Novel Energy Modelling and Forecasting Tools for Smart Energy Networks

Total Page:16

File Type:pdf, Size:1020Kb

Novel Energy Modelling and Forecasting Tools for Smart Energy Networks 4th International Conference on Renewable Energy Research and Applications Palermo, Italy, 22-25 Nov 2015 Novel Energy Modelling and Forecasting Tools for Smart Energy Networks G. Sauba*,Jos van der Burgt*, A. Schoofs**, C. Spataro***, M. Caruso***, F. Viola*** and R. Miceli*** *SR&I, Power & Electrification DNV GL Arnhem, The Netherlands **Wattics Ltd. Dublin, Ireland ***Department of Energy, Information engineering and Mathematical models (DEIM) University of Palermo Palermo, Italy [email protected] Abstract—A novel Energy Modelling and Forecasting Tool data generated for the time period required. This can range (EMFT) has been adopted for use in the VIMSEN (Virtual from intra-day to day-ahead in most normal operations but it Microgrids for Smart Energy Networks) project and this paper can extend to week-ahead, month-ahead or even year-ahead. gives an insight of the techniques used to provide vital support to The latter is mostly used for planning purposes and it is very the energy market, in particular to energy aggregators. A brief dependent on quality of the data feed to get the desired description of one of the test sites where data has been collected accuracy expected. for validation of the EMFT will be outlined and some examples shown. The information and predictions will then be used by a For the VIMSEN project the EMFT will make predictions decision support system to dynamically adjust energy delivery on the future energy consumption and generation patterns and consumption, by giving advice to users and operators on either within a single micro-grid or over the collection of the actions they can take to obtain a better match between energy distributed micro-grids. This information and predictions will supply and demand that increases the fraction of energy then be used by the decision support system to dynamically generated by environmentally friendly sources. The Energy adjust energy delivery and consumption, by giving advice to Modelling part of the tool provides input data to the forecasting users and operators on actions they can take to obtain a better section which in turn uses a range of mathematical engines can match between energy supply and demand that increases the analyse the data inputs and generate appropriate forecasting fraction of energy generated by environmentally friendly data for the time period required. This can range from intra-day sources. The Energy Model is a generic tool to estimate to day-ahead in most normal operations but it can extend to consumption for a specific building type based on input data week-ahead, month-ahead or even year-ahead. This is an held within a Microsoft Access database. This flexibility ongoing project of 36 months duration with a consortium of 8 members from the EU and we are half way through the work allows the Energy Model to be run under different conditions being assigned. to carry out ‘what if?’ scenarios and assesses the impact of changes on demand. Keywords—Energy Modelling, Forecasting, Smart grids, energy managment. II. THE ENERGY MODELLING COMPONENT Figure 1 is a schematic view of the generic Energy Model I. INTRODUCTION showing the types of input data used and the output results The Energy Modelling and Forecasting Toolkit (EMFT) is produced. Simulations are performed at building type level. part of the VIMSEN Information Management and Decision ENVIRONMENT • Temperature BUILDING Making Framework. The energy modelling part of the toolkit CONSUMPTION PROFILE • Solar Flux assesses the characteristics of a building with its relevant • Size 700 • Heat Loss 600 500 properties and contents both in terms of appliances and • Glazing 400 300 occupancy; then it calculates the energy used and produced 200 100 0 over a certain period of time as required. Other parameters 00:00 04:00 08:00 12:00 16:00 20:00 APPLIANCES • Gas such as seasonal variation and local weather can be •Power Consumption • Electricity •On • Generation incorporated to reflect a more accurate output. The outputs can •Standby • Mean/SD •Efficiency be aggregated for a period of time and the required profiles •Programme/Cycle generated for the building in question; only one dwelling (domestic or small commercial) can be treated at any USERS • Number particular time. The output from the energy modelling section • Activity Profile of the toolkit will then feed into the input stream of the •Energy Efficiency Attitude forecasting section. A range of mathematical engines can then Fig. 1. Schematic of energy model data and results. be used to analyse the data inputs and appropriate forecasting ICRERA 2015 4th International Conference on Renewable Energy Research and Applications Palermo, Italy, 22-25 Nov 2015 Each building type is characterised by a number of III. THE FORECASTING COMPONENT properties which are defined by the user and stored within the Forecaster is a product developed by DNVGL, built on database e.g. floor area, window area, wall U-value etc. The over 30 years’ experience in the forecasting arena, it is number of different building types required will depend on the designed to improve the process of making trading and amount of variation in the building stock of the network to be balancing decisions by providing accurate energy demand studied. Each simulation calculates the building heat loss and forecasts. appliance consumptions on a minute by minute basis for a day. Usually, a large number of simulations (days) are run for each It is a robust business application built to provide a wide building and averaged. A number of different building range of demand forecasts. Forecaster provides the accuracy instances can also be generated. These are all of the same of results, speed of processing and the business construction type (similar heat loss, glazing area etc.), but will communication and publishing to meet and support the needs have different appliances randomly generated based on of today and the evolving energy markets. specified probabilities. The building’s occupants (users) are Forecaster has been designed to be applicable to many simulated on a probabilistic basis around typical activities at players in the energy industry from transporters and different times of the day. The appliance models then simulate distributors to shippers. This has resulted in a product that is the energy consumption/generation behaviour of each easily configured to meet each client’s specific needs. appliance in response to demand inputs (from users or controls) and, where relevant, to internal building Its flexibility provides: temperatures or the state of other related appliances. Performing multiple simulations for each building type Generic forecasting model methods including: provides diversity in the resulting consumption profiles. Each o Neural Networks appliance, building and user model has a range of parameters that can be changed such as building heat loss, heating o Multiple linear and non-linear demand periods, appliance efficiencies, heating set regression temperatures etc. in order to implement the differences at each o ARIMA (Auto-Regressive Integrated stage of the scenario. Moving Average) Simulations can be run for an ‘average day’ each month. o Bayes For each month, multiple building instances are used, with each building having a different population of appliances. One o Profiler or more simulations are done on each building instance with o Adaptive Combination, several model user behaviour, temperature and solar parameters varying results are combined into one forecast between each run. The result is an average consumption weighted based on recent performance profile (mean and standard deviation) for each month, along with an estimate of the annual consumption (AQ), calculated Flexible scheduling of all forecasting activities by summing the monthly consumption weighted by the number of days in the month. This approach is useful for Configurable forecast horizon for short (hourly, testing, as it generates an estimate of AQ which can be daily) or medium (out to a year) or long term compared to known values. The monthly profiles are also (beyond a year) forecasts useful for assessing the changes in consumption behaviour at Hourly profile forecasts and daily total forecasts different times of the year. Example electricity consumption profiles for a typical January and August are shown in Figure Flexible definition of model input variables and 2. input data streams without changing the software A powerful model configuration utility to allow modellers to select model parameters, model Example Electricity Consumption Profiles by Month for 3 Bed specific settings, training data sets and data Terraced House intervals 120 100 The ability to create individual and/or aggregate client forecasts at customised portfolio or 80 Jan operational or geographic levels 60 Aug 40 A combined forecast to automatically choose the best result (using the adaptive combination lectricity Consumptionlectricity (Wh) 20 E model) 0 :00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00 The ability to account for special events such as Time national holidays and known shutdowns Fig. 2. Example of energy model consumption profiles. A variety of graphs and performance metrics showing forecast errors and performance against actual consumptions ICRERA 2015 4th International Conference on Renewable Energy Research and Applications Palermo, Italy, 22-25 Nov 2015 Facility to export information to Excel or The Forecaster database also includes a set of database Comma Separated Value files views that simplify the extraction of information from the database. This is known as the “Reporting Layer”, clients can A comprehensive reporting layer to allow more use their favourite reporting tools to view all of the detailed access to the data stored in Forecaster information in the Forecaster Database. Typically clients will e.g. web-based access or other analysis tools via use the Reporting Layer to source key forecast result ODBC information for display in existing business systems, Bulk model assignment, training, activation and dashboardsdashboards or control room displays.
