The Vegetation of Egypt the Vegetation of Egypt

Total Page:16

File Type:pdf, Size:1020Kb

The Vegetation of Egypt the Vegetation of Egypt The Vegetation of Egypt The Vegetation of Egypt M.A. Zahran In association with A.J. Willis SPRINGER-SCIENCE+BUSINESS MEDIA, BV First edition 1992 © 1992 M.A. Zahran Originally published by Chapman & Hall in 1992 Typeset in 10/12 pt Century Schoolbook by Graphieraft Typesetters Ltd., Hong Kong ISBN 978-0-412'31510-7 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographie reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication data Zahran, M.A The vegetation of EgyptlM.A. Zahran, AJ. Willis. p. cm. Includes bibliographical references and index. ISBN 978-0-412-31510-7 ISBN 978-94-015-8066-3 (eBook) DOI 10.1007/978-94-015-8066-3 1. Botany-Egypt-Ecology. 2. Phytogeography-Egypt. 3. Plant communities-Egypt. 1. Willis, AJ. (Arthur John), 1922- . II. Title. QK403.Z34 1992 92-2512 581. 962-dc20 CIP CONTENTS About the authors vii Preface ix Foreword xi Introduction xiii 1 Egypt: the gift of the Nile 1 2 Physiography, climate and soil-vegetation relationships 4 2.1 Geological characteristics 4 2.2 Geographical characteristics 6 2.3 The climate of Egypt 7 2.4 Soil-vegetation relationships 9 3. The Western Desert 15 3.1 General features 15 3.2 The western Mediterranean coastal belt 16 3.3 The oases and depressions 52 3.4 Gebel Uweinat 111 4 The Eastern Desert 117 4.1 Geology and geomorphology 117 4.2 Ecological characteristics 118 5 The Sinai Peninsula 261 5.1 Geomorphology 261 5.2 Climate 267 5.3 Water resources 269 5.4 The vegetation 270 6 The Nile region 303 6.1 Geomorphology 303 6.2 Climate 308 6.3 Vegetation types 308 VI Contents 7 The history of the vegetation: its salient features and future study 365 7.1 The history of the vegetation 365 7.2 Future study of phytosociology and plant ecology 375 7.3 The main types of vegetation and its features: synopsis 377 References 380 Species index 395 Subject index 413 ABOUT THE AUTHORS Professor Mahmoud Abdel Kawy Zahran was born in Samalut (Minya Province, Upper Egypt) on 15 January 1938. He graduated (BSc 1959) from the Faculty of Science, Cairo University where he got his MSc (1962) and PhD (1965) degrees in the field of plant ecology. Professor Zahran worked as research assistant and researcher in the National Research Centre (1959-1963) and Desert Research Institute (1963-1972) of Cairo. In October 1972 he was appointed Assistant Professor in the Faculty of Science, Mansoura University and promoted to the professorship of plant ecology in November 1976. He joined the Faculty of Meteorology and Environmental Studies of King Abdul Aziz University, Jeddah, Saudi Arabia from November 1977 to March 1983. For his scientific work in plant ecology, Professor Zahran received the State Prize of Egypt from the Academy of Scientific Researches and Technology (1983), the First Class Gold Medal of the Egyptian President (1983), the Diploma of the International Cultural Council of Mexico (1987) and the major Prize of Mansoura University in Basic Sciences (1991). Apart from this book, Professor Zahran is a co-author of four refer­ ence books (Wet Coastal Ecosystems, 1977, Ecology of Halophytes, 1982, Dry Coastal Ecosystems, 1992 and Crop Stress, 1992) and two student books. He has published more than 65 papers dealing with the ecology of the vegetation in Egypt and Saudi Arabia. Emeritus Professor Arthur J. Willis, Ph.D., D.Sc., F.I. Biol, F.L.S., graduated in Botany at the University of Bristol, England, and joined the staff there in 1947 as Demonstrator. He subsequently became Junior Fellow in Physiological Ecology, Lecturer and Reader in Botany, but left Bristol in 1969 to become the Head of the Department of Botany of the University of Sheffield. Here he remained Head and also Honorary Director of the Natural Environment Research Council Unit of Comparative Plant Ecology until retirement in 1987. Professor Willis is the author of An Introduction to Plant Ecology (1971) and a contributor to a number of books, most recently (1990) the last edition of the Weed Control Handbook: Principles. He has Vlll About the authors written about a hundred papers in scientific journals, spanning the fields of plant ecology, the British flora, bryophytes, coastal systems, particularly sand dunes, plant physiology, especially nitrogen me­ tabolism and water relations, and palaeobotany. He was a general editor of the extensive series of books titled Contemporary Biology, an