Copernicus Trajectory Design and Optimization System

Total Page:16

File Type:pdf, Size:1020Kb

Copernicus Trajectory Design and Optimization System Johnson Space Center Future in Space Operations (FISO) Copernicus Trajectory Design and Optimization System Jerry Condon Johnson Space Center / EG5 [email protected] 281-483-8173 1 Johnson Space Center What is ? Johnson Space Center What is Copernicus? • The Copernicus Trajectory Design and Optimization System represents a new and comprehensive approach to performing mission design, trajectory analysis and optimization. • Copernicus brings together the state-of- the-art in trajectory optimization techniques, visualization, an easy to use “Out of many trajectory optimization GUI, a library of key algorithms, and a programs I have used throughout the distributed (batch) processing capability years within and outside of NASA, into an integrated package. Copernicus is the only program that effectively combines the state-of-the-art • Stimulates the creativity of the user to optimization algorithms with a 3-D design and solve innovative trajectories. visualization environment, enabling the user to see the trajectories graphically • It’s a “one stop shopping” tool for as the problems are being solved.” interplanetary mission and trajectory Dr. Min Qu design optimization and analysis. Senior Analyst Analytical Mechanics Associates, Inc. 3 Johnson Space Center Features • Multiple spacecraft and multiple propulsion systems within a single mission • Extensive range of missions • From simple to complex problems • Extremely powerful, yet highly “The Copernicus software suite is usable a well-built and user-friendly tool that can handle many tough • Evolutionary and expandable mission design problems. … We highly recommend Copernicus • Innovative modular design using to any mission designers.” trajectory “building blocks” George H. Born Director, Colorado Center for Astrodynamics Research 4 Johnson Space Center Levels of Fidelity • Low fidelity High fidelity [within the same tool] • Scans/trade studies Detailed mission design • Impulsive Δv Optimized finite burn maneuvers • Circular planet orbits Real ephemeris (SPICE) • Evolutionary (DE) Gradient-based (SNOPT,…) • Patched conic model High fidelity force model 5 Johnson Space Center Innovative modular design using trajectory “building blocks” Single points (states) Impulsive + Coast arc t0 tf t0 tf Single points + impulsive maneuvers Finite burn maneuver t0 tf t0 tf Coast arc Impulsive + Finite Burn maneuvers t0 tf t0 tf Copernicus Building Blocks: Trajectory Segments 6 Johnson Space Center Building Blocks: Segments DV Seg 1 (Coast) Initial Condition Seg 3 (Coast) State continuity constraint Seg 2 (Low Thrust Flyby Seg 4 (Coast) Body 1 Finite Burn) Constraint Body 2 • Multiple spacecraft and propulsion systems. Body 3 • Can inherit information from other segments. • Optimization variables and constraints Final constraint • Forward and backward propagation. Seg 5 (High Thrust • Many classes of problems can be modeled with Finite Burn) the segment concept. • There are many ways to solve the same Controls (Optimization Variables) + problem. Constraints + Objective Function = Optimization Problem 7 Johnson Space Center Reusability • Fundamental building blocks can be combined and reused as needed • Allows solution of new problems in the future • Reduces development time for new mission designs. + = 8 Johnson Space Copernicus Distribution Center ARC GSFC JSC JPL, KSC, LaRC MSFC University of Washington Space MSNW Exploration Andrews Space Engineering CSNR RIT OAI P&W ARC UC Boulder Iowa State SAIC GRC APL Innovative Orbital Naval Design Lockheed-Martin GSFC Postgraduate Aerojet Analytical Mechanics School Zero-Point Frontiers LaRC Associates Boeing Edwards AFB JPL General Dynamics Mississippi State Ga. Tech Aerospace MSFC SpaceWorks Enterprises Corporation UA-Tucson UT-Austin JSC Ad Astra Jacobs Odyssey KSC 9 9 Johnson Space Center Development Johnson Space Development History Center 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 UT Prototypes Text based Segment architecture Non-interactive 2-D graphics Parameter optimization Impulsive/finite burns 11 Johnson Space Development History Center 