Oxygen Scavenger for Boiler Water and Method of Use

Total Page:16

File Type:pdf, Size:1020Kb

Oxygen Scavenger for Boiler Water and Method of Use Europaisches Patentamt 0 320 085 J) European Patent Office 6v Publication number: A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 88306710.0 © int. CIA C02F 5/12 , C23F 11/14 @ Date of filing: 21.07.88 © Priority: 11.12.87 US 131754 © Applicant: DuBois CHEMICALS, INC. 1100 DuBois Tower @ Date of publication of application: Cincinnati Ohio 45202(US) 14.06.89 Bulletin 89/24 © Inventor: Christensen, Ronald J. © Designated Contracting States: 8747 Tanagerwoods Drive AT BE CH DE ES FR GB GR IT LI LU NL SE Montgomery Ohio(US) Inventor: Steimel, Llye H. 1117 Imprint Forest Park Ohio(US) © Representative: Allen, Oliver John Richard et al Lloyd Wise, Tregear & Co. Norman House 105-109 Strand London, WC2R OAE(GB) © Oxygen scavenger for boiler water and method of use. © An oxygen scavenger for boiler water includes ascorbic acid neutralized with diethylaminoethanol. The diethylaminoethanol provides condensate treat- ment for the long and short steam lines and im- proves the scavenging of the ascorbic acid. IT) 00 a. UJ Xerox Copy Centre EP 0 320 085 A1 OXYGEN SCAVENGER FOR BOILER WATER AND METHOD OF USE dissolved solid concentrations in boiler water. A recirculating boiler requires an extremely Hydrazine is an effective scavenger at very low high purity of water in order to avoid a plurality of levels of application. Unfortunately, since it is vola- different problems. Unfortunately the quality of the tile itself, it is susceptible to thermal decomposition water available for most boilers is such that the 5 to ammonium and nitrogen. The evolution of am- water employed would rapidly cause a deterioration monium moreover may restrict hydrazine applica- of the boiler eventually requiring a shut down of the tion to avoid corrosion. boiler and potential replacement of various portions In addition to oxygen pitting, there is a corro- of the boiler. sion problem in the after boiler. Water invariably Currently there are a variety of different prob- 70 contains carbon dioxide and ammonia. The ammo- lems treated separately by a variety of different nia may be present in such trace levels that it is compositions. Two very major problems are scale insufficient to either cause problems by overcon- formation and corrosion of the surface of the boiler. centration or to help combat the interaction of CO2 These two problems are interrelated in that corro- with steam which forms carbonic acid in the con- sion of the surface is avoided by maintaining an 75 densate. Accordingly, volatile neutralizing amines alkaline pH. Scale formation is a problem which such as cyclohexylamine, morpholine, exists at alkaline pH's. Boilers generally operate diethanolamine and diethylaminoethanoi are com- under alkaline pH conditions and address the scale monly used to combat corrosion in industrial after formation problem by the use of various scale boiler sections by neutralizing condensate pH. inhibitors and descalants. 20 These amines are present only for this purpose Even under alkaline conditions, there is a cor- and do not have any reported oxygen scavenging rosion problem or pitting attributed to the presence effects. of oxygen in the water. The key to solving this In accordance with the present invention an problem is to remove the oxygen. To avoid this oxygen scavenging system comprises the com- problem, the make up water in a boiler is phys- 25 bination of ascorbic acid and a neutralizing amine ically treated to deaerate the make up water. Oxy- and specifically diethylaminoethanoi. The oxygen gen scavenging chemicals are then added to fur- scavenging effect of the ascorbic acid in combina- ther reduce the possibility of pitting. Chemicals tion with the diethylaminoethanoi (DEAE) is greater commonly used for this purpose are sodium sul- than the oxygen scavenging effect of the ascorbic phite, catalyzed sodium sulphite, hydrazine and 30 acid neutralized with sodium hydroxide. When ad- catalyzed hydrazine. Also, as disclosed in U.S. ded to boiler water in effective amounts, this com- Patent No.4,41 9,327 amine neutralized erythorbic position provides both oxygen scavenging and con- acid can be used to scavenge oxygen. Ammonia is densate treatment as well as metal passivation. In the preferred amine disclosed in this patent. Al- addition, the DEAE has an intermediate distribution though other amines disclosed in this patent appar- 35 ratio which provides condensate treatment for both ently have some catalytic effect on the erythorbic long and short steam lines. This makes this com- acid, ihis is not disclosed. Further the use of DEAE bination particularly versatile. is not discussed in this patent. Ascorbic acid has Ascorbic acid is combined with also been discussed as an oxygen scavenger. It is diethylaminoethanoi to provide an oxygen scaven- structurally