Beryllium Abundances in Stars with Planets Extending the Sample
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetas Extrasolares
Local Extrasolar Planets Universidad Andres Bello ESO Vitacura 4 June 2015 Foto: Dante Joyce Minniti Pullen The big picture 1. Increase human resources and networks for national Astronomy 2. Develop new areas of research and do quality science 3. Promote science in Chile Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Wolfgang Gieren Maria Teresa Ruiz Grzegorz Pietrzynski Dante Minniti School on Extrasolar Planets and Brown Dwarfs Santiago, 2003 Invited Lecturers: Michel Mayor, Scott Tremaine, Gill Knapp, France Allard Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti It is all about time... Telescope time is the most precious... Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Wolfgang Gieren Maria Teresa Ruiz Grzegorz Pietrzynski Dante Minniti The first exoplanet for us: M. Konacki, G. Torres, D. D. Sasselov, G. Pietrzynski, A. Udalski, S. Jha, M. T. Ruiz, W. Gieren, & D. Minniti, “A Transiting Extrasolar Giant Planet Around the Star OGLE-TR-113'', 2004, ApJ, 609, L37” Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Paul Butler Debra Fischer Dante Minniti The First Planets from the N2K Consortium Fischer et al., ``A Hot Saturn Planet Orbiting HD 88133, from the N2K Consortium", 2005, The Astrophysical Journal, 620, 481 Sato, et al., ``The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core", 2005, The Astrophysical Journal, 633, 465 Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers -
Hunting Down Stars with Unusual Infrared Properties Using Supervised Machine Learning
. Magnificent beasts of the Milky Way: Hunting down stars with unusual infrared properties using supervised machine learning Julia Ahlvind1 Supervisor: Erik Zackrisson1 Subject reader: Eric Stempels1 Examiner: Andreas Korn1 Degree project E in Physics { Astronomy, 30 ECTS 1Department of Physics and Astronomy { Uppsala University June 22, 2021 Contents 1 Background 2 1.1 Introduction................................................2 2 Theory: Machine Learning 2 2.1 Supervised machine learning.......................................3 2.2 Classification...............................................3 2.3 Various models..............................................3 2.3.1 k-nearest neighbour (kNN)...................................3 2.3.2 Decision tree...........................................4 2.3.3 Support Vector Machine (SVM)................................4 2.3.4 Discriminant analysis......................................5 2.3.5 Ensemble.............................................6 2.4 Hyperparameter tuning.........................................6 2.5 Evaluation.................................................6 2.5.1 Confusion matrix.........................................6 2.5.2 Precision and classification accuracy..............................7 3 Theory: Astronomy 7 3.1 Dyson spheres...............................................8 3.2 Dust-enshrouded stars..........................................8 3.3 Gray Dust.................................................9 3.4 M-dwarf.................................................. 10 3.5 post-AGB -
Appendix 1 Some Astrophysical Reminders
Appendix 1 Some Astrophysical Reminders Marc Ollivier 1.1 A Physics and Astrophysics Overview 1.1.1 Star or Planet? Roughly speaking, we can say that the physics of stars and planets is mainly governed by their mass and thus by two effects: 1. Gravitation that tends to compress the object, thus releasing gravitational energy 2. Nuclear processes that start as the core temperature of the object increases The mass is thus a good parameter for classifying the different astrophysical objects, the adapted mass unit being the solar mass (written Ma). As the mass decreases, three categories of objects can be distinguished: ∼ 1. if M>0.08 Ma ( 80MJ where MJ is the Jupiter mass) the mass is sufficient and, as a consequence, the gravitational contraction in the core of the object is