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 NASA/UT Co-Development GUI added Developed OpenGL API (OpenFrames) for interactive 3-D graphics SPICE integration added Optimally controlled finite burn segments Release 1.0 (March 2006) 12 Johnson Space Development History Center 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 NASA Development Comprehensive interface Constellation/Orion Projects [2006-2010] Substantial internal “engine” improvements NASA In-Space Propulsion Technology Version Control Program [2010-2011] Regression Testing of Updates Documentation Training Videos Release 3.1 (June 2012) Accreditation Currently working on Release 3.2 13 Johnson Space Copernicus Architecture Center Main Program Copernicus Libraries GUI User Inputs Mission Design Design Modifications Toolkit Library Numerical Feedback Celestial Mechanics Routines SPICE Interface Math Utilities Coordinate Transformations Binary File I/O Gravity Models Engine Trajectory Segments Optimization Visualization Integration Batch Library Aid in Problem Set-Up Control Algorithms Distributed Processing Trajectory Solution Feedback Engine Models Automated Copernicus Runs “Real” Trajectory Insights Production Data Output 14 Johnson Space Center Scalable and Cross-Platform Copernicus can be scaled from a single desktop or laptop computer using the Graphical User Interface (GUI) and visualization tools, to computer clusters where no user interaction or graphical feedback are required. Laptop Desktop Cluster 15 Johnson Space Accredited Center Copernicus completed the NASA/HQ requested Verification, Validation, and Accreditation process 16 Johnson Space Center In Action Johnson Space Start of Problem Solution Center Johnson Space User Adjustment Center 19 Johnson Space Iteration Process Center 20 Johnson Space Converged Solution Center 21 Johnson Space LCROSS Mission Center LRO/LCROSS Design Case Study “Copernicus is an extremely valuable tool used by the LCROSS trajectory team to optimize the LCROSS trajectory. LCROSS has a very complicated orbit that is difficult to optimize using standard off the shelf tools. … Copernicus has been an invaluable tool for the LCROSS trajectory team.” Steve Cooley LCROSS Trajectory Design Lead 22 Johnson Space Constellation Program Center • Architecture evaluation • Trade studies (TLI, LOI, TEI) • Lunar Capability Concept Review (LCCR) • Copernicus changed the way we look at mission design Lunar Free Return Trajectory 23 Johnson Space Orion Project (Lunar Missions) Center • Copernicus used extensively for Orion vehicle design and performance • Databases developed to characterize Orion lunar missions over the entire planned operational lifetime. • Millions of optimized TEI-2 trajectories using Copernicus on a computing cluster. TEI-3 TEI-1 Three-Burn Trans-Earth Injection Maneuver Sequence 24 Johnson Space Abort Analysis Center Multiple trajectories/spacecraft Mission specific targeting Orbit period Batch processing 50%: 0.29 days 25%: 2.9 days post partially failed LOI coasting Nominal trajectory Fly-by return Nominal trajectory Direct return Direct return Moon-centered view Earth-centered view 9 Johnson Space In Space Propulsion Technology Project Center ISP Reference Mission 28: Earth-Moon low thrust “Copernicus has been an asset to NASA’s In-Space Propulsion project. Copernicus is used routinely for mission trades and to establish requirements and quantify benefits of advanced technology.” John Dankanich Lead Systems Engineer Gray Research (NASA/GRC) 26 Johnson Space VASIMR Center “Our project has made extensive use of this excellent tool to design many of our most interesting mission scenarios. As the development of high power in-space electric propulsion matures, this sophisticated program can open and examine unique operational scenarios with both constant and variable specific impulse.” Franklin Chang Diaz Chairman and CEO Ad Astra Rocket Company 27 Johnson Space Center Ongoing Explorations Studies Low thrust transfer to a lunar distant retrograde orbit 2009 HC Transfer in 2025 Round trip to L1 and L2 Halo Orbits 28 Johnson Space Quantum Vacuum Thruster Center Mission to Mars Mars Arrival Earth to 1000 AU Mars Position at Spacecraft mass = 90 t Spacecraft mass = 90 t Start of Transit