very similar to erythorbic acid, but has 40 ging solution which can be added in minor greater thermal stability. amounts to the make up water of a boiler to chemi- Each of these have various problems. Sodium cally scavenge oxygen. In a preferred composition sulphite reacts with oxygen to form sodium sul- the combination of ascorbic acid and DEAE is phate. To scavenge oxygen effectively, eight parts formed by dissolving the ascorbic acid in water and of sodium sulphite are required for each part of 45 subsequently adding the DEAE to the ascorbic acid dissolved oxygen. Sodium sulphite provides effi- solution. As purchased, the ascorbic acid is a cient scavenging in medium and low pressure boil- 100% solid dry powder. Alternately, it can be in ers with no harmful by-products. Its use, however, liquid form and can be neutralized sodium ascor- is precluded in boilers operating at or above 1800 bate. psig where the high pressures cause the formation 50 The ratio by weight of ascorbic acid relative to of SO2 and H2S by thermal decomposition of the DEAE can vary substantially and will range from chemical. about 1/1 to about 1/15 ascorbic acid to DEAE. The Hydrazine reacts with equal parts of oxygen to DEAE is preferably present in sufficient amount to form inert nitrogen and water. Since the products adjust the pH of the ascorbic acid solution to at are neutral, this treatment does not increase the least about 7. Further, since the DEAE is also EP 0 320 085 A1 providing condensate treatment, it is preferable to acid/DEAE solution was 33% more effective than add excess DEAE relative to the ascorbic acid NaOH neutralized ascorbic acid and more than 100 raising the pH to at least about 7.5-8.5 in the times more effective than hydrazine under the condensate. Therefore the pH of the product same conditions. (concentrate) should be about 1 1 . The DEAE once 5 The present invention provides oxygen scaven- added to the ascorbic acid solution is mixed thor- ging and condensate treatment. Further.the con- oughly and provides a stable solution of ascorbate densate treatment, the DEAE, improves the effi- and diethylaminoethanol. ciency of the oxygen scavengers. No further treatment of the solution is neces- sary. However, if the DEAE added does not in- w crease the pH to about 10 added base may be Claims needed to prevent bacterial growth. The concentrated solution of ascorbic acid and 1. An oxygen scavenging solution comprising DEAE should be from about 1% to 25% ascorbic ascorbic acid neutralized with diethylaminoethanol. acid and 1% to 50% DEAE. Practicality sets the 75 2. A solution as claimed in claim 1 wherein the lower limit. A solution with an extremely low con- ratio of ascorbic acid to diethylaminoethanol is centration will require that a large amount be ad- from 1/1 to about 1/15. ded. This would be expensive because of shipping 3. A solution as claimed in claim 1 or 2 having and storage costs. a pH of at least about 10. Advantageously, this solution is compatible 20 4. A method of removing dissolved oxygen with many different components of a boiler water from boiler feedwater comprising adding to the treatment system including sulphite, hydrazine.low boiler feedwater an oxygen scavenging amount of molecular weight anionic polymers such as poly- a solution of ascorbic acid neutralized with maleic anhydride, polymethacrylate, polyacrylate diethylaminoethanol. and phosphonates as well as soda ash and sodium 25 5. A method as claimed in claim 4 wherein the glucoheptonate. These again would simply be ad- solution is added to the feedwater in an amount ded to the solution and mixed in. sufficient to establish a concentration of at least 1 The oxygen scavenging solution of the present ppm ascorbic acid. invention is added to the boiler water at basically 6. A method as claimed in claim 4 or 5 wherein acid any point along the circulating water system of the 30 the solution has a ratio of ascorbic to boiler. Preferably, however, it is added to the diethylaminoethanol of from 1/1 to about 1/15 on a deaerator storage sections. molar basis. Sufficient oxygen scavenging solution is added 7. A method as claimed in claim 5 wherein to establish or maintain the concentration of the sufficient solution is added to establish a con- about 10 oxygen scavenging solution within the boiler water 35 centration of ascorbic acid at at least at a desired and effective oxygen scavenging con- ppm. centration. Basically, the concentration of the 8. A method as claimed in claim 7 wherein the ascorbic acid in the solution must be from about 1 concentration in the feed water of to about 40 parts per million with 10-20 ppm pre- diethylaminoethanol is established at least about 1 ferred. Ascorbic acid is consumed in use. There- 40 ppm. fore the amount added is greater than the amount in the boiler. From about 1 to about 200 parts per million of DEAE should be present, preferably no more than 15 ppm in the steam.
