OX40 Promotes Differentiation of CD4+ T Cells to Effector Cells

Total Page:16

File Type:pdf, Size:1020Kb

OX40 Promotes Differentiation of CD4+ T Cells to Effector Cells OX40 Promotes Differentiation of CD4+ T cells to Effector Cells by Cortny Ann l!uddleston A Dissertation Presented to the Department of Molecular Microbiology and Immunology Oregon Health & Sciences University School of Medicine In partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2006 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is certify that the Ph.D. dissertation thesis of Cortny A. Huddleston Member Member Member '_) Table of Contents Table of Contents 1-11 Acknowledgements m-1v Preface v Abstract v1-vn Chapter 1. Introduction 1 1.1 Development of effector and memory CD4 T cells 1 1.2 Regulation of the immune response, tolerance induction 6 1.3 OX40 and its ligand 11 1.4 Other TNFR family members that regulate immunity 13 1.5 OX40 Signal transduction 16 1.6 OX40 in T cell expansion, survival, and memory 18 1.7 OX40 in T cell differentiation 19 1.8 OX40 in disease 20 1.9 OX40 in persistent versus transient antigen stimulation 24 Chapter 2. Manuscript #1: A Signal Through OX40 (CD134) Allows Anergic, 28 Autoreactive T Cells to Acquire Effector Cell Functions and Kill their Hosts Chapter 3. Manuscript #2: OX40 (CD134) Engagement Drives Differentiation 61 of CD4 + T Cells to Effector Cells Chapter 4. Manuscript #3: OX40-Mediated Differentiation to Effector Function 95 Requires IL-2 Receptor Signaling but not CD28, CD40, IL-12R~2, or T-bet Chapter 5. Conclusions, Perspectives 122 Appendix 135 Literature Cited 142 II Acknowledgements I would first like to thank the scientists who have inspired me over the years. I am thankful for the guidance of my mentor, David Parker, who has been excited about my research and supportive in my scientific development. He has taught me to be precise in my work and has inspired me to be well read in my field. David also provided me with an excellent research topic, and always made time to discuss the intricacies of the project, which taught me how to think critically about my work and that of others. I would also like to thank Dr. Scott Lapatra for taking the time to introduce me to research science as a high school student, which inspired me to pursue a Ph.D. I would like to thank Dr. Jerri Bartholomew and Dr. Mark Leid for providing research experiences and intellectual guidance during college that motivated me to continue my pursuit of a Ph.D. The celebrations and hardships of graduate school could not have been endured without the support, laughter, and tears shared with my friends. I am grateful for my friendship with Ezhilkani Subbian, who shared so much more than an apartment and the graduate school experience with me. Her understanding and compassion for science, and her commitment to friendship and fun continues to inspire me in my own life. I am also thankful for the loyal support of my friend Thuy Vo, who always has time to make me smile. I am fortunate to rely upon the support and fellowship of so many other friends, and I thank each of you for enriching my life. My family deserves the most credit for any happiness and success in my life. My parents, Terry and Nancy, have provided a happy and supportive environment for me to pursue any dream, and they gladly work hard to provide opportunities for me. They motivate me to always strive for my best because they are proud of all my Ill accomplishments. My brother, Seth, always reminds me of my roots when pride sweeps me away, and never fails to make me laugh. I am happy to have my husband Jay by my side, to hear first-hand about all the daily issues and joys, to patiently solve problems, and to encourage celebration of good news. I am grateful for Jay's support during graduate school, for encouraging me to do my best every day, and for taking extra time to celebrate the little things. I love my family with all my heart. IV Preface I have prepared my dissertation in accordance with the guidelines set forth by the Graduate Program of the School of Medicine, Oregon Health & Science University. This manuscript consists of a general introduction, three chapters of original data, and a section with summary and general conclusions. The references cited for all chapters are listed together at the end of the text and follow the format of the Journal of Immunology. Chapter two contains data, figures, and text as they appear in the original paper published in the Journal oflmmunology (1). Stephanie Lathrop and I contributed most of the work to this manuscript and David Parker wrote the manuscript. Chapter three contains data, figures, and text as they appear in the original paper published in the European Journal of Immunology (2). Chapter four is a manuscript that has been submitted for publication to the Journal oflmmunology. v Abstract CD4 T cells play an important role in protection against viruses, bacteria, parasites, and cancers, but can also