strong enough to start hydrogen fusion reactions. The object is then called a “star” and its radius is proportional to its mass. 2. If 0.013 Ma <M<0.08 Ma (13 MJ <M<80 MJ), the core temperature is not high enough for hydrogen fusion reactions, but does allow deuterium fu- sion reactions. The object is called a “brown dwarf” and its radius is inversely proportional to the cube root of its mass. 3. If M<0.013 Ma (M<13 MJ) the temperature a the center of the object does not permit any nuclear fusion reactions. The object is called a “planet”. In this category one distinguishes giant gaseous and telluric planets. This latter is not massive enough to accrete gas. The mass limit between giant and telluric planets is about 10 terrestrial masses. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Download This Article in PDF Format
A&A 562, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201321493 & c ESO 2014 Astrophysics Li depletion in solar analogues with exoplanets Extending the sample, E. Delgado Mena1,G.Israelian2,3, J. I. González Hernández2,3,S.G.Sousa1,2,4, A. Mortier1,4,N.C.Santos1,4, V. Zh. Adibekyan1, J. Fernandes5, R. Rebolo2,3,6,S.Udry7, and M. Mayor7 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, C/ Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 5 CGUC, Department of Mathematics and Astronomical Observatory, University of Coimbra, 3049 Coimbra, Portugal 6 Consejo Superior de Investigaciones Científicas, CSIC, Spain 7 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 18 March 2013 / Accepted 25 November 2013 ABSTRACT Aims. We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600–5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results. We confirm significant differences in the Li distribution of solar twins (Teff = T ± 80 K, log g = log g ± 0.2and[Fe/H] = [Fe/H] ±0.2): the full sample of planet host stars (22) shows Li average values lower than “single” stars with no detected planets (60). -
Arxiv:0809.1275V2
How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd. -
Redox DAS Artist List for Period: 01.10.2017
Page: 1 Redox D.A.S. Artist List for period: 01.10.2017 - 31.10.2017 Date time: Number: Title: Artist: Publisher Lang: 01.10.2017 00:02:40 HD 60753 TWO GHOSTS HARRY STYLES ANG 01.10.2017 00:06:22 HD 05631 BANKS OF THE OHIO OLIVIA NEWTON JOHN ANG 01.10.2017 00:09:34 HD 60294 BITE MY TONGUE THE BEACH ANG 01.10.2017 00:13:16 HD 26897 BORN TO RUN SUZY QUATRO ANG 01.10.2017 00:18:12 HD 56309 CIAO CIAO KATARINA MALA SLO 01.10.2017 00:20:55 HD 34821 OCEAN DRIVE LIGHTHOUSE FAMILY ANG 01.10.2017 00:24:41 HD 08562 NISEM JAZ SLAVKO IVANCIC SLO 01.10.2017 00:28:29 HD 59945 LEPE BESEDE PROTEUS SLO 01.10.2017 00:31:20 HD 03206 BLAME IT ON THE WEATHERMAN B WITCHED ANG 01.10.2017 00:34:52 HD 16013 OD TU NAPREJ NAVDIH TABU SLO 01.10.2017 00:38:14 HD 06982 I´M EVERY WOMAN WHITNEY HOUSTON ANG 01.10.2017 00:43:05 HD 05890 CRAZY LITTLE THING CALLED LOVE QUEEN ANG 01.10.2017 00:45:37 HD 57523 WHEN I WAS A BOY JEFF LYNNE (ELO) ANG 01.10.2017 00:48:46 HD 60269 MESTO (FEAT. VESNA ZORNIK) BREST SLO 01.10.2017 00:52:21 HD 06008 DEEPLY DIPPY RIGHT SAID FRED ANG 01.10.2017 00:55:35 HD 06012 UNCHAINED MELODY RIGHTEOUS BROTHERS ANG 01.10.2017 00:59:10 HD 60959 OKNA ORLEK SLO 01.10.2017 01:03:56 HD 59941 SAY SOMETHING LOVING THE XX ANG 01.10.2017 01:07:51 HD 15174 REAL GOOD LOOKING BOY THE WHO ANG 01.10.2017 01:13:37 HD 59654 RECI MI DA MANOUCHE SLO 01.10.2017 01:16:47 HD 60502 SE PREPOZNAS SHEBY SLO 01.10.2017 01:20:35 HD 06413 MARGUERITA TIME STATUS QUO ANG 01.10.2017 01:23:52 HD 06388 MAMA SPICE GIRLS ANG 01.10.2017 01:27:25 HD 02680 HIGHER GROUND ERIC CLAPTON ANG 01.10.2017 01:31:20 HD 59929 NE POZABI, DA SI LEPA LUKA SESEK & PROPER SLO 01.10.2017 01:34:57 HD 02131 BONNIE & CLYDE JAY-Z FEAT. -
Toroidal Versus Poloidal Magnetic Fields in Sun-Like Stars: a Rotation