time = 2-6 years Transit time = 75 days Trajectory 1000 AU LEO Spiral Earth to Proxima Centauri Interstellar Note: Voyager 1, launched in September, 1977 (36 years ago) is currently around 125 AU away Spacecraft mass = 90 t Transit time = 30-123 years Proxima Centauri 29 Johnson Space Center Asteroid Tour Mission Design GTOC-4: 32-Asteroid Intercept with Final Rendezvous (10 years) GTOC-5: 15-Asteroid Rendezvous- Intercept (15 years) 30 Johnson Space Halo Orbit Transfers Center ISP Reference Mission 31: Earth-Sun Libration Point Transfer Options to Earth-Moon L2 Halo Orbit 2 days 3 days 4 days 1 day 5 days L2 6 days Direct Earth Moon L2 Halo 2 days 1 day 3 days 6 days 5 days 7 days 4 days 8 days Flyby Earth Moon Flyby L2 L2 Halo 30 days 20 days 40 days 10 days 5 days 90 days 50 days Moon’sDirect and Flyby Transfers to Earth- L2 Halo OrbitMoon L1 and L2 Libration Points 1 Low Energy Moon day 31 Flyby To Sun (Manifold) 60 days Earth 80 days 70 days Johnson Space Weak Stability Boundary Center 2 days 3 days 4 days 1 day Lunar Capture Mission 5 days L2 6 days Direct Earth Moon L2 Halo 2 days 1 day 3 days 6 days 5 days 7 days 4 days 8 days Flyby Earth Moon Flyby
Recommended publications
  • The Future of Commercial Space in Georgia 19 Oct 2017 AEROSPACE – KEY INDUSTRY for GEORGIA CENTER of INNOVATION for AEROSPACE
    The Future of Commercial Space In Georgia 19 Oct 2017 AEROSPACE – KEY INDUSTRY FOR GEORGIA CENTER OF INNOVATION FOR AEROSPACE Our Center’s Mission Provide the technical industry expertise, collaborative research, and partnerships to help the State's aerospace industry to Connect, Compete and Grow globally. Create More Georgia Aerospace Jobs! WHAT IS AEROSPACE? Aerospace Product Economic Life Cycle R&D Testing Mfg Training Operations Maintenance Georgia uses “Aerospace” as inclusive term covering the lifecycle of activities for vehicles that fly in the air or in space. SPACE Vector Aerospace Test • Georgia has a growing space sector, and is home to the following companies: Launch at the Proposed Spaceport Camden • Honeywell Facility (August 3, 2017) • IntelSat • Lockheed Martin Space Systems • SpaceWorks Enterprises • Generation Orbit Launch Services • Blink Astro • Terminal Velocity Aerospace • ViaSat (one of Georgia’s top 20 aerospace employers) • Tyvak • And a number of additional companies support space projects as part of their portfolio • Georgia Tech has a robust space research portfolio • UGA and KSU both also have small satellite programs WE HAVE A GREAT FOUNDATION TO BUILD COMMERCIAL SPACE IN GEORGIA • We have over 800 aerospace companies that add $64B to the economy • 99,000 direct aerospace jobs • Aircraft and aircraft parts are the #1 export by $ in Georgia and have been for 10 years • Georgia is number 3 in aviation MRO, a skill base that transfers to commercial space operations • PriceWaterhouseCoopers named Georgia #1 in
    [Show full text]
  • SOAR 2018 Aerospace and Defense Thank You to Our Sponsors Platinum Level
    SOAR 2018 Aerospace and Defense Thank You to Our Sponsors Platinum Level Gold Level Reception Lunch Silver Level FASTPITCH ROOM ASSIGNMENTS • 238A: Siemens • 238B: L-3 TCS • 239: Meggitt Training Systems • 150: Defense Logistics Agency • 152: Robins AFB Small Business Office • 154: FAA • 121: Fokker Aerostructures • 122: Lockheed Martin POLL EVERYWHERE INSTRUCTIONS • Download the Poll Everywhere app (free on both Apple and Google Play) • Open the app • Join the presentation soar2018 • Answer the questions! POLL EVERYWHERE • What types of supplier programming interest you? • What would you describe as the biggest risk area for your business? • What is your biggest workforce challenge: • Do you export your product? • If you Export, which of these markets do you export to? • If you do not export your products, why not? OUR MISSION CENTER OF INNOVATION FOR AEROSPACE • The Center of Innovation for Aerospace provides the technical industry expertise, collaborative research and partnerships to help the state’s aerospace industry connect, compete and grow CURLING STONES AND SWEEPERS sweeper GLOBAL AEROSPACE MARKET Boeing current market outlook 2017-2035 • 41,030 new aircraft deliveries • Regional Jets, Single Aisle, Both Small & Large Wide body and Freighters • 8,640 in North America, 16,050 in Asia-Pacific • About 40% replacement, and 60% growth • Represents $6.1 Trillion Market Value • 4.7% Traffic growth • 3.5% Fleet growth GLOBAL AEROSPACE MARKET AIRBUS GLOBAL MARKET FORECAST • 3.7 Billion people traveled by air in 2016 • Air Transport had