contribute to undesired immune responses such as autoimmunity, graft rejection, and allergic reactions. Understanding the mechanisms that control CD4 T cell effector function will lead to more effective vaccine design and the management of aberrant immune responses. The tumor necrosis factor receptor (TNFR) family member OX40 (CD134) is a costimulatory protein expressed exclusively on activated T cells that augments clonal expansion and survival of antigen-specific CD4 T cells, as well as enhancing the generation of effector and memory T cells. Mechanistically, it has been proposed that OX40 enhances CD4 T cell survival and memory cell generation by enhancing anti-apoptotic protein expression, as well as enhancing effector cytokine production. However, blocking OX40 signaling in vivo specifically reduces inflammation induced by cytokines, suggesting that OX40 may directly influence differentiation to effector function. I was interested in how OX40 regulates effector function in CD4 T cells, so I hypothesized that OX40 signaling could promote differentiation independent ofT cell survival. We have developed a model in which a peptide antigen covalently bound to MHC class II is expressed at low levels on all MHC class II positive cells in mice. Upon transfer of small numbers of antigen specific T cell receptor transgenic CD4 T cells, rapid expansion and infiltration of tissues is observed, but the T cells are tolerant and the animals remain healthy. Addition of an agonist antibody to OX40 at the time ofT cell transfer induces accumulation of large, granular effector CD4 T cells that express the IL- VI 2 receptor alpha chain, CD25, and secrete interferon-y directly ex vivo or in response to cytokine stimulation, and the animals die within one week. We have also developed a polyclonal model in which a small percentage ofB6 CD4 T cells transferred into MHC class II disparate mice behave similarly to the monoclonal T cells described above. These adoptive transfer systems provide useful models in which to examine the immune consequences of OX40 signaling pathways. I found that OX40 signaling induces effector cytokine production early in T cell priming, before changes in anti-apoptotic proteins could be detected. I also showed that genetically altered CD4 T cells with enhanced survival do not acquire effector function independent of OX40 costimulation, and OX40 deficient CD4 T cells can acquire effector function in the presence of OX40 sufficient cells. These experiments suggest that OX40 directly influences differentiation, but may also require cooperation with other factors. I tested the requirement for additional costimulation in supporting OX40 signaling, and found that OX40 costimulation induces differentiation independent of CD28 and CD40 signaling. I also showed that OX40 signaling does not depend upon T­ bet expression for differentiation, but enhances responsiveness to cytokine stimulation to promote effector function. However, I found that OX40 is dependent on IL-2 receptor signaling to promote effector cytokine production. While the mechanism of OX40 signaling is not completely understood, this evidence indicates that OX40 signaling can promote differentiation via induction of cytokine and cytokine receptor expression. VII Chapter 1-Introduction The broad goal of my research is to understand how CD4 T cell effector function is regulated during an immune response. Specifically, I am interested in how engagement of the tumor necrosis factor receptor (TNFR) family member CD134 (OX40) regulates survival and differentiation during CD4 T cell activation. To appreciate the influence of OX40 on CD4 T cells, it is important to first understand that CD4 T cells play a central role in coordinating the host's innate and adaptive immune response to infectious agents. CD4 T cells enhance both innate and adaptive immune cell effector function to destroy pathogens, and are conversely able to inhibit effector function when the pathogen has been cleared. CD4 T cells in tum receive activation, survival, and differentiation signals at each stage of an immune response that influence the decision to respond, and how to respond, to a foreign agent. Members of the TNFR family are emerging as key mediators of effector CD4 T cell development. In this thesis, I will address the role of OX40 in promoting accumulation of effector CD4 T cells, and will discuss how OX40 influences survival and differentiation during effector cell development. 1.1 Development ofeffector and memory CD4 T cells The CD4 T helper cell compartment of the immune system plays an important role in the adaptive immune response to infectious agents, as well as contributing to autoimmune disease and anti-tumor immunity. Activated antigen-specific CD4 T cells release cytokines or directly interact with phagocytic cells such as macrophages to help destroy intracellular pathogens. Similarly, CD4 T cells also help B cells and CD8 T cells in their responses to antigen (3, 4).