editor of the Journal of Ecology and is the current editor of the Biological Flora of the British [sles. PREFACE This book is an attempt to compile and integrate the information documented by many botanists, both Egyptians and others, about the vegetation of Egypt. The first treatise on the flora of Egypt, by Petrus Forsskäl, was published in 1775. Records of the Egyptian flora made during the Napoleonic expedition to Egypt (1778-1801) were provided by AR. Delile from 1809 to 1812 (Kassas, 1981). The early beginning of ecological studies of the vegetation of Egypt extended to the mid-nineteenth century. Two traditions may be re­ cognized. The first was general exploration and survey, for which one name is symbolic: Georges-Auguste Schweinfurth (1836-1925), a German scientist and explorer who lived in Egypt from 1863 to 1914. The second tradition was ecophysiological to explain the plant life in the dry desert. The work of G. Volkens (1887) remains a classic on xerophytism. These two traditions were maintained and expanded in further phases of ecological development associated with the es­ tablishment of the Egyptian University in 1925 (now the University of Cairo). The first professor of botany was the Swedish Gunnar Täckholm (1925-1929). He died young, and his wife Vivi Täckholm devoted her life to studying the flora of Egypt and gave leadership and inspiration to plant taxonomists in Egypt for some 50 years. She died in 1978. The second professor of botany in Egypt was F.W. Oliver (1929- 1932) followed by the British ecologist F.J. Lewis (1935-1947). This episode marked the beginning of plant ecological studies by Egyptian scientists in two principal traditions: ecophysiological and synecological studes of the vegetation. The pioneers are AM. Migahid, AH. Montasir and M. Hassib who started their scientific work in 1931. About 1950, two schools of research emerged. These were mainly concemed with a survey of natural vegetation and the phytosociological analysis of plant communities. One was centred in the University of Alexandria led by T.M. Tadros (1910-1972) who followed the Zürich-Montpellier School. The second is centred in the University of Cairo and led by M. Kassas who followed the Anglo-American school of phytosociology. During the last 30 years, researches in plant ecology continue with x Preface refined methodologies and creation of new research units in the several provincial universities opened in Egypt. We warmly thank Professor Dr M. Kassas, Faculty of Science, University of Cairo, for his great encouragement and assistance in the production of this book, and for supplying many references. We are also much indebted to Dr Sekina M. Ayyad for her help with the section on the history of the vegetation, to Dr P.D. Moore for his use­ ful comments on this section, and to Professor L. Boulos, Dr T.A Cope and Professor M.N. EI-Hadidi for their kind assistance with nomen­ clature. The valued sponsorship of this book by UNEP and UNESCO is highly appreciated and has much facilitated its production. M.A Zahran AJ. Willis FOREWORD Egypt is a cross-road territory with its Mediterranean front connect­ ing it with Europe with which it has had biotic exchanges during the Glacials and the Interglacials, and today we know that routes of migratory birds converge through Egypt. Two highway corridors join Egypt with tropical Mrica and beyond: the Nile Valley and the basin of the Red Sea. The Sinai Peninsula is the bridge between Mrica and Asia. Its cultural and ethnic history bears testimony to complexities of this position, as does its natural history. Attempts to unravel the mysteries of its cultural history have involved scholars from all over the world, and collections of its legendary heritage abound in museums of the capitals of the world. The natural history of Egypt was not less fortunate, contributions of international scien­ tists to biological, geological and geographical surveys of Egypt in­ clude a wealth of research, and this book, compiled by two scholars from Mansoura and Sheffield, is a most welcome example of inter­ national collaboration. The history of vegetation antedates that of human culture, but plant life as we see it today has been influenced in every way by human action, exploitation, destruction, husbandry, introductions, etc. An attempt to compile a comprehensive inventory of various aspects of plant growth and ecological relationships in plant communities requires indefatigable enthusiasm and stamina.
