did not have military meet him. She curtsied on being introduced! Not a usual re- implications. But there were other sources of new talent. A sponse to visiting speakers! Yˇcas had studied law in Lithuania, major one was one of the greater pieces of social legislation but that was ended by the Russian occupation, and he had in the United States: the GI Bill of Rights. This law provided served as a cadet in the Lithuanian artillery. On confiscation a path to a college education for numerous individuals who of their family estate by the Russians in 1940, the whole family otherwise would not have thought such a pathway possible. managed to escape across the border, through East Prussia In addition, the influx of new students provided a financial to Berlin. They then traveled through Europe to Portugal, stimulus to Colleges and Universities just emerging from the managed to get to Rio de Janeiro and then, after a short stay, Depression years.
Recommended publications
  • Cosmic Background Explorer (COBE) and Beyond
    From the Big Bang to the Nobel Prize: Cosmic Background Explorer (COBE) and Beyond Goddard Space Flight Center Lecture John Mather Nov. 21, 2006 Astronomical Search For Origins First Galaxies Big Bang Life Galaxies Evolve Planets Stars Looking Back in Time Measuring Distance This technique enables measurement of enormous distances Astronomer's Toolbox #2: Doppler Shift - Light Atoms emit light at discrete wavelengths that can be seen with a spectroscope This “line spectrum” identifies the atom and its velocity Galaxies attract each other, so the expansion should be slowing down -- Right?? To tell, we need to compare the velocity we measure on nearby galaxies to ones at very high redshift. In other words, we need to extend Hubble’s velocity vs distance plot to much greater distances. Nobel Prize Press Release The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2006 jointly to John C. Mather, NASA Goddard Space Flight Center, Greenbelt, MD, USA, and George F. Smoot, University of California, Berkeley, CA, USA "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation". The Power of Thought Georges Lemaitre & Albert Einstein George Gamow Robert Herman & Ralph Alpher Rashid Sunyaev Jim Peebles Power of Hardware - CMB Spectrum Paul Richards Mike Werner David Woody Frank Low Herb Gush Rai Weiss Brief COBE History • 1965, CMB announced - Penzias & Wilson; Dicke, Peebles, Roll, & Wilkinson • 1974, NASA AO for Explorers: ~ 150 proposals, including: – JPL anisotropy proposal (Gulkis, Janssen…) – Berkeley anisotropy proposal (Alvarez, Smoot…) – Goddard/MIT/Princeton COBE proposal (Hauser, Mather, Muehlner, Silverberg, Thaddeus, Weiss, Wilkinson) COBE History (2) • 1976, Mission Definition Science Team selected by HQ (Nancy Boggess, Program Scientist); PI’s chosen • ~ 1979, decision to build COBE in-house at GSFC • 1982, approval to construct for flight • 1986, Challenger explosion, start COBE redesign for Delta launch • 1989, Nov.
    [Show full text]
  • MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo
    Cracking the Genetic Code MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) Frederick Griffith The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) Oswald Avery Alfred Hershey Martha Chase The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) Linus Carl Pauling The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) James Watson and Francis Crick The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) How is DNA (4 nucleotides) the genetic material while proteins (20 amino acids) are the building blocks? ? DNA Protein ? The Coding Craze ? DNA Protein What was already known? • DNA resides inside the nucleus - DNA is not the carrier • Protein synthesis occur in the cytoplasm through ribosomes {• Only RNA is associated with ribosomes (no DNA) - rRNA is not the carrier { • Ribosomal RNA (rRNA) was a homogeneous population The “messenger RNA” hypothesis François Jacob Jacques Monod The Coding Craze ? DNA RNA Protein RNA Tie Club Table from Wikipedia The Coding Craze Who won the race Marshall Nirenberg J.
    [Show full text]
  • The Big Bang
    15- THE BIG ORIGINS BANGANAND NARAYANAN The Big Bang theory “Who really knows, who can declare? The scientific study of the origin and currently occupies When it started or where from? evolution of the universe is called the center stage in From when and where this creation has arisen cosmology. From the early years of the modern cosmology. 20th century, the observational aspects Perhaps it formed itself, perhaps it did not.” And yet, half a of scientific cosmology began to gather century ago, it was – Rig Veda (10:129), 9th century BCE. wide attention. This was because of only one among a a small series of startling discoveries few divergent world made by scientists like Edwin Hubble views, with competing hese words were written over 2000 years that changed the way we understood claims to the truth. ago. And yet, if they sound contemporary, it the physical universe. This article highlights Tis because they echo a trait that is distinctly a few trail-blazing human; the highly evolved ability of our species to Hubble had an advantage which few events in the journey look at the world around us and wonder how it all astronomers in the early 20th century of the Big Bang model came to be. How often have you asked these very had – access to the Mount Wilson from the fringes to same questions? Observatory in California. This the centerfold of particular observatory housed the astrophysics, a We assume that all things have a beginning. Could this be true for this vastly complex universe as well? largest telescopes of that time and journey that is yielded high quality data.