Recommended publications
  • The MICHELIN LTX Force H4 and S5 Ready for Sardinia's Rough Ride
    MEDIA INFORMATION 2017 FIA World Rally Championship (WRC) Round 7: Rally Italia Sardegna The MICHELIN LTX Force H4 and S5 ready for Sardinia’s rough ride Since 2015, Rally Italia Sardegna has been based on the Mediterranean gem’s east coast, in Alghero, where the harbourside service park exudes something of a holiday feel, an impression amplified by the location’s backdrop of blue sea, sailing boats and nearby white beaches. That said, it is on the other side of the island that the event will actually kick off on Thursday evening with a super-special in Olbia where the real start will get under way the following morning. The total distance of this year’s event is 1,495.36km, including 19 stages totalling 321.46km. The first full day’s menu features four tests totalling 125.46km, including two particularly rough classics – Terranova and Monte Olia – which are back on the programme and stand out as the chief change compared with last year. The longest and potentially hardest leg for the crews and their cars comes on Saturday with six stages totalling 143.16km in the Monte Acuto region. The Italian event then concludes on Sunday with two visits to two coastal tests north of Alghero for a competitive distance of 42.04km. To cope with Rally Italia Sardegna’s specific challenges, Michelin’s WRC partners will be able to choose between the MICHELIN LTX Force H4 (hard compound) and S5 (soft), while the options for their WRC2 counterparts are the MICHELIN Latitude Cross H90 and S80. “Since the WRC stopped going to Greece, Rally Italia Sardegna is the only event that takes place on such hard ground,” notes Jacques Morelli, manager of Michelin’s WRC programme.
    [Show full text]
  • B3 Indice Generale Di Riferimento Frane
    PIANO ASSETTO IDROGEOLOGICO – SUB-BACINO COGHINAS MANNU TEMO Perimetrazione delle aree a rischio idraulico e geomorfologico e relative misure di salvaguardia (Legge 267/1998) REGIONE AUTONOMA DELLA SARDEGNA ASSESSORATO DEI LAVORI PUBBLICI ATTIVITA’ DI INDIVIDUAZIONE E DI PERIMETRAZIONE DELLE AREE A RISCHIO IDRAULICO E GEOMORFOLOGICO E DELLE RELATIVE MISURE DI SALVAGUARDIA ( Legge 267/98) SUB-BACINO B3 COGHINAS MANNU TEMO INDICE GENERALE DI RIFERIMENTO DEI SITI A RISCHIO DI FRANA Comune Provincia Tavola n° Codice sito Scheda Scheda inventario intervento TRINITÀ D'AGULTU SASSARI 1 B3FR116 B3FR116 B3FR116 BADESI SASSARI 2 B3FR131 B3FR131 B3FR131 TEMPIO SASSARI 3 B3FR069 B3FR069 B3FR106 B3FR106 BORTIGIADAS SASSARI 4 B3FR069 B3FR069 B3FR070 B3FR070 B3FR070 BERCHIDDA SASSARI 5 B3FR010 B3FR010 PERFUGAS SASSARI 6 B3FR042 B3FR042 LAERRU SASSARI 7 B3FR148 B3FR148 SEDINI, BULZI SASSARI 8 B3FR072 B3FR072 B3FR072 B3FR073 B3FR073 B3FR073 B3FR050 B3FR050 B3FR050 B3FR142 B3FR142 B3FR109 B3FR109 B3FR109 SEDINI SASSARI 9 B3FR072 B3FR072 B3FR072 B3FR158 B3FR158 CASTELSARDO SASSARI 10 B3FR019 B3FR019 B3FR019 B3FR020 B3FR020 B3FR144 B3FR144 B3FR144 SORSO SASSARI 11 B3FR085 B3FR085 B3FR085 SENNORI SASSARI 12 B3FR085 B3FR085 B3FR085 B3FR159 B3FR159 OSILO SASSARI 13 B3FR082 B3FR082 B3FR082 B3FR083 B3FR083 B3FR084 B3FR084 OSILO SASSARI 14 B3FR081 B3FR081 B3FR082 B3FR082 B3FR082 B3FR112 B3FR112 B3FR112 OSILO SASSARI 15 B3FR113 B3FR113 NULVI SASSARI 16 B3FR074 B3FR074 B3FR074 B3FR075 B3FR075 B3FR075 OSILO SASSARI 17 B3FR037 B3FR037 PIANO ASSETTO IDROGEOLOGICO –
    [Show full text]
  • Comuni Dell'anglona E Gallura Che Abbracciano La Bassa Valle Del Coghinas Valledoria