    [Show full text]
  • Georgia Space Grant Consortium Lead Institution: Georgia Institute of Technology Director: Dr
    The National Space Grant Office requires two annual reports, the Annual Performance Data Report (APD – this document) and the Office of Education Performance Measurement System (OEPM) report. The former is primarily narrative and the latter data intensive. Because the reporting timeline cycles are different, data in the two reports may not necessarily agree at the time of report submission. OEPM data are used for official reporting. Georgia Space Grant Consortium Lead Institution: Georgia Institute of Technology Director: Dr. Stephen Ruffin Telephone Number: 404 894-0521 Consortium URL: http://www.gasgc.org Grant Number: NNX10AR61H PROGRAM DESCRIPTION The National Space Grant College and Fellowship Program consists of 52 state-based, university-led Space Grant Consortia in each of the 50 states plus the District of Columbia and the Commonwealth of Puerto Rico. Annually, each consortium receives funds to develop and implement student fellowships and scholarships programs; interdisciplinary space-related research infrastructure, education, and public service programs; and cooperative initiatives with industry, research laboratories, and state, local, and other governments. Space Grant operates at the intersection of NASA’s interest as implemented by alignment with the Mission Directorates and the state’s interests. Although it is primarily a higher education program, Space Grant programs encompass the entire length of the education pipeline, including elementary/secondary and informal education. The Georgia Space Grant Consortium is a Designated Consortium funded at a level of $575,000 for fiscal year 2014. PROGRAM GOALS Fellowships and Scholarships Goal 1: Deliver a competitive scholarship/fellowship program that promotes STEM excellence in students and faculty. Objective 1.1 Ensure competitive distribution of scholarship/fellowship funds.
    [Show full text]
  • Presented at the 2019 ICEAA Professional Development & Training Workshop
    Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com An Analytic Explanation for Vertical Integration Behavior in the Marketplace Caleb Williams & Jack Semrau Additional Contributors: Stephanie DelPozzo, Bill Doncaster, Jon Wallace SpaceWorks Enterprises, Inc. 1050 Crown Pointe Parkway, Suite #1400, Atlanta, GA 30338 [email protected] ABSTRACT Vertical integration is a costly and difficult-to-reverse strategy with significant risks, yet it has experienced a sharp rise in popularity within the satellite manufacturing sector over the last decade. This paper explores how commercial parametric cost estimating tools can be used in combination with business-case analysis to understand why firms are increasingly pursuing vertical integration strategies in this sector. The authors build on previous research presented at the NASA Cost & Schedule Symposium, further exploring how these types of tools can be used to identify motivations for vertical integration. Picking up where the initial research left off, this analysis uses financial return, rather than cost, to evaluate firm decisions to vertically integrate. Specifically, the new research evaluates the expected net present value (NPV) for a hypothetical satellite constellation when using two different acquisition approaches (“traditional” vs. “vertically integrated”). Results indicate that when considering financial return, the breakeven constellation size between the two approaches shifts outward by as much as 30 – 50% versus a comparison based on cost alone. These results provide greater context around firm decisions to vertically integrate in this sector and help to explain several inconsistencies seen in the previous research effort. Finally, this paper also demonstrates how the framework for this analysis is extensible to modeling vertical integration decisions in other manufacturing sectors.