Recommended publications
  • Monoethanolamine Diethanolamine Triethanolamine DSA9781.Qxd 1/31/03 10:21 AM Page 2
    DSA9781.qxd 1/31/03 10:21 AM Page 1 ETHANOLAMINES Monoethanolamine Diethanolamine Triethanolamine DSA9781.qxd 1/31/03 10:21 AM Page 2 CONTENTS Introduction ...............................................................................................................................2 Ethanolamine Applications.........................................................................................................3 Gas Sweetening ..................................................................................................................3 Detergents, Specialty Cleaners, Personal Care Products.......................................................4 Textiles.................................................................................................................................4 Metalworking ......................................................................................................................5 Other Applications...............................................................................................................5 Ethanolamine Physical Properties ...............................................................................................6 Typical Physical Properties ....................................................................................................6 Vapor Pressure of Ethanolamines (Figure 1).........................................................................7 Heat of Vaporization of Ethanolamines (Figure 2)................................................................7 Specific
    [Show full text]
  • Study of Various Aqueous and Non-Aqueous Amine Blends for Hydrogen Sulfide Removal from Natural Gas
    processes Article Study of Various Aqueous and Non-Aqueous Amine Blends for Hydrogen Sulfide Removal from Natural Gas Usman Shoukat , Diego D. D. Pinto and Hanna K. Knuutila * Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; [email protected] (U.S.); [email protected] (D.D.D.P.) * Correspondence: [email protected] Received: 8 February 2019; Accepted: 8 March 2019; Published: 15 March 2019 Abstract: Various novel amine solutions both in aqueous and non-aqueous [monoethylene glycol (MEG)/triethylene glycol(TEG)] forms have been studied for hydrogen sulfide (H2S) absorption. The study was conducted in a custom build experimental setup at temperatures relevant to subsea operation conditions and atmospheric pressure. Liquid phase absorbed H2S, and amine concentrations were measured analytically to calculate H2S loading (mole of H2S/mole of amine). Maximum achieved H2S loadings as the function of pKa, gas partial pressure, temperature and amine concentration are presented. Effects of solvent type on absorbed H2S have also been discussed. Several new solvents showed higher H2S loading as compared to aqueous N-Methyldiethanolamine (MDEA) solution which is the current industrial benchmark compound for selective H2S removal in natural gas sweetening process. Keywords: H2S absorption; amine solutions; glycols; desulfurization; aqueous and non-aqueous solutions 1. Introduction Natural gas is considered one of the cleanest forms of fossil fuel. Its usage in industrial processes and human activities is increasing worldwide, providing 23.4% of total world energy requirement in 2017 [1]. Natural gas is half of the price of crude oil and produces 29% less carbon dioxide than oil per unit of energy output [2].