Mon. Not. R. Astron. Soc. 000, 000{000 (0000) Printed 29 October 2018 (MN LATEX style file v2.2) Toroidal vs. poloidal magnetic fields in Sun-like stars: a rotation threshold P. Petit1, B. Dintrans1, S.K. Solanki2, J.-F. Donati1, M. Auri`ere1, F. Ligni`eres1, J. Morin1, F. Paletou1, J. Ramirez3, C. Catala3, R. Fares1 1Laboratoire d'Astrophysique de Toulouse-Tarbes, Universit´ede Toulouse, CNRS, France ([email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]) 2Max-Planck Institut f¨urSonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany ([email protected]) 3LESIA, Observatoire de Paris-Meudon, 92195 Meudon, France ([email protected], [email protected]) Revision : 1:18 ABSTRACT From a set of stellar spectropolarimetric observations, we report the detection of sur- face magnetic fields in a sample of four solar-type stars, namely HD 73350, HD 76151, HD 146233 (18 Sco) and HD 190771. Assuming that the observed variability of polari- metric signal is controlled by stellar rotation, we establish the rotation periods of our targets, with values ranging from 8.8 d (for HD 190771) to 22.7 d (for HD 146233). Apart from rotation, fundamental parameters of the selected objects are very close to the Sun's, making this sample a practical basis to investigate the specific impact of rotation on magnetic properties of Sun-like stars. We reconstruct the large-scale magnetic geometry of the targets as a low-order (` < 10) spherical harmonics expansion of the surface magnetic field. -
• August the 26Th 2004 Detection of the Radial-Velocity Signal Induced by OGLE-TR-111 B Using UVES/FLAMES on the VLT (See Pont Et Al
2004 • August the 26th 2004 Detection of the radial-velocity signal induced by OGLE-TR-111 b using UVES/FLAMES on the VLT (see Pont et al. 2004, A&A in press, astro-ph/0408499). • August the 25th 2004 TrES-1b: A new transiting exoplanet detected by the Trans-Atlantic Exoplanet Survey (TreS) team . (see Boulder Press release or Alonso et al.) • August the 25th 2004 HD 160691 c : A 14 Earth-mass planet detected with HARPS (see ESO Press Release or Santos et al.) • July the 8th 2004 HD 37605 b: The first extra-solar planet detected with HRS on the Hobby- Eberly Telescope (Cochran et al.) • May the 3rd 2004 HD 219452 Bb withdrawn by Desidera et al. • April the 28th 2004 Orbital solution for OGLE-TR-113 confirmed by Konacki et al • April the 15th 2004 OGLE 2003-BLG-235/MOA 2003-BLG-53: a planetary microlensing event (Bond et al.) • April the 14th 2004 FLAMES-UVES spectroscopic orbits for two OGLE III transiting candidates: OGLE-TR-113 and OGLE-TR-132 (Bouchy et al.) • February 2004 Detection of Carbon and Oxygen in the evaporating atmosphere of HD 209458 b by A. Vidal-Madjar et al. (from HST observations). • January the 5th 2004 Two planets orbiting giant stars announced by Mitchell et al. during the AAS meeting: HD 59686 b and 91 Aqr b (HD 219499 b). Two other more massive companions, Tau Gem b (HD 54719 b) and nu Oph b (HD 163917 b), have also been announced by the same authors. 2003 • December 2003 First planet detected with HARPS: HD 330075 b (see Mayor et al., in the ESO Messenger No 114) • July the 3rd 2003 A long-period planet on a circular orbit around HD 70642 announced by the AAT team (Carter et al. -
Stability of Planets in Triple Star Systems F
A&A 619, A91 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833097 & © ESO 2018 Astrophysics Stability of planets in triple star systems F. Busetti1, H. Beust2, and C. Harley1 1 University of the Witwatersrand, CSAM, Private Bag 3, 2050 Johannesburg, South Africa e-mail: [email protected] 2 Université Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France e-mail: [email protected] Received 25 March 2018 / Accepted 27 August 2018 ABSTRACT Context. Numerous theoretical studies of the stellar dynamics of triple systems have been carried out, but fewer purely empirical studies that have addressed planetary orbits within these systems. Most of these empirical studies have been for coplanar orbits and with a limited number of orbital parameters. Aims. Our objective is to provide a more generalized empirical mapping of the regions of planetary stability in triples by considering both prograde and retrograde motion of