Recommended publications
  • A Window Into Paleocene to Early Eocene Depositional History in Egypt Basedoncoccolithstratigraphy
    The Dababiya Core: A window into Paleocene to Early Eocene depositional history in Egypt basedoncoccolithstratigraphy Marie-Pierre Aubry1 and Rehab Salem1,2 1Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, NJ 08854-8066, USA email: [email protected] 2Geology Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt [email protected] ABSTRACT: The composite Paleocene-lower Eocene Dababiya section recovered in the Dababiya Quarry core and accessible in out- crop in the Dababiya Quarry exhibits an unexpected contrast in thickness between the Lower Eocene succession (~Esna Shales) and the Paleocene one (~Dakhla Shales and Tarawan Chalk). We investigate the significance of this contrast by reviewing calcareous nannofossil stratigraphic studies performed on sections throughout Egypt. We show that a regional pattern occurs, and distinguish six areas—Nile Valley, Eastern Desert and western Sinai, Central and eastern Sinai, northern Egypt and Western Desert. Based on patterns related to thicknesses of selected lithobiostratigraphic intervals and distribution of main stratigraphic gaps, we propose that the differences in the stratigraphic architecture between these regions result from differential latest Paleocene and Early Eocene subsidence following intense Middle to Late Paleocene tectonic activity in the Syrian Arc folds as a result of the closure of the Neo-Tethys. INTRODUCTION view of coccolithophore studies in Egypt since their inception During the Late Cretaceous and Early Paleogene Egypt was (1968). Coccolith-bearing sedimentary rocks as old as part of a vast epicontinental shelf at the edge of the southern Cenomanian outcrop in central Sinai (Thamed area; Bauer et al. Tethys (text-fig. 1). Bounded by the Arabian-Nubian craton to 2001; Faris and Abu Shama 2003).
    [Show full text]
  • Middle East Meteorology - H.M
    TROPICAL METEOROLOGY- Middle East Meteorology - H.M. Hasanean MIDDLE EAST METEOROLOGY H.M. Hasanean Meteorology Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University Keywords: Middle East Meteorology, Arid and sub arid climate, Dust storm, Climate change, Circulation systems. Contents 1. Introduction 1.1 Middle East Definition 1.2 Overview of the Middle East Climate 2. Regional climate in the Middle East climate 2.1 Climate of Egypt 2.2 Climate of the Arabian Peninsula an Overview 2.3 Climate of Syria 2.4 Climate of Lebanon 2.5 Climate Jordan 2.6 Climate of Israel and Palestine 2.7 Climate of Cyprus 2.8 Climate of Iraq 2.9 Climate of Turkey 2.10 Climate of Iran 3. Dust storms over the Middle East 3.1 Types of Dust Storms 3.2 Synoptic Analysis of Dust Storms in the Middle East 4. Climate change over the Middle East climate 5. Climate change impacts on water resources in Middle East 6. Circulation systems affect the climate of the Middle East 6.1 Impact of the North Atlantic Oscillation (NAO) on Middle Eastern Climate 6.2 Impact of the El Nino Southern Oscillation (ENSO) on Middle East Climate 6.3 The Role of Highs Pressure (Siberian and Subtropical High Pressure) and Indian Low Pressure on Middle Eastern Climate 6.4 The roleUNESCO of Jet streams on Middle East – Climate EOLSS 7. Conclusion Acknowledgements Glossary SAMPLE CHAPTERS Bibliography Biographical Sketch Summary The Middle East is a region that spans southwestern Asia, western Asia, and northeastern Africa. Although much of the Middle East region has a Mediterranean climate type, i.e.
    [Show full text]
  • The Ancient Egyptian Economy
    The ancient Egyptian economy The economy of pharaonic Egypt has been called an ancient command economy, but one should always remember that such modern definitions are not as apt as one would hope for.[2] Still, there was a specialized bureaucracy which monitored or controlled much of its activity, one of the hallmarks of planned economies. On the other hand, in general the officials—as state employees and not as private landowners or managers of state farms—probably did not tell farmers what to grow and these continued to do what their predecessors had done. But they remeasured and reassigned the land after every inundation based on past assignments, assessed the expected crops, collected part of the produce as taxes, stored and redistributed it to those on the state's pay lists. Storage and redistribution were generally done on a local basis. Regional facilities provided produce in case there was a shortfall in one of the local centres. Bureaucrats were also in charge of public works which were mostly religious in character and involved at times tens of thousands of workers and administrators. Egypt was a patchwork of mostly autarkic households and domains. After the taxes were paid, The Saylor Foundation 1 domain administrators and successful householders stored surpluses for future use or exchanged them by barter on the market, an institution the nature of which is remarkably badly understood. The percentage of produce and even manufactured goods which reached markets was probably small. It may have been of marginal importance to the survival of the individual producer, but provided part of the economic base for the developing Egyptian high culture.