    [Show full text]
  • Finding the Radiation from the Big Bang
    Finding The Radiation from the Big Bang P. J. E. Peebles and R. B. Partridge January 9, 2007 4. Preface 6. Chapter 1. Introduction 13. Chapter 2. A guide to cosmology 14. The expanding universe 19. The thermal cosmic microwave background radiation 21. What is the universe made of? 26. Chapter 3. Origins of the Cosmology of 1960 27. Nucleosynthesis in a hot big bang 32. Nucleosynthesis in alternative cosmologies 36. Thermal radiation from a bouncing universe 37. Detecting the cosmic microwave background radiation 44. Cosmology in 1960 52. Chapter 4. Cosmology in the 1960s 53. David Hogg: Early Low-Noise and Related Studies at Bell Lab- oratories, Holmdel, N.J. 57. Nick Woolf: Conversations with Dicke 59. George Field: Cyanogen and the CMBR 62. Pat Thaddeus 63. Don Osterbrock: The Helium Content of the Universe 70. Igor Novikov: Cosmology in the Soviet Union in the 1960s 78. Andrei Doroshkevich: Cosmology in the Sixties 1 80. Rashid Sunyaev 81. Arno Penzias: Encountering Cosmology 95. Bob Wilson: Two Astronomical Discoveries 114. Bernard F. Burke: Radio astronomy from first contacts to the CMBR 122. Kenneth C. Turner: Spreading the Word — or How the News Went From Princeton to Holmdel 123. Jim Peebles: How I Learned Physical Cosmology 136. David T. Wilkinson: Measuring the Cosmic Microwave Back- ground Radiation 144. Peter Roll: Recollections of the Second Measurement of the CMBR at Princeton University in 1965 153. Bob Wagoner: An Initial Impact of the CMBR on Nucleosyn- thesis in Big and Little Bangs 157. Martin Rees: Advances in Cosmology and Relativistic Astro- physics 163.
    [Show full text]
  • Leslie E. Orgel 1927–2007
    Leslie E. Orgel 1927–2007 A Biographical Memoir by Jack D. Dunitz and Gerald F. Joyce ©2013 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. LESLIE ELEAZER ORGEL January 12, 1927–October 27, 2007 Elected to the NAS, 1990 Leslie Eleazer Orgel was a theoretical chemist and inves- tigator of the origins of life who made deep and lasting contributions in both of these scientific areas. He was born in London, England, on January 12, 1927, the second of three children of Simon and Deborah (Gnivisch) Orgel. His older brother Nevill was born on July 2, 1922, and died on December 28, 1957. His younger sister Delia was born on June 19, 1933, and currently resides in Silver Spring, Maryland. Leslie Orgel died on October 27, 2007, in San Diego, California, from pancreatic cancer. He is survived by his wife of 57 years, Alice (Levinson) Orgel; by his three children, Vivienne (b. April 4, 1955), Richard (b. November 29, 1956), and Robert (b. June 25, 1968); and by five By Jack D. Dunitz grandchildren. and Gerald F. Joyce After attending Dame Alice Owen’s School in London, which was evacuated during World War II to Bedford, England, Orgel studied chemistry at the University of Oxford, graduating in 1948 as BA with First Class Honours in Chem- istry. He then undertook graduate research with Leslie Sutton, senior chemistry tutor at Magdalen College and himself a distinguished physical chemist. Orgel’s1 first publication (1951) dealt with the semi-empirical calculation of electric dipole moments of conjugated heterocyclic molecules, and can be of no more than historical interest today.