    [Show full text]
  • Georgia Space Update
    GEORGIA SPACE UPDATE NDIA-GEORGIA CHAPTER SPACE COMMITTEE STRENGTH THROUGH INDUSTRY AND TECHNOLOGY JANUARY 2016 Spaceport Camden Continues Forward About Camden County: Located in the extreme southeast corner of Georgia, Camden County truly is “Georgia’s Coastal Community FAA Spaceport Camden Public Meeting Held of Choice.” Originally formed in 1777, Camden County is best known for its rich history, natural scenic beauty and Southern CAMDEN COUNTY, Fla. — The public was invited to attend the hospitality. Our vision is helping to make this the best place to live Federal Aviation Administration's public scoping meeting for by preserving and enhancing the history and quality of life, while the creation of a spaceport in Camden County near Woodbine, promoting smart growth and providing an efficient, effective and officials said. responsive government. The meeting was held Monday, December 7 between 5 p.m. and About Spaceport Camden: Our Vision is to develop a successful 9 p.m. with over 400 in attendance in Kingsland, GA. The event world class spaceport through a public-private partnership that was planned to end at 8:00, but there were so many people establishes Camden County as the Commercial Space Center of the attending who wanted to speak that it was extended an United States. Our Mission is to create the premier spaceport additional hour. strategically positioned to provide economic diversity with a competitive advantage for the space sector, Camden County, the There was an open house workshop period for the first hour State of Georgia and the United States of America. For more where residents could submit written comments.
    [Show full text]
  • A Rapid Global Effects Capability
    ARapid Global Effects Capability Daniel Baltrusaitus, Major, USAF AIR UNIVERSITY AIR COMMAND AND STAFF COLLEGE A Rapid Global Effects Capability daniel baltrusaitus, major, usaf Wright Flyer Paper No. 62 Air University Press Curtis E. LeMay Center for Doctrine Development and Education Maxwell Air Force Base, Alabama Accepted by Air University Press May 2016 and published April 2019. Project Editor Dr. Stephanie Havron Rollins Copy Editor Carolyn Broadnax Cover Art, Book Design, and Illustrations Leslie Fair Composition and Prepress Production Megan N. Hoehn AIR UNIVERSITY PRESS Director, Air University Press Lr Col Darin Gregg Air University Press Disclaimer 600 Chennault Circle, Building 1405 Opinions, conclusions, and recommendations expressed or Maxwell AFB, AL 36112-6010 implied within are solely those of the author and do not necessar- https://www.airuniversity.af.edu/AUPress/ ily represent the views of the Department of Defense, the United States Air Force, the Air Education and Training Command, the Facebook: Air University, or any other US government agency. Cleared for https://www.facebook.com/AirUnivPress public release: distribution unlimited. and This Wright Flyer Paper and others in the series are available elec- tronically at the AU Press website: https://www.airuniversity.af Twitter: https://twitter.com/aupress .edu/AUPress/Wright-Flyers/. Air University Press Contents List of Illustrations and Tables iv Foreword v Abstract vi Acknowledgments vii Purpose 1 Problem Statement 1 Thesis Statement 1 Industry Research 5 Air Force Internal Policy Implications of Development 8 USAF Wargame Results 10 Deputy Secretary of Defense Work’s Five Points of Interest and The Future 11 External Policy Implications of Development 15 Policy Implications Concerning Near- Peer Adversaries 20 Analysis 26 Recommendations 26 Notes 27 Abbreviations 31 Bibliography 32 iii List of Illustrations Figures 1.
    [Show full text]
  • Georgia Space Grant Consortium Georgia Institute of Technology Dr
    Georgia Space Grant Consortium Georgia Institute of Technology Dr. Stephen M. Ruffin, Director Telephone Number: 404 894-8200 Consortium URL: www.gasgc.org Grant Number: NNX10AR61H PROGRAM DESCRIPTION: The National Space Grant College and Fellowship Program consists of 52 state-based, university-led Space Grant Consortia in each of the 50 states plus the District of Columbia and the Commonwealth of Puerto Rico. Annually, each consortium receives funds to develop and implement student fellowships and scholarships programs; interdisciplinary space-related research infrastructure, education, and public service programs; and cooperative initiatives with industry, research laboratories, and state, local, and other governments. Space Grant operates at the intersection of NASA’s interest as implemented by alignment with the Mission Directorates and the state’s interests. Although it is primarily a higher education program, Space Grant programs encompass the entire length of the education GSGC MEMBER: peline, including elementary/secondary and informal education. The Georgia Space Grant Consortium is a Designated/Program Grant Consortium funded at a level of $845,000 for fiscal year 2010. PROGRAM GOALS Diversity The proposed programs were designed to reflect the geographic, gender and ethnic demographics of Georgia. The target goals for all programs will represent the demographics of the State of Georgia, as well as the enrollment of students in colleges and universities according to the National Center for Educational Statistics (Underrepresented Groups – 39.6%, Women – 57%). Outcome 1 Base Grant The programs being conducted by the GSGC consist of providing research opportunities that enhance students’ research capabilities and prepare them for STEM employment. Programs are directed at the undergraduate and graduate level with a strong focus on underrepresented groups in their freshman and sophomore years.