    [Show full text]
  • Ethanolamines Storage Guide Dow Manufactures Ethanolamines for A
    DSA9782.qxd 1/29/03 2:34 PM Page 1 DSA9782.qxd 1/29/03 2:34 PM Page 2 DSA9782.qxd 1/29/03 2:34 PM Page 3 Contents PAGE Introduction 2 Product Characteristics 3 Occupational Health 3 Reactivity 3 Oxidation 4 Liquid Thermal Stability 4 Materials of Construction 5 Pure Ethanolamines 5 Aqueous Ethanolamines 6 Gaskets and Elastomers 7 Transfer Hose 8 Preparation for Service 9 Thermal Insulation Materials 10 Typical Storage System 11 Tank and Line Heating 11 Drum Thawing 11 Special Considerations 14 Vent Freezing 14 Color Buildup in Traced Pipelines 14 Thermal Relief for Traced Lines 14 Product Unloading 15 Unloading System 15 Shipping Vessel Descriptions 16 General Unloading Procedure 17 Product Handling 18 Personal Protective Equipment 18 Firefighting 18 Equipment Cleanup 18 Product Shipment 19 Environmental Considerations 19 Product Safety 20 1 DSA9782.qxd 1/29/03 2:34 PM Page 4 Ethanolamines Storage and Handling The Dow Chemical Company manufactures high-quality ethanolamines for a wide variety of end uses. Proper storage and handling will help maintain the high quality of these products as they are delivered to you. This will enhance your ability to use these products safely in your processes and maximize performance in your finished products. Ethanolamines have unique reactivity and solvent properties which make them useful as intermediates for a wide variety of applications. As a group, they are viscous, water-soluble liquids. In their pure, as-delivered state, these materials are chemically stable and are not corrosive to the proper containers. Ethanolamines can freeze at ambient temperatures.
    [Show full text]
  • Locating and Estimating Sources of Ethylene Oxide
    United States Office of Air Quality EPA-450/4-84-007L Environmental Protection Planning And Standards Agency Research Triangle Park, NC 27711 September 1986 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF ETHYLENE OXIDE L &E EPA- 450/4-84-007L September 1986 LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF ETHYLENE OXIDE U.S. Environmental Protection Agency Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, North Carolina 27711 This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and approved for publication as received from the contractor. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, neither does mention of trade names or commercial products constitute endorsement or recommendation for use. EPA - 450/4-84-007L TABLE OF CONTENTS Section Page 1 Purpose of Document .......................................... 1 2 Overview of Document Contents ................................ 3 3 Background ................................................... 5 Nature of Pollutant .................................... 5 Overview of Production and Use ......................... 7 References for Section 3 .............................. 14 4 Emissions from Ethylene Oxide Production .................... 16 Ethylene Oxide Production ................................... 16 References for Section 4 .................................... 33 5 Emissions from Industries Which Use Ethylene
    [Show full text]
  • Experimental Solubility of Carbon Dioxide in Monoethanolamine, Or
    Experimental solubility of carbon dioxide in monoethanolamine, or diethanolamine or N-methyldiethanolamine (30 wt%) dissolved in deep eutectic solvent (choline chloride and ethylene glycol solution) Mohammed-Ridha Mahi, Ilham Mokbel, Latifa Negadi, Fatiha Dergal, Jacques Jose To cite this version: Mohammed-Ridha Mahi, Ilham Mokbel, Latifa Negadi, Fatiha Dergal, Jacques Jose. Experimen- tal solubility of carbon dioxide in monoethanolamine, or diethanolamine or N-methyldiethanolamine (30 wt%) dissolved in deep eutectic solvent (choline chloride and ethylene glycol solution). Journal of Molecular Liquids, Elsevier, 2019, 289, pp.111062. 10.1016/j.molliq.2019.111062. hal-02325445 HAL Id: hal-02325445 https://hal.archives-ouvertes.fr/hal-02325445 Submitted on 27 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Version of Record: https://www.sciencedirect.com/science/article/pii/S0167732219309687 Manuscript_b1cac4d1705988e9c9c303e3ba8c62e9 1 Experimental solubility of carbon dioxide in monoethanolamine, or 2 diethanolamine or N-methyldiethanolamine