    [Show full text]
  • Brinson Mather 2011.Pptx
    From the Big Bang to the Nobel Prize and on to James Webb Space Telescope and the Discovery of Alien Life John C. Mather Senior Project Scientist, James Webb Space Telescope, NASA’s Goddard Space Flight Center Nov. 1, 2011 Nov. 1, 2011 Mather Brinson 2011 1 (as of 1985) 2 Nov. 1, 2011 Mather Brinson 2011 Can you imagine? Your chin is made of exploded stars! Nov. 1, 2011 Mather Brinson 2011 3 Looking Back in Time Nov. 1, 2011 Mather Brinson 2011 4 Measuring Distance This technique enables measurement of enormous distances Nov. 1, 2011 Mather Brinson 2011 5 Astronomer's Toolbox #2: Doppler Shift - Light Atoms emit light at discrete wavelengths that can be seen with a spectroscope This “line spectrum” identifies the atom and its velocity Nov. 1, 2011 Mather Brinson 2011 6 Hubble’s Law – 1929 Data Discovered by Lemaître, 1927! Speed proportional to distance Age = distance/speed Speed --> Nov. 1, 2011 Mather Brinson 2011 Distance --> 7 The Power of Thought Alexander Friedman Georges Lemaître & Albert Einstein George Gamow Robert Herman & Ralph Alpher Rashid Sunyaev Jim Peebles Nov. 1, 2011 Mather Brinson 2011 8 Nov. 1, 2011 Mather Brinson 2011 9 Big Bang - Cosmic Explosion 13.7 billion years ago IMPOSSIBLE TO DRAW A PICTURE! Nov. 1, 2011 Mather Brinson 2011 10 How did a smooth Big Bang make complicated things like us? • Gravity is long range attractive force – Matter distribution is unstable • Remove heat, and system heats up more • Makes condensed objects (stars, galaxies, etc.) • Gravitational energy flows support complexity • Stars release heat from nuclear reactions – Heat & light received by Earth support complexity, from weather to photosynthesis Nov.
    [Show full text]
  • Wo 2012/064675 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date - if 18 May 2012 (18.05.2012) WO 2012/064675 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/11 (2006.01) C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, C07H 21/00 (2006.01) C12N 15/10 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US201 1/059656 HN, HR, HU, ID, JL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 7 November 20 11 (07.1 1.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/41 1,974 10 November 2010 (10.1 1.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (72) Inventor; and GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant : WEBB, Nigel, L.
    [Show full text]
  • Francis Crick Personal Papers
    http://oac.cdlib.org/findaid/ark:/13030/kt1k40250c No online items Francis Crick Personal Papers Special Collections & Archives, UC San Diego Special Collections & Archives, UC San Diego Copyright 2007, 2016 9500 Gilman Drive La Jolla 92093-0175 [email protected] URL: http://libraries.ucsd.edu/collections/sca/index.html Francis Crick Personal Papers MSS 0660 1 Descriptive Summary Languages: English Contributing Institution: Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla 92093-0175 Title: Francis Crick Personal Papers Creator: Crick, Francis Identifier/Call Number: MSS 0660 Physical Description: 14.6 Linear feet(32 archives boxes, 4 card file boxes, 2 oversize folders, 4 map case folders, and digital files) Physical Description: 2.04 Gigabytes Date (inclusive): 1935-2007 Abstract: Personal papers of British scientist and Nobel Prize winner Francis Harry Compton Crick, who co-discovered the helical structure of DNA with James D. Watson. The papers document Crick's family, social and personal life from 1938 until his death in 2004, and include letters from friends and professional colleagues, family members and organizations. The papers also contain photographs of Crick and his circle; notebooks and numerous appointment books (1946-2004); writings of Crick and others; film and television projects; miscellaneous certificates and awards; materials relating to his wife, Odile Crick; and collected memorabilia. Scope and Content of Collection Personal papers of Francis Crick, the British molecular biologist, biophysicist, neuroscientist, and Nobel Prize winner who co-discovered the helical structure of DNA with James D. Watson. The papers provide a glimpse of his social life and relationships with family, friends and colleagues.
    [Show full text]
  • Redshifts Vs Paradigm Shifts: Against Renaming Hubble's
    Redshifts vs Paradigm Shifts: Against Renaming Hubble’s Law Cormac O’Raifeartaigh and Michael O’Keeffe School of Science and Computing, Waterford Institute of Technology, Cork Road, Waterford, Ireland. Author for correspondence: [email protected] Abstract We consider the proposal by many scholars and by the International Astronomical Union to rename Hubble’s law as the Hubble-Lemaître law. We find the renaming questionable on historic, scientific and philosophical grounds. From a historical perspective, we argue that the renaming presents an anachronistic interpretation of a law originally understood as an empirical relation between two observables. From a scientific perspective, we argue that the renaming conflates the redshift/distance relation of the spiral nebulae with a universal law of spatial expansion derived from the general theory of relativity. We note that the first of these phenomena is merely one manifestation of the second, an important distinction that may be relevant to contemporary puzzles concerning the current rate of cosmic expansion. From a philosophical perspective, we note that many of the named laws of science are empirical relations between observables, limited in range, rather than laws of universal application derived from theory. 1 1. Introduction In recent years, many scholars1 have suggested that the moniker Hubble’s law – often loosely understood as a law of cosmic expansion – overlooks the seminal contribution of the great theoretician Georges Lemaître, the first to describe the redshifts of the spiral nebulae in the context of a cosmic expansion consistent with the general theory of relativity. Indeed, a number of authors2 have cited Hubble’s law as an example of Stigler’s law of eponymy, the assertion that “no scientific discovery is named after its original discoverer”.3 Such scholarship recently culminated in a formal proposal by the International Astronomical Union (IAU) to rename Hubble’ law as the “Hubble-Lemaître law”.