    [Show full text]
  • Origin of the Sinai-Negev Erg, Egypt and Israel: Mineralogical and Geochemical Evidence for the Importance of the Nile and Sea Level History Daniel R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- ubP lished Research US Geological Survey 2013 Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history Daniel R. Muhs U.S. Geological Survey, [email protected] Joel Roskin Ben-Gurion University of the Negev Haim Tsoar Ben-Gurion University of the Negev Gary Skipp U.S. Geological Survey, [email protected] James Budahn U.S. Geological Survey See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Muhs, Daniel R.; Roskin, Joel; Tsoar, Haim; Skipp, Gary; Budahn, James; Sneh, Amihai; Porat, Naomi; Stanley, Jean-Daniel; Katra, Itzhak; and Blumberg, Dan G., "Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history" (2013). USGS Staff -- Published Research. 931. https://digitalcommons.unl.edu/usgsstaffpub/931 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- ubP lished Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Daniel R. Muhs, Joel Roskin, Haim Tsoar, Gary Skipp, James Budahn, Amihai Sneh, Naomi Porat, Jean-Daniel Stanley, Itzhak Katra, and Dan G. Blumberg This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/usgsstaffpub/931 Quaternary Science Reviews 69 (2013) 28e48 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Origin of the SinaieNegev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history Daniel R.
    [Show full text]
  • Egyptian National Action Program to Combat Desertification
    Arab Republic of Egypt UNCCD Desert Research Center Ministry of Agriculture & Land Reclamation Egyptian National Action Program To Combat Desertification June, 2005 UNCCD Egypt Office: Mail Address: 1 Mathaf El Mataria – P.O.Box: 11753 El Mataria, Cairo, Egypt Tel: (+202) 6332352 Fax: (+202) 6332352 e-mail : [email protected] Prof. Dr. Abdel Moneim Hegazi +202 0123701410 Dr. Ahmed Abdel Ati Ahmed +202 0105146438 ARAB REPUBLIC OF EGYPT Ministry of Agriculture and Land Reclamation Desert Research Center (DRC) Egyptian National Action Program To Combat Desertification Editorial Board Dr. A.M.Hegazi Dr. M.Y.Afifi Dr. M.A.EL Shorbagy Dr. A.A. Elwan Dr. S. El- Demerdashe June, 2005 Contents Subject Page Introduction ………………………………………………………………….. 1 PART I 1- Physiographic Setting …………………………………………………….. 4 1.1. Location ……………………………………………………………. 4 1.2. Climate ……...………………………………………….................... 5 1.2.1. Climatic regions…………………………………….................... 5 1.2.2. Basic climatic elements …………………………….................... 5 1.2.3. Agro-ecological zones………………………………………….. 7 1.3. Water resources ……………………………………………………... 9 1.4. Soil resources ……...……………………………………………….. 11 1.5. Flora , natural vegetation and rangeland resources…………………. 14 1.6 Wildlife ……………………………………………………………... 28 1.7. Aquatic wealth ……………………………………………………... 30 1.8. Renewable energy ………………………………………………….. 30 1.8. Human resources ……………………………………………………. 32 2.2. Agriculture ……………………………………………………………… 34 2.1. Land use pattern …………………………………………………….. 34 2.2. Agriculture production ………...……………………………………. 34 2.3. Livestock, Poultry and Fishing production …………………………. 39 2.3.1. Livestock production …………………………………………… 39 2.3.2. Poultry production ……………………………………………… 40 2.3.3. Fish production………………………………………………….. 41 PART II 3. Causes, Processes and Impact of Desertification…………………………. 43 3.1. Causes of desertification ……………………………………………….. 43 Subject Page 3.2. Desertification processes ………………………………………………… 44 3.2.1. Urbanization ……………………………………………………….. 44 3.2.2. Salinization………………………………………………………….