    COMUNI DELL’ANGLONA E GALLURA CHE ABBRACCIANO LA BASSA VALLE DEL COGHINAS VALLEDORIA Valledoria (fino al 1960 Codaruina , Codaruìna in gallurese e sassarese ) è un comune di 4.125 abitanti della provincia di Sassari , nell'antica regione dell' Anglona . Il paese si affaccia sul Golfo dell' Asinara , nei pressi della foce del fiume Coghinas . Il paese sorge sul sito dell’antico borgo romano di Codes , da cui deriva appellativo Codaruina . Nel medioevo fu sede della Diocesi di Ampurias , distrutta ripetutamente dai pirati barbari. Appartenuta al Giudicato di Torres e passato alla famiglia genovese dei Doria , dopo la conquista aragonese , la valle del Coghinas fu colpita da epidemie catastrofiche (secolo XV) che portarono allo spopolamento di queste terre. La ripresa demografica si ebbe, come del resto in tutta la bassa gallura , verso la metà dell’ Ottocento , grazie all’afflusso di famiglie galluresi da Aggius e Tempio Pausania che occuparono le vaste pianure deserte e fertilissime, dando vita all'insediamento di Codaruina, oggi Valledoria centro. Nel 1960 Codaruina si rese comune autonomo con il nome di Valledoria comprendendo le frazioni di La Muddizza, La Ciaccia, San Pietro, Baia Verde e Maragnani, il cui territorio era compreso nei comuni di Sedini e Castelsardo . Nel 1983 si è staccata la frazione di Santa Maria Coghinas divenuta comune autonomo. SANTA MARIA COGHINAS Santa Maria Coghinas (Cuzina in gallurese , Santa Maria Cutzinas in sardo ) è un comune di 1.439 abitanti della provincia di Sassari Il centro abitato sorge nella regione storica dell'Anglona , sulla riva occidentale del fiume Coghinas e ai piedi delle colline che delimitano la fertilissima valle alluvionale con una media di 2 m s.l.m.
    [Show full text]
  • Riapertura Dei Termini Conferenza Di Servizi
    Comune di Porto Torres (Provincia di Sassari) Area Ambiente, Tutela del Territorio, Urbanistica, Edilizia Privata Porto Torres, 28/04/2020 Spett.li Enti Ai Comuni del Bacino n. 4: Comune di Sorso PEC: [email protected] Comune di Sennori PEC: [email protected] Comune di Osilo PEC: [email protected] Comune di Stintino PEC: [email protected] Soprintendenza Archeologica Belle Arti e Paesaggio per le Provincie di Sassari e Nuoro Piazza Sant’Agostino n. 2 07100 Sassari PEC: [email protected] Regione Autonoma della Sardegna Assessorato dell’Industria PEC: [email protected] Regione Autonoma della Sardegna Assessorato degli Affari Generali, Personale e Riforma della Regione PEC:[email protected] Regione Autonoma della Sardegna Assessorato dei LL.PP. Servizio del Genio Civile di Sassari Via A. Diaz n. 23 07100 Sassari PEC: llpp. gcs @pec.regione.sardegna.it Regione Autonoma della Sardegna Direzione Generale del Corpo Forestale Servizio Territoriale dell’Ispettorato Ripartimentale di 07100 Sassari PEC: cfva.sir.ss @pec.regione.sardegna.it Regione Autonoma della Sardegna Servizio Tutela del Paesaggio e Vigilanza Settentrionale Viale Dante n. 37 07100 Sassari PEC: [email protected] Regione Autonoma della Sardegna Settore Urbanistica PEC: urbanistica @pec.regione.sardegna.it Regione Autonoma della Sardegna Servizio Pianificazione e Urbanistica PEC: eell.urb.pianificazione @pec.regione.sardegna.it Provincia di Sassari Servizio Viabilità Località Monte Tignosu (Baldinca) 07100 Sassari PEC: [email protected] Comando dei VV.FF. Di Sassari Ufficio Prevenzione Incendi Piazza Conte di Moriana 1 07100 Sassari PEC: [email protected] A.N.A.S.