Recommended publications
  • Mouse CD163 Deficiency Strongly Enhances Experimental Collagen-Induced Arthritis
    www.nature.com/scientificreports OPEN Mouse CD163 defciency strongly enhances experimental collagen‑induced arthritis Pia Svendsen1,2, Anders Etzerodt 3, Bent W. Deleuran3,4 & Søren K. Moestrup1,2,5* The scavenger receptor CD163 is highly expressed in macrophages in sites of chronic infammation where it has a not yet defned role. Here we have investigated development of collagen‑induced arthritis (CIA) and collagen antibody‑induced arthritis (CAIA) in CD163‑defcient C57BL/6 mice. Compared to wild‑type mice, the CIA in CD163‑defcient mice had a several‑fold higher arthritis score with early onset, prolonged disease and strongly enhanced progression. Further, the serum anti‑ collagen antibody isotypes as well as the cytokine profles and T cell markers in the infamed joints revealed that CD163‑defcient mice after 52 days had a predominant Th2 response in opposition to a predominant Th1 response in CD163+/+ mice. Less diference in disease severity between the CD163+/+ and CD163−/− mice was seen in the CAIA model that to a large extent induces arthritis independently of T‑cell response and endogenous Th1/Th2 balance. In conclusion, the present set of data points on a novel strong anti‑infammatory role of CD163. Te scavenger receptor CD163 is expressed exclusively in cells of monocytic origin with a high expression in M2-type macrophages where it has an established role in scavenging hemoglobin (Hb) released into plasma 1. Te receptor and its function have been most intensively studied in human systems, but the selective myelomonocytic expression of CD163 with a high upregulation in the M2-type macrophages is also seen in animals including rodents2,3.
    [Show full text]
  • US7572600.Pdf
    US007572600B2 (12) United States Patent (10) Patent No.: US 7,572,600 B2 Berahovich et al. (45) Date of Patent: Aug. 11, 2009 (54) ENZYMATIC ACTIVITIES IN WO WO90, 13332 11, 1990 CHEMOKNE-MEDIATED INFLAMMATION WO WO 91/12779 9, 1991 WO WO 91f17271 11, 1991 (75) WO WO91, 1898O 12/1991 Inventors: Robert D. Berahovich, Berkeley, CA WO WO92fO1047 1, 1992 (US); Zhenhua Miao, San Jose, CA WO WO93,06121 4f1993 (US); Brett Premack, San Francisco, WO WO93, 17706 9, 1993 CA (US); Thomas J. Schall, Palo Alto, WO WO93/24640 12/1993 CA (US) WO WO94,08051 4f1994 WO WO94/20142 9, 1994 (73) Assignee: Chemocentryx, Inc., Mt. View, CA (US) WO WO95/12608 5, 1995 WO WO95/30642 11, 1995 (*) Notice: Subject to any disclaimer, the term of this WO WO95/35503 12/1995 patent is extended or adjusted under 35 WO WO 98.04554 2, 1998 U.S.C. 154(b) by 486 days. OTHER PUBLICATIONS (21) Appl. No.: 11/198,935 Al-Obeidi (1998), Mol. Biotechnol. 9:205-223. Aoyama, Y. et al. (2001), Bioorg Med. Chem. Lett. 11: 1691-4. (22) Filed: Aug. 4, 2005 Amour, A., et al. (1998), J. Pharm. Pharmacol. 50:593-600. Berger, M.S. etal (1993), DNA Cell Biol 12:839-847. (65) Prior Publication Data Bao, L., et al. (1992), Genomics 13:437-40. US 2006/OO63223 A1 Mar. 23, 2006 Berman et al. (1988), Immunol. Invest. 17: 625-677. Baici, A. (1993), Biochem. Pharmacol. 46:1545-9. Bae, Y.-S. et al. (2004) J Immunol. 173:607-614.
    [Show full text]
  • The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
    International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
    [Show full text]
  • The Chemokine System in Innate Immunity
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function.