    [Show full text]
  • And Gamow Said, Let There Be a Hot Universe
    GENERAL I ARTICLE And Gamow said, Let there be a Hot Universe Somak Raychaudhury Soon after Albert Einstein published his general theory of relativity, in 1915, to describe the nature of space and time, the scientific community sought to apply it to understand the nature and origin of the Universe. One of the first people to describe the Universe using Einstein's equations was a Belgian priest called Abbe Georges Edouard Lemaitre, who had also studied math­ ematics at Cambridge with Arthur Eddington, one of the strongest exponents of relativity. Lemaitre realised Somak Raychaudhury teaches astrophysics at the that if Einstein's theory was right, the Universe could School of Physics and not be static. In fact, right now, it must be expanding. Astronomy, University of Birmingham, UK. He Working backwards, Lemaitre reasoned that the Uni­ studied at Calcutta, Oxford verse must have been a much smaller place in the past. and Cambridge, and has He knew about galaxies, having spent some time with been on the staff of the Harlow Shapley at Harvard, and knew about Edwin Harvard-Smithsonian Center for Astrophysics Hubble's pioneering measurements of the spectra of near­ and IUCAA (Pune). by galaxies, that implied that almost all galaxies are moving away from each other. This would mean that they were closer and closer together in the past. Going further back, there must have been a time when there was no space between the galaxies. Even further in the past, there would have been no space between the stars. Even earlier, the atoms that make up the stars must have been huddled together touching each other.
    [Show full text]
  • George Gamow and Barbara Gamow Papers
    George Gamow and Barbara Gamow Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 2016 Revised 2016 December Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms010191 LC Online Catalog record: http://lccn.loc.gov/mm79021899 Prepared by Grover Batts, Carolyn Craig, and Paul Ledvina with the assistance of Thelma Queen Revised by Manuscript Division Staff Collection Summary Title: George Gamow and Barbara Gamow Papers Span Dates: 1915-1975 Bulk Dates: (bulk 1950-1975) ID No.: MSS21899 Creator: Gamow, George, 1904-1968 Creator: Gamow, Barbara, 1905-1976 Extent: 8,000 items ; 31 containers plus 1 oversize ; 13 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: George Gamow, physicist, astronomer, and author. Barbara Gamow, editor and translator. Correspondence, drafts of speeches, articles, and books, and other papers relating principally to George Gamow's career as an astronomer, physicist, and popularizer of science and to Barbara Gamow's personal and literary associations. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein. People Alpher, Ralph--Correspondence. Bedford, Sybille, 1911-2006--Correspondence. Brakhage, Stan--Correspondence. Brosche, P. (Peter)--Correspondence. Broughton, James, 1913-1999--Correspondence. Cockcroft, John, Sir, 1897-1967--Correspondence. Covici, Pascal, 1885-1964--Correspondence. Critchfield, Charles Louis, 1910- --Correspondence.
    [Show full text]
  • 22. Big-Bang Cosmology
    1 22. Big-Bang Cosmology 22. Big-Bang Cosmology Revised August 2019 by K.A. Olive (Minnesota U.) and J.A. Peacock (Edinburgh U.). 22.1 Introduction to Standard Big-Bang Model The observed expansion of the Universe [1–3] is a natural (almost inevitable) result of any homogeneous and isotropic cosmological model based on general relativity. However, by itself, the Hubble expansion does not provide sufficient evidence for what we generally refer to as the Big-Bang model of cosmology. While general relativity is in principle capable of describing the cosmology of any given distribution of matter, it is extremely fortunate that our Universe appears to be homogeneous and isotropic on large scales. Together, homogeneity and isotropy allow us to extend the Copernican Principle to the Cosmological Principle, stating that all spatial positions in the Universe are essentially equivalent. The formulation of the Big-Bang model began in the 1940s with the work of George Gamow and his collaborators, Ralph Alpher and Robert Herman. In order to account for the possibility that the abundances of the elements had a cosmological origin, they proposed that the early Universe was once very hot and dense (enough so as to allow for the nucleosynthetic processing of hydrogen), and has subsequently expanded and cooled to its present state [4,5]. In 1948, Alpher and Herman predicted that a direct consequence of this model is the presence of a relic background radiation with a temperature of order a few K [6,7]. Of course this radiation was observed 16 years later as the Cosmic Microwave Background (CMB) [8].
    [Show full text]