    [Show full text]
  • Sassari 2010
    PROVINCIA SASSARI (SS) Indice Amministrazione Provinciale II - III Mores 32 Comunità montana IV Muros 33 Unione Comuni V - VII Nughedu San Nicolò 34 Distretti socio-sanitari VII - IX Nule 35 PLUS X Nulvi 36 Alghero 1 Olmedo 37 Anela 2 Osilo 38 Ardara 3 Ossi 39 Banari 4 Ozieri 40 Benetutti 5 Padria 41 Bessude 6 Pattada 42 Bonnanaro 7 Perfugas 43 Bono 8 Ploaghe 44 Bonorva 9 Porto Torres 45 Borutta 10 Pozzomaggiore 46 Bottidda 11 Putifigari 47 Bultei 12 Romana 48 Bulzi 13 Santa Maria Coghinas 49 Burgos 14 Sassari 50 Cargeghe 15 Sedini 51 Castelsardo 16 Semestene 52 Cheremule 17 Sennori 53 Chiaramonti 18 Siligo 54 Codrongianos 19 Sorso 55 Cossoine 20 Stintino 56 Erula 21 Tergu 57 Esporlatu 22 Thiesi 58 Florinas 23 Tissi 59 Giave 24 Torralba 60 Illorai 25 Tula 61 Ittireddu 26 Uri 62 Ittiri 27 Usini 63 Laerru 28 Valledoria 64 Mara 29 Viddalba 65 Martis 30 Villanova Monteleone 66 Monteleone Rocca Doria 31 R. A. S. - Assessorato EE. LL., Finanze ed Urbanistica - Direzione Generale Enti Locali e Finanze - Servizio Enti Locali PROVINCIA DI SASSARI Prov. SS - Sup. Kmq. 4.282,14 - Abitanti 336.451 (*) Piazza Italia, 31 - 07100 Sassari Centr. Tel. 079 - 2069000 Tel. Ufficio Gabinetto 079 - 2069361 - 2069363 Fax Uff. Gabinetto 079 - 230073 [email protected] Tel. Segreteria Gen.le 079 - 2069379 (*) Pop. Res. al 31.12.2008 - Dati ISTAT PROVINCIA CIRCOSCRIZIONE ELETTORALE Sez. Sez. Giunta Consiglio Alghero 48 Nule 2 Anela 1 Nulvi 3 Ardara 1 Olmedo 3 PRESIDENTE PRESIDENTE Banari 1 Osilo 6 Giudici Alessandra Piras Enrico Antonio
    [Show full text]
  • Pier Virgilio Arrigoni the Discovery of the Sardinian Flora
    Pier Virgilio Arrigoni The discovery of the Sardinian Flora (XVIII-XIX Centuries) Abstract Arrigoni, P. V.: The discovery of the Sardinian Flora (XVIII-XIX Centuries). — Bocconea 19: 7-31. 2006. — ISSN 1120-4060. The history of the floristic exploration of Sardinia mainly centres round the works of G.G. Moris, who in the first half of the XIX century described most of the floristic patrimony of the island. But it is important to know the steps he took in his census, the areas he explored, his publications, motivations and conditions under which he wrote the "Stirpium sardoarum elenchus" and the three volumes of "Flora sardoa", a work moreover which he left incomplete. Merit is due to Moris for bringing the attention of many collectors, florists and taxonomists to the Flora of the Island, individuals who in his foot-steps helped to complete and update the floristic inventory of the island. Research into the history of our knowledge of the Sardinian Flora relies heavily on the analysis of botanical publications, but many other sources (non- botanical texts, chronicles of the period, correspondence) also furnish important information. Finally, the names, dates and collection localities indicated on the specimens preserved in the most important herbaria were fundamental in reconstructing the itineraries of the sites Moris visited. All these sources allowed us to clarify several aspects of the expeditions, floristic col- lections and results of his studies. The "discovery phase" of Sardinian Flora can be considered over by the end of the XIX century with the publication of the "Compendium" by Barbey (1884-1885) and "Flora d'Italia" by Fiori & Paoletti (1896-1908).