planets and the outer star; investigating highly inclined orbits of the outer star; extending the parameters used to all relevant orbital elements of the triple’s stars and expanding these elements and mass ratios to wider ranges that will accommodate recent and possibly future observational discoveries. Methods. Using N-body simulations, we integrated numerically the various four-body configurations over the parameter space, using a symplectic integrator designed specifically for the integration of hierarchical multiple stellar systems. The triples were then reduced to binaries and the integrations repeated to highlight the differences between these two types of system. Results. This established the regions of secular stability and resulted in 24 semi-empirical models describing the stability bounds for planets in each type of triple orbital configuration. -
Predictions for the Secondary CO, C and O Gas Content of Debris Discs from the Destruction of Volatile-Rich Planetesimals
Mon. Not. R. Astron. Soc. 000, 1{27 (2002) Printed 3 April 2017 (MN LATEX style file v2.2) Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals Quentin Kral?, Luca Matr`a,Mark C. Wyatt, Grant M. Kennedy Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK Accepted 1928 December 15. Received 1928 December 14; in original form 1928 October 11 ABSTRACT This paper uses observations of dusty debris discs, including a growing number of gas detections in these systems, to test our understanding of the origin and evolution of this gaseous component. It is assumed that all debris discs with icy planetesimals create second generation CO, C and O gas at some level, and the aim of this paper is to predict that level and assess its observability. We present a new semi-analytical equivalent of the numerical model of Kral et al. (2016) allowing application to large numbers of systems. That model assumes CO is produced from volatile-rich solid bodies at a rate that can be predicted from the debris discs fractional luminosity. CO photodissociates rapidly into C and O that then evolve by viscous spreading. This model provides a good qualitative explanation of all current observations, with a few exceptional systems that likely have primordial gas. The radial location of the debris and stellar luminosity explain some non-detections, e.g. close-in debris (like HD 172555) is too warm to retain CO, while high stellar luminosities (like η Tel) result in short CO lifetimes. -
Accurate and Homogeneous Abundance Patterns in Solar-Type Stars of the Solar Neighbourhood: a Chemo-Chronological Analysis⋆
A&A 542, A84 (2012) Astronomy DOI: 10.1051/0004-6361/201118751 & c ESO 2012 Astrophysics Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: a chemo-chronological analysis R. da Silva1,G.F.PortodeMello2,A.C.Milone1, L. da Silva3, L. S. Ribeiro1, and H. J. Rocha-Pinto2 1 INPE, Divisão de Astrofísica, Av. dos Astronautas, 1758 São José dos Campos, 12201-970, Brazil e-mail: [email protected] 2 UFRJ, Observatório do Valongo, Ladeira do Pedro Antônio 43, 20080-090 Rio de Janeiro, Brazil 3 Observatório Nacional, Rua Gal. José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro, Brazil Received 28 December 2011 / Accepted 22 April 2012 ABSTRACT Aims. We report the derivation of abundances of C, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Sm in a sample of 25 solar-type stars of the solar neighbourhood, correlating the abundances with the stellar ages, kinematics, and orbital parameters. Methods. The spectroscopic analysis, based on data of high resolution and high signal-to-noise ratio, was differential to the Sun and applied to atomic line equivalent widths supplemented by the spectral synthesis of C and C2 features. We also performed a statistical study by using the method of tree clustering analysis, searching for groups of stars sharing similar elemental abundance patterns. We derived the stellar parameters from various criteria, with average errors of 30 K, 0.13 dex, and 0.05 dex, respectively, for Teff , log g,and[Fe/H].