    [Show full text]
  • Starvation and Antimetabolic Therapy Promote Cytokine Release and Recruitment of Immune Cells
    Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells Franziska Püschela, Francesca Favaroa,b,c,d,1, Jaime Redondo-Pedrazaa,1, Estefanía Lucendoa, Raffaella Iurlaroa, Sandrine Marchettie, Blanca Majema, Eric Elderingb,c,d, Ernest Nadalf, Jean-Ehrland Riccie, Eric Chevetg,h, and Cristina Muñoz-Pinedoa,i,2 aOncobell Program, Bellvitge Biomedical Research Institute, Hospitalet, 08908 Barcelona, Spain; bDepartment of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cLymphoma and Myeloma Center, Cancer Center Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; dAmsterdam Institute for Infection & Immunity, 1105 AZ Amsterdam, The Netherlands; eINSERM, Centre Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, 06204 Nice, France; fThoracic Oncology Unit, Department of Medical Oncology, Catalan Institute of Oncology, Hospitalet, 08908 Barcelona, Spain; gINSERM U1242 “Chemistry, Oncogenesis, Stress, Signaling,” Université de Rennes, 35042 Rennes, France; hINSERM U1242, Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France; and iDepartment of Basic Nursing, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Hospitalet, 08907 Barcelona, Spain Edited by Karen H. Vousden, Francis Crick Institute, London, United Kingdom, and approved March 16, 2020 (received for review August 14, 2019) Cellular starvation is typically a consequence of tissue injury that of oxygen or nutrients. However, some reports suggest that nutrient disrupts the local blood supply but can also occur where cell restriction, even without cell death, can be sufficient to promote the populations outgrow the local vasculature, as observed in solid synthesis and/or secretion of select proinflammatory cytokines tumors. Cells react to nutrient deprivation by adapting their (7–9).
    [Show full text]
  • Critical Role of CXCL4 in the Lung Pathogenesis of Influenza (H1N1) Respiratory Infection
    ARTICLES Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection L Guo1,3, K Feng1,3, YC Wang1,3, JJ Mei1,2, RT Ning1, HW Zheng1, JJ Wang1, GS Worthen2, X Wang1, J Song1,QHLi1 and LD Liu1 Annual epidemics and unexpected pandemics of influenza are threats to human health. Lung immune and inflammatory responses, such as those induced by respiratory infection influenza virus, determine the outcome of pulmonary pathogenesis. Platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) has an immunoregulatory role in inflammatory diseases. Here we show that CXCL4 is associated with pulmonary influenza infection and has a critical role in protecting mice from fatal H1N1 virus respiratory infection. CXCL4 knockout resulted in diminished viral clearance from the lung and decreased lung inflammation during early infection but more severe lung pathology relative to wild-type mice during late infection. Additionally, CXCL4 deficiency decreased leukocyte accumulation in the infected lung with markedly decreased neutrophil infiltration into the lung during early infection and extensive leukocyte, especially lymphocyte accumulation at the late infection stage. Loss of CXCL4 did not affect the activation of adaptive immune T and B lymphocytes during the late stage of lung infection. Further study revealed that CXCL4 deficiency inhibited neutrophil recruitment to the infected mouse lung. Thus the above results identify CXCL4 as a vital immunoregulatory chemokine essential for protecting mice against influenza A virus infection, especially as it affects the development of lung injury and neutrophil mobilization to the inflamed lung. INTRODUCTION necrosis factor (TNF)-a, interleukin (IL)-6, and IL-1b, to exert Influenza A virus (IAV) infections cause respiratory diseases in further antiviral innate immune effects.2 Meanwhile, the innate large populations worldwide every year and result in seasonal immune cells act as antigen-presenting cells and release influenza epidemics and unexpected pandemic.
    [Show full text]
  • Responses During Sepsis Interactions Exacerbate Innate Immune CCR1
    The Journal of Immunology CCR1 and CC Chemokine Ligand 5 Interactions Exacerbate Innate Immune Responses during Sepsis1 Traci L. Ness,* Kristin J. Carpenter,* Jillian L. Ewing,* Craig J. Gerard,† Cory M. Hogaboam,2* and Steven L. Kunkel* CCR1 has previously been shown to play important roles in leukocyte trafficking, pathogen clearance, and the type 1/type 2 cytokine balance, although very little is known about its role in the host response during sepsis. In a cecal ligation and puncture model of septic peritonitis, CCR1-deficient (CCR1؊/؊) mice were significantly protected from the lethal effects of sepsis when compared with wild-type (WT) controls. The peritoneal and systemic cytokine profile in CCR1؊/؊ mice was characterized by a robust, but short-lived and regulated antibacterial response. CCR1 expression was not required for leu- -kocyte recruitment, suggesting critical differences extant in the activation of WT and CCR1؊/؊ resident or recruited peri toneal cells during sepsis. Peritoneal macrophages isolated from naive CCR1؊/؊ mice clearly demonstrated enhanced cytokine/chemokine generation and antibacterial responses compared with similarly treated WT macrophages. CCR1 and CCL5 interactions markedly altered the inflammatory response in vivo and in vitro. Administration of CCL5 increased sepsis-induced lethality in WT mice, whereas neutralization of CCL5 improved survival. CCL5 acted in a CCR1-dependent manner to augment production of IFN-␥ and MIP-2 to damaging levels. These data illustrate that the interaction between CCR1 and CCL5 modulates the innate immune response during sepsis, and both represent potential targets for therapeutic intervention. The Journal of Immunology, 2004, 173: 6938–6948. epsis is the most common cause of death in noncoronary mune response to sepsis (7, 8).