    [Show full text]
  • Rally Italia Sardegna 2017
    RALLY ITALIA SARDEGNA 2017 Shakedown Thursday 8 June 2017 Liaison Target First car TC LOCATION SS dist. Total dist. AVS dist. time due Alghero - Service Parc OUT RZ Alghero - Refuel (0,85) + (14,00) Sd0 Olmedo - Shakedown Start 14,85 14,85 SD OLMEDO - MONTE BARANTA Shakedown 4,15 08:00 RZ Alghero - Refuel (15,97) + (1,26) Shakedown Sd1 Distance to next refuel (2,00) (116,35) (118,35) Alghero - Service Parc IN 15,89 20,04 Totals 4,15 30,74 34,89 Sunrise Olmedo 5h56 Start (Section 1) Thursday 8 June 2017 Liaison Total Target First car TC LOCATION SS dist. AVS dist. dist. time due Sector Section 0 Alghero - START 17:00 1 1 Ittiri 29,22 29,22 00:57 30,76 17:57 SSS 1 ITTIRI ARENA SHOW 2,00 00:03 18:00 RZ Berchidda - Refuel (85,87) + (37,16) 2 1 Distance to next refuel (33,59) (89,58) Section 1 1A Olbia - Regroup & Technical Zone IN/OUT - Parc Fermé IN 123,03 125,03 02:31 49,68 20:31 Sunset Vers. 29/05/2017 Thursday totals 2,00 152,25 154,25 Ittiri 20h56 RALLY ITALIA SARDEGNA 2017 Re-Start (Sections 2,3) Friday 9 June 2017 Liaison Target First car TC LOCATION SS dist. Total dist. AVS dist. time due Sector Section 1B Olbia - Parc Fermé OUT - TFZ IN 6:30 3 TFZ Olbia - TYRE FITTING ZONE 00:10 Distance to next tyres change (62,73) (169,73) (232,46) 1C TFZ OUT 06:40 4 2 Punta Pannuzzu 28,37 28,37 00:35 48,63 7:15 SS 2 TERRANOVA 1 14,54 00:03 7:18 5 3 Caserma Monte Olia 0,95 15,49 00:20 46,47 7:38 SS 3 MONTE OLIA 1 19,05 00:03 7:41 RZ Berchidda - Refuel (23,10) + (30,69) 6 Section 2 2 Distance to next refuel (29,14) (118,16) (147,30) 4 Su Sannideddu
    [Show full text]
  • Verbale N3 Stabili
    COMUNE DI PORTO TORRES (PROVINCIA DI SASSARI) Area lavori pubblici, manutenzioni, verde pubblico, sistemi informativi e finanziamenti comunitari LAVORI DI MANUTENZIONE ORDINARIA SU STABILI DI PROPRIETA' COMUNALE – CUP I25H18000510004 CIG 7753925554 Espletamento della procedura negoziata ex art 36, comma 2, lett. b). VERBALE DI GARA N. 3 L’anno duemiladiciannove il giorno 10 del mese di aprile alle ore 10:00 presso gli uffici del Servizio Lavori Pubblici, sito al 2° piano dell'Ufficio Tecnico, in Piazza Umberto I a Porto Torres, si riuniscono, in seduta pubblica, il Responsabile Unico del Procedimento, Dott. Marcello Garau, l'Ing. Paola Baldino e il sig. Antonio Ligas, dipendenti dell'Ente, al fine di procedere all'esperimento della procedura negoziata per l'affidamento dell'appalto in oggetto. Premesso che: con determinazione dirigenziale n. 2555 del 28/12/2018 si avviava la procedura di affidamento dei lavori manutenzione straordinaria degli stabili di proprietà comunale. Procedura negoziata ai sensi dell'art. 36, comma 2, lett. b), del D.Lgs. 50/2016. Approvazione elaborati progettuali individuando il prezzo più basso quale criterio di aggiudicazione e attraverso il mercato elettronico della Regione Sardegna – SardegnaCAT; mediante Richiesta di Offerta n. 330230 del 17/01/2019, tramite il mercato elettronico della Regione Sardegna – SardegnaCAT, sono stati invitati a presentare offerta tutti gli iscritti alla categoria merceologica “AQ22AA22 - Lavori di importo fino a 150.000, 00 euro “; entro il termine previsto del 31/01/2019 alle ore 12:00 sono state presentate offerte da parte dei seguenti operatori: Fornitori Comune Provincia BUCCELLATO SPA SESTU Cagliari C.E.S.E. SRLS Sassari Sassari COSTRUZIONI E SCAVI DI LORIA OSILO Sassari RICCARDO D.L.A.