    [Show full text]
  • Future Technology Trends
    OECD Science, Technology and Innovation Outlook 2016 © OECD 2016 Chapter 2 Future technology trends Technological change is set to have profound impacts over the next 10-15 years, widely disrupting economies and societies. As the world faces multiple challenges, including ageing, climate change, and natural resource depletion, technology will be called upon to contribute new or better solutions to emerging problems. These socio- ecological demands will shape the future dynamics of technological change, as will developments in science and technology. This chapter discusses ten key or emerging technologies that are among the most promising and potentially most disruptive and that carry significant risks. The choice of technologies is based on the findings of a few major foresight exercises carried out in recent years. The ten technologies are as follows: the Internet of Things; big data analytics; artificial intelligence; neurotechnologies; nano/microsatellites; nanomaterials; additive manufacturing; advanced energy storage technologies; synthetic biology; and blockchain. The chapter describes each technology in turn, highlighting some of its possible socioeconomic impacts and exploring related policy issues. A final section highlights some common themes across the ten technologies. 77 2. FUTURE TECHNOLOGY TRENDS Introduction Technological change is a significant megatrend in its own right, constantly reshaping economies and societies, often in radical ways. The scope of technology – in terms of its form, knowledge bases and application areas – is extremely broad and varied, and the ways it interacts with economies and societies are complex and co-evolutionary. These conditions create significant uncertainty about the future directions and impacts of technological change, but also offer opportunities for firms, industries, governments and citizens to shape technology development and adoption.
    [Show full text]
  • Georgia Space Grant Consortium Lead Institution: Georgia Institute of Technology Director: Dr
    GA_FY17_Year3_APD Georgia Space Grant Consortium Lead Institution: Georgia Institute of Technology Director: Dr. Stephen Ruffin Telephone Number: 404-894-0521 Consortium URL: https://gasgc.org Grant Number: NNX15AP85H Lines of Business (LOBs): NASA Internships, Fellowships, and Scholarships; Stem Engagement; Institutional Engagement; Educator Professional Development A. PROGRAM DESCRIPTION The National Space Grant College and Fellowship Program consists of 52 state-based, university- led Space Grant Consortia in each of the 50 states plus the District of Columbia and the Commonwealth of Puerto Rico. Annually, each consortium receives funds to develop and implement student fellowships and scholarships programs; interdisciplinary space-related research infrastructure, education, and public service programs; and cooperative initiatives with industry, research laboratories, and state, local, and other governments. Space Grant operates at the intersection of NASA’s interest as implemented by alignment with the Mission Directorates and the state’s interests. Although it is primarily a higher education program, Space Grant programs encompass the entire length of the education pipeline, including elementary/secondary and informal education. The Georgia Space Grant Consortium (GSGC) is a Designated Consortium funded at a level of $760,000 for fiscal year 2017. B. PROGRAM GOALS Fellowships/Scholarships GOAL: Deliver a competitive scholarship/fellowship program that promotes STEM excellence in areas of relevance to NASA for students and faculty.