    [Show full text]
  • Retinoid X Receptor Α Controls Innate Inflammatory Responses Through The
    Retinoid X receptor α controls innate inflammatory responses through the up-regulation of chemokine expression Vanessa Núñeza,1, Daniel Alamedaa,1, Daniel Ricoa,2, Rubén Motab, Pilar Gonzalob, Marta Cedenillaa, Thierry Fischerc, Lisardo Boscád, Christopher K. Glasse, Alicia G. Arroyob, and Mercedes Ricotea,3 Departments of aRegenerative Cardiology and bVascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain; cDepartment of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid 28049, Spain; dInstituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Madrid 28029, Spain; and eDepartment of Medicine, Department of Cellular and Molecular Medicine, University of California, La Jolla, CA 92093 Edited* by Daniel Steinberg, University of California, La Jolla, CA, and approved April 19, 2010 (received for review November 25, 2009) The retinoid X receptor α (RXRα) plays a central role in the regulation Chemokines and their receptors have been implicated in the of many intracellular receptor signaling pathways and can mediate modulation of leukocyte trafficking, immune/inflammatory respon- ligand-dependent transcription by forming homodimers or hetero- ses, sepsis, and multiorgan failure (18, 19). Clinical studies have also dimers with other nuclear receptors. Although several members of identified elevated levels of chemokines associated with human the nuclear hormone receptor superfamily have emerged as impor- sepsis and acute lung injury (20). tant regulators of macrophage gene expression, the existence in vivo We have examined the role of RXRα in the innate immune of an RXR signaling pathway in macrophages has not been estab- system by conditionally disrupting RXRα in myeloid cells. We lished. Here, we provide evidence that RXRα regulates the transcrip- show that chemokines Ccl6 and Ccl9 are novel target genes for tion of the chemokines Ccl6 and Ccl9 in macrophages independently RXRα in primary peritoneal macrophages.
    [Show full text]
  • CCL9 Is Secreted by the Follicle-Associated Epithelium and Recruits Dome Region Peyer's Patch Cd11b+ Dendritic Cells
    CCL9 Is Secreted by the Follicle-Associated Epithelium and Recruits Dome Region Peyer's Patch CD11b+ Dendritic Cells This information is current as Xinyan Zhao, Ayuko Sato, Charles S. Dela Cruz, Melissa of October 1, 2021. Linehan, Andreas Luegering, Torsten Kucharzik, Aiko-Konno Shirakawa, Gabriel Marquez, Joshua M. Farber, Ifor Williams and Akiko Iwasaki J Immunol 2003; 171:2797-2803; ; doi: 10.4049/jimmunol.171.6.2797 http://www.jimmunol.org/content/171/6/2797 Downloaded from References This article cites 32 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/171/6/2797.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts Errata An erratum has been published regarding this article. Please see next page or: /content/172/11/7220.2.full.pdf The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCL9 Is Secreted by the Follicle-Associated Epithelium and Recruits Dome Region Peyer’s Patch CD11b؉ Dendritic Cells1 Xinyan Zhao,2* Ayuko Sato,* Charles S.