    [Show full text]
  • Diethanolamine
    DIETHANOLAMINE 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 111-42-2 Deleted CAS Reg. No.: 8033-73-6 Chem. Abstr. Name: 2,2′-Iminobis[ethanol] IUPAC Systematic Name: 2,2′-Iminodiethanol Synonyms: Bis(hydroxyethyl)amine; bis(2-hydroxyethyl)amine; N,N-bis(2- hydroxyethyl)amine; DEA; N,N-diethanolamine; 2,2′-dihydroxydiethylamine; di- (β-hydroxyethyl)amine; di(2-hydroxyethyl)amine; diolamine; 2-(2-hydroxyethyl- amino)ethanol; iminodiethanol; N,N′-iminodiethanol; 2,2′-iminodi-1-ethanol 1.1.2 Structural and molecular formulae and relative molecular mass CH2 CH2 OH H N CH2 CH2 OH C4H11NO2 Relative molecular mass: 105.14 1.1.3 Chemical and physical properties of the pure substance (a) Description: Deliquescent prisms; colourless, viscous liquid with a mild ammonia odour (Budavari, 1998; Dow Chemical Company, 1999) (b) Boiling-point: 268.8 °C (Lide & Milne, 1996) (c) Melting-point: 28 °C (Lide & Milne, 1996) (d) Density: 1.0966 g/cm3 at 20 °C (Lide & Milne, 1996) (e) Spectroscopy data: Infrared (proton [5830]; grating [33038]), nuclear magnetic resonance (proton [6575]; C-13 [2936]) and mass spectral data have been reported (Sadtler Research Laboratories, 1980; Lide & Milne, 1996) (f) Solubility: Very soluble in water (954 g/L) and ethanol; slightly soluble in benzene and diethyl ether (Lide & Milne, 1996; Verschueren, 1996) –349– 350 IARC MONOGRAPHS VOLUME 77 (g) Volatility: Vapour pressure, < 0.01 mm Hg [1.33 Pa] at 20 °C; relative vapour density (air = 1), 3.6; flash-point, 149 °C (Verschueren, 1996) (h) Stability: Incompatible with some metals, halogenated organics, nitrites, strong acids and strong oxidizers (Dow Chemical Company, 1999) (i) Octanol/water partition coefficient (P): log P, –2.18 (Verschueren, 1996) (j) Conversion factor1: mg/m3 = 4.30 × ppm 1.1.4 Technical products and impurities Diethanolamine is commercially available with the following specifications: purity, 99.3% min.; monoethanolamine, 0.45% max.; triethanolamine (see monograph in this volume), 0.25% max.; and water content, 0.15% max.
    [Show full text]
  • Degradation of Amine-Based Solvents in CO2 Capture Process by Chemical Absorption
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Heriot Watt Pure Degradation of amine-based solvents in CO2 capture process by chemical absorption F. Vega1, 2, A. Sanna2, B. Navarrete1, M.M. Maroto-Valer2, V. Cortés1 1Chemical and Environmental Engineering Department, School of Engineering, University of Seville, C/ Camino de los Descubrimientos s/n 41092 Sevilla, Spain, Phone: 954481397, [email protected] 2Centre for Innovation in Carbon Capture and Storage (CICCS), School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK ABSTRACT Carbon dioxide capture and storage (CCS) technologies have been proposed as promising alternative to reduce CO2 emissions from fossil-fuel power plants with post- combustion capture. Absorption by aqueous amine-solutions is considered the most mature and industrially developed technology for post-combustion capture. One of the most significant issues hindering a large deployment of this technology is potential amine degradation. Amines degrade in presence of O2, CO2, NOx, SO2 and heat resulting in solvent loss, equipment corrosion and generation of volatile degradation compounds. Two types of degradation have been identified in the literature, namely oxidative and thermal degradation. A review of the amine-based solvents, its main degradation products, the apparatus and analytical methods most widely used, as well as the mechanism proposed and kinetic studies are presented and discussed here. Moreover, amines emissions from CO2 capture units can react in the atmosphere via photo-oxidation and also via NOX reactions to give nitrosamines and nitramines, which are potentially harmful to the human health and the environment. A discussion of the recent works on atmospheric degradation of amine solvents is also included in this review.