    [Show full text]
  • MAJOR POLICY ISSUES in EVOLVING GLOBAL SPACE OPERATIONS by James A
    MAJOR POLICY ISSUES IN EVOLVING GLOBAL SPACE OPERATIONS By James A. Vedda, Ph.D. and Peter L. Hays, Ph.D. L INS EL TIT CH U IT T E M f s o e r i Ae ud rospace St Note to readers: this electronic edition features an interactive table of contents and endnotes. Click on the page number in the table of contents to be taken to the respective chapter; endnotes in the text are linked to their respective citation at the end of this study. Click on the citation number to go back. MAJOR POLICY ISSUES IN EVOLVING GLOBAL SPACE OPERATIONS A collaboration with The Aerospace Corporation's Center for Space Policy and Strategy By James A. Vedda, Ph.D., Center for Space Policy and Strategy, The Aerospace Corporation and Peter L. Hays, Ph.D., Space Policy Institute, George Washington University The Mitchell Institute for Aerospace Studies Air Force Association Arlington, VA February 2018 About the Mitchell Institute for Aerospace Studies The Mitchell Institute for Aerospace Studies is an independent, nonpartisan policy research institute established to promote understanding of the national security advantages of exploiting the domains of air, space, and cyberspace. The Mitchell Institute’s goals are 1) educating the public about the advantages of aerospace power in achieving America’s global interests; 2) informing key decision makers about the policy options created by exploiting the domains of air, space, and cyberspace, and the importance of necessary investment to keep America the world’s premier aerospace nation; and 3) cultivating future policy leaders who understand the advantages of operating in air, space, and cyberspace.
    [Show full text]
  • Advancing Torpor Inducing Transfer Habitats for Human Stasis to Mars NIAC Phase II Final Report Spaceworks Enterprises, Inc
    Advancing Torpor Inducing Transfer Habitats for Human Stasis to Mars NIAC Phase II Final Report SpaceWorks Enterprises, Inc. (SEI) ADVANCING TORPOR INDUCING TRANSFER HABITATS FOR HUMAN STASIS TO MARS NASA INNOVATIVE ADVANCED CONCEPTS (NIAC) PHASE II FINAL REPORT 30 June 2018 Version 1.0 Grant Number: NNX16AL30G and 80NSSC18K0033 Prepared by: J. BRADFORD, B. MERREL, M. SCHAFFER, C. WILLIAMS, AND D. TALK SpaceWorks Enterprises, Inc. (SEI) 1050 Crown Pointe Parkway, Suite 1400 Atlanta, GA 30338 (770) 379-8000 Office, (770) 379-8001 Fax www.spaceworks.aero Prepared for: National Aeronautics and Space Administration (NASA) Headquarters Space Technology Mission Directorate (STMD) 300 E. Street, SW Washington, D.C. 20546-0001 PUBLIC RELEASE IS AUTHORIZED. i Advancing Torpor Inducing Transfer Habitats for Human Stasis to Mars NIAC Phase II Final Report SpaceWorks Enterprises, Inc. (SEI) Table of Contents 1. Executive Summary ......................................................................................................................................................... 1 2. Introduction and Rationale ................................................................................................................................................ 3 2.1. Introduction .......................................................................................................................................................... 3 2.2. Rationale ............................................................................................................................................................
    [Show full text]
  • Toror Inducing Transfer Habitat for Human Stasis to Mars
    TORPOR INDUCING TRANSFER HABITAT FOR HUMAN STASIS TO MARS Version 1.0 NASA INNOVATIVE ADVANCED CONCEPTS (NIAC) PHASE I FINAL REPORT TORPOR INDUCING TRANSFER HABITAT FOR HUMAN STASIS TO MARS Grant Number: NNX13AP82G Prepared by J. BRADFORD, M. SCHAFFER, AND D. TALK SpaceWorks Enterprises, Inc. (SEI) 1040 Crown Pointe Parkway, Suite 950 Atlanta, GA 30338 (770) 379-8000 Office, (770) 379-8001 Fax www.sei.aero 11 May 2014 Version 1.0 Prepared for National Aeronautics and Space Administration (NASA) Headquarters Space Technology Mission Directorate (STMD) 300 E. Street, SW Washington, D.C. 20546-0001 PUBLIC RELEASE IS AUTHORIZED. Torpor Inducing Transfer Habitat For Human Stasis to Mars NIAC Phase I Final Report SpaceWorks Enterprises, Inc. (SEI) Table of Contents List of Figures ................................................................................................................................................ v List of Tables ................................................................................................................................................ vi List of Acronyms ........................................................................................................................................... vii Foreword and Acknowledgements............................................................................................................... viii Executive Summary ...................................................................................................................................... ix 1.
    [Show full text]