    [Show full text]
  • Exploration of Prognostic Biomarkers and Therapeutic Targets in the Microenvironment of Bladder Cancer Based on CXC Chemokines
    Exploration of Prognostic Biomarkers and Therapeutic Targets in The Microenvironment of Bladder Cancer Based on CXC Chemokines Xiaoqi Sun Department of Urology, Kaiping Central Hospital, Kaiping, 529300, China Qunxi Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Lihong Zhang Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Jiewei Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Xinke Zhang ( [email protected] ) Sun Yat-sen University Cancer Center Research Keywords: Bladder cancer, Biomarkers, CXC Chemokines, Microenvironment Posted Date: February 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-223127/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background: Bladder cancer (BLCA) has a high rate of morbidity and mortality, and is considered as one of the most malignant tumors of the urinary system. Tumor cells interact with surrounding interstitial cells, playing a key role in carcinogenesis and progression, which is partly mediated by chemokines. CXC chemokines exert anti‐tumor biological roles in the tumor microenvironment and affect patient prognosis. Nevertheless, their expression and prognostic values patients with BLCA remain unclear. Methods: We used online tools, including Oncomine, UALCAN, GEPIA, GEO databases, cBioPortal, GeneMANIA, DAVID 6.8, Metascape, TRUST (version 2.0), LinkedOmics, TCGA, and TIMER2.0 to perform the relevant analysis. Results: The mRNA levels of C-X-C motif chemokine ligand (CXCL)1, CXCL5, CXCL6, CXCL7, CXCL9, CXCL10, CXCL11, CXCL13, CXCL16, and CXCL17 were increased signicantly increased, and those of CXCL2, CXCL3, and CXCL12 were decreased signicantly in BLCA tissues as assessed using the Oncomine, TCGA, and GEO databases.
    [Show full text]
  • Myelin-Specific CD8 T Cells Exacerbate Brain Inflammation in CNS Autoimmunity
    Myelin-specific CD8 T cells exacerbate brain inflammation in CNS autoimmunity Catriona A. Wagner, … , Denny Liggitt, Joan M. Goverman J Clin Invest. 2019. https://doi.org/10.1172/JCI132531. Research In-Press Preview Autoimmunity Graphical abstract Find the latest version: https://jci.me/132531/pdf Myelin-specific CD8 T cells exacerbate brain inflammation in CNS autoimmunity Catriona A. Wagner1, Pamela J. Roqué1, Trevor R. Mileur1, Denny Liggitt2, and Joan M. Goverman1* 1Departments of Immunology and 2Comparative Medicine, University of Washington, Seattle, WA, USA *Corresponding author: Dr. Joan M. Goverman Department of Immunology, University of Washington Box 358059 750 Republican St, Seattle, WA 98109 Tel: +1 206-685-7604 Fax: +1 206-616-4561 Email: [email protected] The authors declare no competing financial interests. Abstract Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the CNS. Although CD4 T cells are implicated in MS pathogenesis and have been the main focus of MS research using the animal model experimental autoimmune encephalomyelitis (EAE), substantial evidence from patients with MS points to a role for CD8 T cells in disease pathogenesis. We previously showed that an MHC class I-restricted epitope of myelin basic protein (MBP) is presented in the CNS during CD4 T cell-initiated EAE. Here, we investigated whether naïve MBP-specific CD8 T cells recruited to the CNS during CD4 T cell-initiated EAE engaged in determinant-spreading and influenced disease. We found that the MBP-specific CD8 T cells exacerbated brain but not spinal cord inflammation. We show that a higher frequency of monocytes and monocyte-derived cells presented the MHC class I-restricted MBP ligand in the brain compared to the spinal cord.
    [Show full text]
  • Chemokine Signatures of Pathogen-Specific T Cells II: Memory T Cells in Acute and Chronic Infection
    Chemokine Signatures of Pathogen-Specific T Cells II: Memory T Cells in Acute and Chronic Infection This information is current as Bennett Davenport, Jens Eberlein, Tom T. Nguyen, of September 24, 2021. Francisco Victorino, Verena van der Heide, Maxim Kuleshov, Avi Ma'ayan, Ross Kedl and Dirk Homann J Immunol published online 18 September 2020 http://www.jimmunol.org/content/early/2020/09/17/jimmun ol.2000254 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/09/17/jimmunol.200025 Material 4.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 18, 2020, doi:10.4049/jimmunol.2000254 The Journal of Immunology Chemokine Signatures of Pathogen-Specific T Cells II: Memory T Cells in Acute and Chronic Infection Bennett Davenport,*,†,‡,x,{ Jens Eberlein,*,† Tom T. Nguyen,*,‡ Francisco Victorino,*,†,‡ Verena van der Heide,x,{ Maxim Kuleshov,‖,# Avi Ma’ayan,‖,# Ross Kedl,† and Dirk Homann*,†,‡,x,{ Pathogen-specific memory T cells (TM) contribute to enhanced immune protection under conditions of reinfection, and their effective recruitment into a recall response relies, in part, on cues imparted by chemokines that coordinate their spatiotemporal positioning.
    [Show full text]