    [Show full text]
  • 2-Dimethylaminoethanol
    2-Dimethylaminoethanol sc-238021 Material Safety Data Sheet Hazard Alert Code Key: EXTREME HIGH MODERATE LOW Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME 2-Dimethylaminoethanol STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY2 HEALTH3 HAZARD INSTABILITY0 SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS C4-H11-NO, dimethylaminoethanol, beta-dimethylaminoethanol, N-dimethylaminoethanol, "N, N-dimethylaminoethanol", 2-dimethylaminoethanol, 2-(dimethylamino)ethanol, "beta-dimethylaminoethyl alcohol", "N, N-dimethyl-N-(2-hydroxyethyl)amine", "N, N-dimethyl-2-hydroxyethylamine", beta-hydroxyethyldimethylamine, DMAE, Deanol, Bimanol, "Kalpur P", Liparon, Norcholine, "Propamine A", alkanolamine Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 3 Toxicity: 2 Body Contact: 4 Min/Nil=0 Low=1 Reactivity: 1 Moderate=2 High=3 Chronic: 2 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 10 EMERGENCY OVERVIEW RISK Causes burns. Risk of serious damage to eyes. Harmful by inhalation, in contact with skin and if swallowed. Flammable. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. ■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. ■ Ingestion of alkaline corrosives may produce burns around the mouth, ulcerations and swellings of the mucous membranes, profuse saliva production, with an inability to speak or swallow.
    [Show full text]
  • Final Amended Report on the Safety Assessment of Ethanolamine And
    Final Amended Report On the Safety Assessment of Ethanolamine and Ethanolamine Salts as Used in Cosmetics March 27, 2012 The 2012 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is F. Alan Andersen, Ph.D. This report was prepared by Monice M. Fiume, Senior Scientific Analyst/Writer, and Bart Heldreth, Ph.D., Chemist, CIR. Cosmetic Ingredient Review 1101 17th Street, NW, Suite 412 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] ABSTRACT: The CIR Expert Panel assessed the safety of ethanolamine and 12 salts of ethanolamine as used in cosmetics, finding that these ingredients are safe in the present practices of use and concentrations (rinse-off products only) when formulated to be non-irritating. These ingredients should not be used in cosmetic products in which N- nitroso compounds may be formed. Ethanolamine functions as a pH adjuster. The majority of the salts are reported to function as surfactants; the others are reported to function as pH adjusters, hair fixatives, or preservatives. The Panel reviewed available animal and clinical data, as well as information from previous relevant CIR reports. Since data were not available for each individual ingredient, and since the salts dissociate freely in water, the Panel extrapolated from those previous reports to support safety.
    [Show full text]
  • GHS Methyl Diethanolamine MSDS.Pdf
    Safety Data Sheet (Methyl Diethanolamine) DATE PREPARED: 10/18/2016 Section 1. Product and Company Identification Product Name Methyl Diethanolamine CAS Number 105-59-9 Parchem - fine & specialty chemicals EMERGENCY RESPONSE NUMBER 415 Huguenot Street CHEMTEL New Rochelle, NY 10801 Toll Free US & Canada: 1 (800) 255-3924 (914) 654-6800 (914) 654-6899 All other Origins: 1 (813) 248-0585 parchem.com [email protected] Collect Calls Accepted Section 2. Hazards Identification Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Eye irritation (Category 2A), H319 GHS Label Elements Pictograms: Signal word: WARNING Hazard and precautionary statements Hazard Statements H319 Causes serious eye irritation. Precautionary Statements P264 Wash skin thoroughly after handling. P280 Wear protective gloves/ eye protection/ face protection. P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P337 + P313 If eye irritation persists: Get medical advice/ attention Hazards not otherwise classified (HNOC) or not covered by GHS: None Page 1 of 7 Safety Data Sheet (Methyl Diethanolamine) DATE PREPARED: 10/18/2016 Section 3. Composition / Information on Ingredients Common Name Methyl Diethanolamine Synonym(s) N-Methyldiethanolamine; 2,2?-Methyliminodiethanol; MDEA; N-Bis(2- hydroxyethyl)methylamine Formula C5H13NO2 CAS Number 105-59-9 COMPONENT CAS NUMBER CONCENTRATION Methyl Diethanolamine 105-59-9 90 - 100% Section 4. First Aid Measures Description of first-aid measures General advice: Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area. Inhalation: If breathed in, move person into fresh air.