    [Show full text]
  • Early Hydraulic Civilization in Egypt Oi.Uchicago.Edu
    oi.uchicago.edu Early Hydraulic Civilization in Egypt oi.uchicago.edu PREHISTORIC ARCHEOLOGY AND ECOLOGY A Series Edited by Karl W. Butzer and Leslie G. Freeman oi.uchicago.edu Karl W.Butzer Early Hydraulic Civilization in Egypt A Study in Cultural Ecology Internet publication of this work was made possible with the generous support of Misty and Lewis Gruber The University of Chicago Press Chicago and London oi.uchicago.edu Karl Butzer is professor of anthropology and geography at the University of Chicago. He is a member of Chicago's Committee on African Studies and Committee on Evolutionary Biology. He also is editor of the Prehistoric Archeology and Ecology series and the author of numerous publications, including Environment and Archeology, Quaternary Stratigraphy and Climate in the Near East, Desert and River in Nubia, and Geomorphology from the Earth. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London ® 1976 by The University of Chicago All rights reserved. Published 1976 Printed in the United States of America 80 79 78 77 76 987654321 Library of Congress Cataloging in Publication Data Butzer, Karl W. Early hydraulic civilization in Egypt. (Prehistoric archeology and ecology) Bibliography: p. 1. Egypt--Civilization--To 332 B. C. 2. Human ecology--Egypt. 3. Irrigation=-Egypt--History. I. Title. II. Series. DT61.B97 333.9'13'0932 75-36398 ISBN 0-226-08634-8 ISBN 0-226-08635-6 pbk. iv oi.uchicago.edu For INA oi.uchicago.edu oi.uchicago.edu CONTENTS List of Illustrations Viii List of Tables ix Foreword xi Preface xiii 1.
    [Show full text]
  • Serpentinites in the Eastern Desert, Egypt: Fragments of Forearc Mantle
    Neoproterozoic (835–720 Ma) Serpentinites in the Eastern Desert, Egypt: Fragments of Forearc Mantle Mokhles K. Azer and Robert J. Stern1 Geology Department, National Research Centre, Al-Behoos Street, 12622-Dokki, Cairo, Egypt (e-mail: [email protected]) ABSTRACT Most Neoproterozoic ophiolites of the Arabian-Nubian Shield show compositions consistent with formation in a suprasubduction zone environment, but it has not been clear whether this was in a forearc or back-arc setting. Ophiolitic serpentinites are common in the Eastern Desert of Egypt, but their composition and significance are not well understood. Here we report new petrographic, mineral, chemical, and whole-rock compositional data for ser- pentinites from Wadi Semna, the northernmost ophiolitic serpentinites in the Eastern Desert, and use these to provide insights into the significance of other Eastern Desert serpentinite locales. The Wadi Semna serpentinites are composed essentially of antigorite, chrysotile, and lizardite, with minor carbonate, chromite, magnetite, magnesite, and chlorite, and they were tectonically emplaced. The alteration of chrome spinel to ferritchromite was accompanied by the formation of chloritic aureoles due to the release of Al from spinel. Major-element compositions indicate that, except for the addition of water, the serpentinites have not experienced extensive element mobility; these were originally ϩ CaO- and Al2O3-depleted harzburgites similar to peridotites from modern oceanic forearcs. High Cr# (Cr/(Cr Al) ) in the relict spinels (average p 0.69 ) indicates that these are residual after extensive partial melting, similar to spinels in modern forearc peridotites. These characteristics of Wadi Semna serpentinites also typify 22 other Eastern Desert serpentinite localities. We infer that Eastern Desert ophiolitic serpentinites, except perhaps Gebel Gerf, originated by forearc seafloor spreading during subduction initiation associated with the closing of the Neoproterozoic Mozam- bique Ocean.