    [Show full text]
  • The Case of Sardinia
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Biagi, Bianca; Faggian, Alessandra Conference Paper The effect of Tourism on the House Market: the case of Sardinia 44th Congress of the European Regional Science Association: "Regions and Fiscal Federalism", 25th - 29th August 2004, Porto, Portugal Provided in Cooperation with: European Regional Science Association (ERSA) Suggested Citation: Biagi, Bianca; Faggian, Alessandra (2004) : The effect of Tourism on the House Market: the case of Sardinia, 44th Congress of the European Regional Science Association: "Regions and Fiscal Federalism", 25th - 29th August 2004, Porto, Portugal, European Regional Science Association (ERSA), Louvain-la-Neuve This Version is available at: http://hdl.handle.net/10419/116951 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence.
    [Show full text]
  • North Sardinia Sportive Ride Group Guided Tour 2017 Approx
    North Sardinia Sportive Ride Group guided Tour 2017 Approx. 472 km | 8 days / 7 nights Sardinia is like heaven to any keen road cyclist: the roads are perfectly paved and free from motorised traffic. This beautiful trip will take you right in the heart of the most ancient land in Europe. Among mountains sculpted by wind and sun, with its deep canyons and unspoilt forests, we discover nature in its most savage form, archaeological remains which are unique in the world and traditions with their roots lost in the dawn of history TOUR ITINERARY Day 1 Arrival day Transfer or independent arrival to Alghero. Day 2 Alghero to Bonorva 72 km, climb 1735mt Bike ride: Alghero – Villanova – Romana – Giave - Bonorva. Highlights of the day: - The coastal view leaving Alghero, - The climb towards Villanova - Lake Temo Day 3 Bonorva to Pattada 70 km, climb 1840mt Bike ride: Bonorva – Foresta Burgos – Bono – Bultei - Pattada. Highlights of the day: - The Goceano mountain range. - The wild and remote interior. Day 4 Pattada to La Caletta 86km, climb 1230mt Bike ride: Pattada – Osidda - Lodè – La Caletta. Highlights of the day: - The stunning limestone range of Monte Albo - The descent towards Siniscola 1 Irish Cycling Safaris | Belfield Bike Shop, UCD, Dublin 4, Ireland Tel +353 1 2600749 | Fax +353 1 7161168| [email protected] | www.cyclingsafaris.com Day 5 La Caletta to Olbia 55 km, climb 300mt Bike ride: La Caletta – Budoni – San Teodoro– Olbia. Highlights of the day: - The amazing island of Tavolara, - The lively centre of Olbia. Day 6 Olbia to Castelsardo 96 km, climb 1650mt Bike ride: Priatu – Calangianus – Tempio Pausania – Aggius – Valledoria – Castelsardo.