    [Show full text]
  • Safety Data Sheet: Diethanolamine
    Safety data sheet according to Regulation (EC) No. 1907/2006 (REACH), amended by 2015/830/EU Diethanolamine ≥99 %, for synthesis article number: HN99 date of compilation: 2015-11-30 Version: 3.0 en Revision: 2020-03-05 Replaces version of: 2017-02-08 Version: (2) SECTION 1: Identification of the substance/mixture and of the company/ undertaking 1.1 Product identifier Identification of the substance Diethanolamine Article number HN99 Registration number (REACH) 01-2119488930-28-xxxx Index No 603-071-00-1 EC number 203-868-0 CAS number 111-42-2 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses: laboratory chemical laboratory and analytical use 1.3 Details of the supplier of the safety data sheet Carl Roth GmbH + Co KG Schoemperlenstr. 3-5 D-76185 Karlsruhe Germany Telephone: +49 (0) 721 - 56 06 0 Telefax: +49 (0) 721 - 56 06 149 e-mail: [email protected] Website: www.carlroth.de Competent person responsible for the safety data : Department Health, Safety and Environment sheet: e-mail (competent person): [email protected] 1.4 Emergency telephone number Name Street Postal code/city Telephone Website National Poisons In- Beaumont Road Dublin 9 01 809 2166 https:// formation Centre www.poisons.ie/ Beaumont Hospital SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 (CLP) Classification acc. to GHS Section Hazard class Hazard class and cat- Hazard egory state- ment 3.1O acute toxicity (oral) (Acute Tox. 4) H302 3.2 skin corrosion/irritation (Skin Irrit.
    [Show full text]
  • Chemical Weapons Technology Section 4—Chemical Weapons Technology
    SECTION IV CHEMICAL WEAPONS TECHNOLOGY SECTION 4—CHEMICAL WEAPONS TECHNOLOGY Scope Highlights 4.1 Chemical Material Production ........................................................II-4-8 4.2 Dissemination, Dispersion, and Weapons Testing ..........................II-4-22 • Chemical weapons (CW) are relatively inexpensive to produce. 4.3 Detection, Warning, and Identification...........................................II-4-27 • CW can affect opposing forces without damaging infrastructure. 4.4 Chemical Defense Systems ............................................................II-4-34 • CW can be psychologically devastating. • Blister agents create casualties requiring attention and inhibiting BACKGROUND force efficiency. • Defensive measures can be taken to negate the effect of CW. Chemical weapons are defined as weapons using the toxic properties of chemi- • Donning of protective gear reduces combat efficiency of troops. cal substances rather than their explosive properties to produce physical or physiologi- • Key to employment is dissemination and dispersion of agents. cal effects on an enemy. Although instances of what might be styled as chemical weapons date to antiquity, much of the lore of chemical weapons as viewed today has • CW are highly susceptible to environmental effects (temperature, its origins in World War I. During that conflict “gas” (actually an aerosol or vapor) winds). was used effectively on numerous occasions by both sides to alter the outcome of • Offensive use of CW complicates command and control and battles. A significant number of battlefield casualties were sustained. The Geneva logistics problems. Protocol, prohibiting use of chemical weapons in warfare, was signed in 1925. Sev- eral nations, the United States included, signed with a reservation forswearing only the first use of the weapons and reserved the right to retaliate in kind if chemical weapons were used against them.
    [Show full text]