    [Show full text]
  • A Brief History of Coptic Personal Status Law
    A Brief History of Coptic Personal Status Law Ryan Rowberry John Khalil* INTRODUCTION With the U.S.-led "War on Terror" and the occupation of Iraq and Afghanistan, American legal scholars have understandably focused increased attention on the various schools and applications of Islamic law in Middle Eastern countries. 1 This focus on Shari'a law, however, has tended to elide the complexity of traditional legal pluralism in many Islamic nations. Numerous Christian communities across the Middle East (e.g., Syrian, Armenian, Coptic, Nestorian, Maronite), for example, adhere to personal status laws that are not based on Islamic legal principles. Christian minority groups form the largest non-Muslim • Ryan Rowberry and John Khalil graduated from Harvard Law School in 2008. Ryan is currently a natural resources associate at Hogan Lovells US LLP in Washington D.C., and John Khalil is a litigation associate at Lowey, Dannenberg, Cowey & Hart P.C. in New York City. The authors would like to thank the numerous lay and clerical Copts that were interviewed for their time, honesty, and unstinting hospitality. The authors also owe an immense debt of gratitude to Professor Janet Halley of Harvard Law School for her unfailing encouragement of this project. Furthermore, Professor Amr Shalakany of the American University in Cairo and Jacqueline Saad were invaluable in introducing the authors to the latest Coptic research. A very special thanks is also due to the Islamic Legal Studies Program at Harvard Law School for the research grant that enabled the authors to conduct research in Egypt. This Article is undoubtedly richer as a result of such generosity.
    [Show full text]
  • Egypt's Future Depends on Agriculture and Wisdom
    EGYPT’S FUTURE DEPENDS ON AGRICULTURE AND WISDOM Lowell N. Lewis “Whoever does not command the means to feed himself can neither feel freedom nor dignity” Mohamed Hosni Mubarak.” 2 Dedication To: My wife, Montserrat Trueta, For her patience and support, her editorial help and her interest in Egypt To: My children, Beth, Brad and Nancy for their personal support and their interest in my interests. To: My friends and colleagues in Egypt whose patience with an American created my fascination for their country. To: My colleagues at the University of California who encouraged me. 3 CONTENTS Preface 10 A Note of Recognition 11 World Opinion Recognizes Agriculture 13 Summary of Text 21 About the Author 328 PART ONE 46 HISTORY OF AGRICULTURE IN EGYPT CHAPTER 1 – Agriculture and Horticulture in Ancient Egypt Irrigation and Soil Management Crop and Livestock Production Economics and Wealth Energy, Warfare & Trade Routes CHAPTER 2 –The Period of Muhammad Ali 4 The Founder of Modern Egypt Industrialization and Modernization Muhammad Ali’s Successors The Suez Canal The American Civil War Helped PART TWO 64 EGYPT TODAY Chapter 3--Structure and Economy Constitution, Institutions and Administration International Relations and Defense Job Creation, Paramount Challenge for Egypt Education Natural Resources & Environment Energy Provision Transportation, Communication and the Internet The Economy Egypt and the Millennium Development Goals Chapter 4--The Nile River Nile River Basin Statistics The History of the Nile Conflicts and Treaties Continuing Tensions
    [Show full text]
  • Sequence Stratigraphy and Depositional Environments of Late Cretaceous–Early Palaeogene Succession, North Eastern Desert, Egypt
    Swiss J Geosci (2015) 108:345–359 DOI 10.1007/s00015-015-0201-4 Sequence stratigraphy and depositional environments of Late Cretaceous–Early Palaeogene succession, North Eastern Desert, Egypt 1,2 1 Mohamed Youssef • Mahmoud Hefny Received: 25 March 2015 / Accepted: 21 September 2015 / Published online: 14 November 2015 Ó Swiss Geological Society 2015 Abstract The foraminiferal contents and geochemistry of controlled by both eustatic sea-level changes and tectonic 199 samples collected from three surface sections in the movements that prevailed during deposition. southern Galala Sub-basin, North Eastern Desert of Egypt, have been studied in detail. From south to north these Keywords Depositional environments Á High resolution sections are situated at Gebel Tarboul, Wadi Tarfa, and Bir sequence stratigraphy Á Cretaceous Á Palaeogene Á Eastern Dakhl. The results allow reconstructing of the depositional Desert Á Egypt environments and high resolution sequence stratigraphy of the Upper Cretaceous–Palaeogene succession. The quan- titative and qualitative distribution patterns of benthic 1 Introduction foraminifera of the Upper Cretaceous–Lower Palaeogene succession suggests a depositional environment from outer The Cretaceous–Palaeogene interval provides one of the neritic to bathyal, at 200 to *700 m water-depth. Based on best opportunities to calibrate depositional sequences sequence stratigraphic analyses, ten complete third order against an integrated stratigraphic framework. This can be depositional sequences have been recognized. These examined in the rocks of Cretaceous–Palaeogene age that depositional sequences from base to top are as follows: are widely distributed in Northern Africa along the south- CaSGB-1 sequence, CaSGB-2 sequence, MaSGB-1 ern margin of the Tethys Ocean.