    [Show full text]
  • M Pi.AOOUSPSS.REGISTRO UFFICIALE(U).0008918.30-08-2019
    Ministero dell’Istruzione, dell’Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna UFFICIO VI – Ambito territoriale per la provincia di Sassari IL DIRIGENTE VISTO il D.L. 98/2011 e successive integrazioni e modificazioni ed, in particolare, l’art. 19 commi 5 e 5 bis secondo cui, a decorrere dall’anno scolastico 2012/2013, il posto di organico del profilo di DSGA deve essere assegnato esclusivamente alle istituzioni scolastiche autonome con numero di alunni superiore a 600 o, in deroga, a 400 purché ubicate nelle piccole isole o nei comuni montani; VISTA la nota USR per la Sardegna prot n. 12292 del 13 agosto 2019 che prevede le modalità di associazione e abbinamento tra istituzioni scolastiche al fine di dare specifica attuazione alle disposizioni di legge, a seconda delle diverse situazioni di esubero a livello provinciale e che impartisce istruzioni in materia di criteri per le associazioni tra istituzioni scolastiche al fine di poter assegnare ad ognuna delle scuole sottodimensionate un DSGA nel rispetto della normativa vigente; CONSIDERATO che in base alla normativa citata, per la provincia di Sassari, è previsto l’abbinamento di ognuna delle sette sedi sottodimensionate vacanti ad una scuola dimensionata da disporre sulla base di criteri espressamente comunicati a cura dell’Ufficio Scolastico Regionale con la nota sopracitata; VISTE le domande presentate dai D.S.G.A., titolari in provincia, per la volontaria copertura delle seguenti sedi sottodimensionate: I.C. di Aggius, I.C. di Castelsardo, I.C. di San Teodoro; CONSIDERATA la necessità di dover disporre d’ufficio l’associazione con una scuola dimensionata dell’I.C di Sennori, dell’I.C.
    [Show full text]
  • Aula N° 2 Assistenza Prof. /Ssa ______
    AULA N° 1 ASSISTENZA PROF./SSA ___________________________ 1. ADDIS SIMONE C1 IST. COMPR. OSILO NULVI 2. ALTAROZZI SIMONE C1 IST. COMPR. “MURA” BONO 3. BAMBINO MICHELE C1 I.C. LATTEDOLCE E AGRO SASSARI 4. BASSU MATTIA C1 SECOND. I GRADO E. PAIS OLBIA 5. BELL U DAVIDE C1 IST. COMPR.. N. 2 MACOMER 6. BEN BOVDIZ KARIN C1 SECOND. I GRADO E. PAIS OLBIA 7. BERTOLOTTI LORENZO C1 IST. COMPR. LI PUNTI SASSARI 8. BICCAI GIULIA C1 IST. COMPR.. N. 2 MACOMER 9. BO ELISABETTA C1 SECOND. I GRADO E. PAIS OLBIA 10. BRANDINU MATTEO C1 IST. COMPR.. N. 2 MACOMER 11. BROZZU GABRIEL C1 IST. COMPR. OSILO NULVI 12. BUA MARIO C1 SECOND. I GRADO E. PAIS OLBIA 13. BUDRONI ALESSIA C1 SECOND. I GRADO E. PAIS OLBIA 14. BULLA DANILO C1 IST. COMPR. “MURA” BONO 15. BUSIA VALENTINA C1 SECONDARIA DI I GRADO CUGLIERI 16. CALCINA GABRIELE C1 SECOND. I GRADO E. PAIS OLBIA 17. CALVISI MAURO C1 SECOND. I GRADO E. PAIS OLBIA 18. CALVISI RICCARDO C1 SECOND. I GRADO E. PAIS OLBIA 19. CAREDDU GABRIELE C1 SECOND. I GRADO E. PAIS OLBIA 20. CARHAFA SIMONA C1 SECOND. I GRADO E. PAIS OLBIA 21. CARTA CRISTINA C1 SECOND. I GRADO E. PAIS OLBIA 22. 23. 24. AULA N° 2 ASSISTENZA PROF. /SSA __________________________ 1. CASULA CECILIA C1 SECOND. I GRADO E. PAIS OLBIA 2. CASULE SIMONA C1 SECONDARIA DI I GRADO CUGLIERI 3. CATANIA CARLO C1 SECOND. I GRADO E. PAIS OLBIA 4. CATTEDDU CATERINA C1 SECONDARIA DI I GRADO CUGLIERI 5. CECCARELLI SILVIA C1 I.C.
    [Show full text]