    [Show full text]
  • Photographs Covering Western Desert, Eastern Desert, Sinai Peninsula, Nile Region
    Appendix: Photographs Covering Western Desert, Eastern Desert, Sinai Peninsula, Nile Region A. Western Desert Photo A.1 A community dominated by the psammophyte Ammophila arenaria inhabiting the coastal sand dunes of the Western Mediterranean Coast, Egypt 375 376 Appendix Photo A.2 Salt marsh vegetation with abundant growth of Kochia indica (Bassia indica) in the foreground. Mixed halophytes of Juncus rigidus and Arthrocnemum macrostachyum in the background, Western Mediterranean Coast, Egypt Photo A.3 Dense growth of Juncus rigidus in the salt marshes of Siwa Oasis, Western Desert, Egypt Appendix 377 Photo A.4 Reed swamp vegetation dominated by Typha domingensis, Siwa Oasis, Western Desert, Egypt 378 Appendix Photo A.5 A Populus euphratica tree inhabiting a sand dune in Siwa Oasis, Western Desert, Egypt. A clump of Stipagrostis scoparia is seen in the foreground Appendix 379 Photo A.6 Dense stand dominated by Typha elephantina, Um Rishe Lake, Wadi El-Natrun Depression, Western Desert, Egypt Photo A.7 A close up view of the succulent xerophyte Zygophyllum coccineum, Cairo-Alexandria desert road, Western Desert, Egypt 380 Appendix Photo A.8 Pancratium sickenbergeri bulbous herb, Mariut Plateau, northern section of the Western Desert, Egypt Photo A.9 Close-up view of the annual herb Asphodelus tenuifolius growing in the Western Mediterranean Coast, northern section of the Western Desert, Egypt Appendix 381 B. Eastern Desert Photo A.10 Mangal vegetation dominated by Avicennia marina, Red Sea Coast, Egypt Photo A.11 Dense mangrove forest dominated by Rhizophora mucronata, Southern section of the Red Sea Coast, Egypt 382 Appendix Photo A.12 A close up view of Rhizophora mucronata mangrove tree, Shalateen swamps, southern section of the Red Sea Coast, Egypt Photo A.13 Mangrove swamp of Rhizophora mucronata with a seedling in the forgroung, Mersa Abu Fissi, Red Sea Coast, Egypt Appendix 383 Photo A.14 A general view of the mangrove forest lining the shore-line of Mersa Abu Fissi, Red Sea coast, Egypt.
    [Show full text]
  • Phytogeography of the Eastern Desert Flora of Egypt Monier Abd El-Ghani, Fawzy Salama, Boshra Salem, Azza El-Hadidy & Mohamed Abdel-Aleem
    Wulfenia 24 (2017): 97–120 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Phytogeography of the Eastern Desert flora of Egypt Monier Abd El-Ghani, Fawzy Salama, Boshra Salem, Azza El-Hadidy & Mohamed Abdel-Aleem Summary: 328 species in total were recorded at 500 sites between 30° 06’ and 24° 00’N in the Eastern Desert of Egypt. The occurrence of species was classified into 5 constancy classes: dominant, very common, common, occasional and sporadic. A sharp decrease in the number of recorded species was noticed along the N–S direction from Cairo-Suez road in the north to Aswan-Baranis road in the south (from 179 to 23), and an increase along the E–W direction from the Red Sea coast in the east to the River Nile Valley in the west (from 46 to 80). It was found out that geographical affinities affect the patterns of species distribution: 82 annual (therophyte) species are dominant life forms within the northern part of the study area, followed by 33 species in the southern part. Phanerophytes (trees) showed a decrease in their number from north (13 species) to south (9 species), but a slight increase from east (9 species) to west (10 species). Distribution maps of local geographical subtypes of each of the 4 major chorotypes are shown and a suggested improved phytogeographical map is presented. Keywords: chorotypes, desert vegetation, distribution maps, Egypt, local subtypes, phytogeography Egypt lies between 22° and 32°N latitude. It is part of the Sahara of North Africa and covers a total area of over one million km2 in the hyperarid region.
    [Show full text]