1 Parallel Computer Architecture Concepts

Total Page:16

File Type:pdf, Size:1020Kb

1 Parallel Computer Architecture Concepts Outline Lecture 1: Parallel Computer Architecture Concepts n Parallel computer, multiprocessor, multicomputer Parallel Computer n SIMD vs. MIMD execution Architecture Concepts n Shared memory vs. Distributed memory architecture n Interconnection networks TDDE35 Lecture 1 n Parallel architecture design concepts l Instruction-level parallelism Christoph Kessler l Hardware multithreading PELAB / IDA l Multi-core and many-core Linköping university Sweden l Accelerators and heterogeneous systems l Clusters n Implications for programming and algorithm design 2019 2 Traditional Use of Parallel Computing: High Performance Computing Large-Scale HPC Applications Application Areas (Selection) n High Performance Computing (HPC) n Computational Fluid Dynamics n Weather Forecasting and Climate Simulation l E.g. climate simulations, particle physics, proteine docking, … n Aerodynamics / Air Flow Simulations and Optimization l Much computational work n Structural Engineering (in FLOPs, floatingpoint operations) n Fuel-Efficient Aircraft Design l Often, large data sets n Molecular Modelling n Material Science n Computational Chemistry n Single-CPU computers and even today’s n Battery Simulation and Optimization multicore processors cannot provide such n Galaxy Simulations massive computation power n Earthquake Engineering, Oil Reservoir Simulation n Flood Prediction n Aggregate LOTS of computers à Clusters n Bioinformatics (DNA Pattern Matching, Proteine Docking) n Fluid / Structural Interaction l Need scalable parallel algorithms n Blood Flow Simulation l Need exploit multiple levels of parallelism n fRMI Image Analysis n ... l Cost of communication, memory access 3 NSC Tetralith 4 w ww.e-science.se Another Classical Use of Parallel Computing: Example: Weather Forecast (very simplified…) Parallel Embedded Computing • 3D Space discretization (cells) • Air pressure • Time discretization (steps) • Temperature n High-performance embedded computing • Start from current observations • Humidity (sent from weather stations etc.) • Sun radiation l E.g. on-board realtime image/video processing, gaming, … cell • Wind direction • Simulation step by evaluating l Much computational work weather model equations • Wind velocity (often fixed point operations) • … l Often, in energy-constrained mobile devices E.g., cell size 1km3 and 10min time discretization à 10-day simulation: 1015 FLOPs n Sequential programs on single-core computers SMHI: 4 forecasts per day, cannot provide sufficient computation power 50 variants (simulations) per forecast at a reasonable power budget n Use many small cores at low frequency l Need scalable parallel algorithms l Cost of communication, memory access l Energy cost (Power x Time) https://www.smhi.se/kunskapsbanken/meteorologi/sa-gor-smhi-en-vaderprognos-1.4662 5 6 NSC Tetralith 1 More Recent Use of Parallel Computing: HPC vs Big-Data Computing Big-Data Analytics Applications n Big Data Analytics n Both need parallel computing n Same kind of hardware – Clusters of (multicore) servers l Data access intensive (disk I/O, memory accesses) n Same OS family (Linux) 4Typically, very large data sets (GB … TB … PB … EB …) n Different programming models, languages, and tools l Also some computational work for combining/aggregating data l E.g. data center applications, business analytics, click stream HPC application Big-Data application analysis, scientific data analysis, machine learning, … HPC prog. languages: Big-Data prog. languages: l Soft real-time requirements on interactive querys Fortran, C/C++ (Python) Java, Scala, Python, … Par. programming models: Par. programming models: n Single-CPU and multicore processors cannot MPI, OpenMP, … MapReduce, Spark, … provide such massive computation power and I/O bandwidth+capacity Scientific computing Big-data storage/access: libraries: BLAS, … HDFS, … n Aggregate LOTS of computers à Clusters OS: Linux OS: Linux l Need scalable parallel algorithms HW: Cluster HW: Cluster l Need to exploit multiple levels of parallelism l Fault tolerance à Let us start with the common basis: Parallel computer architecture 7 NSC Tetralith 8 Parallel Computer Parallel Computer Architecture Concepts Classification of parallel computer architectures: n by control structure n by memory organization l in particular, Distributed memory vs. Shared memory n by interconnection network topology 9 10 Classification by Control Structure Classification by Memory Organization op … vop e.g. (traditional) HPC cluster e.g. multiprocessor (SMP) or computer with a standard multicore CPU Most common today in HPC and Data centers: Hybrid Memory System • Cluster (distributed memory) op op op op 1 2 3 4 of hundreds, thousands of shared-memory servers each containing one or several multi-core CPUs 11 12 NSCNSC Triolith Tetralith 2 Hybrid (Distributed + Shared) Memory Interconnection Networks (1) n Network = physical interconnection medium (wires, switches) + communication protocol (a) connecting cluster nodes with each other (DMS) (b) connecting processors with memory modules (SMS) Classification M M n Direct / static interconnection networks l connecting nodes directly to each other P R l Hardware routers (communication coprocessors) can be used to offload processors from most communication work n Switched / dynamic interconnection networks 13 SC Tetralith 14 Interconnection Networks (2): P Interconnection Networks (3): P Simple Topologies P Fat-Tree Network P fully connected P P n Tree network extended for higher bandwidth (more switches, more links) closer to the root l avoids bandwidth bottleneck n Example: Infiniband network (www.mellanox.com) 15 16 Instruction Level Parallelism (1): More about Interconnection Networks Pipelined Execution Units n Hypercube, Crossbar, Butterfly, Hybrid networks… à TDDC78 n Switching and routing algorithms n Discussion of interconnection network properties l Cost (#switches, #lines) l Scalability (asymptotically, cost grows not much faster than #nodes) l Node degree l Longest path (à latency) l Accumulated bandwidth l Fault tolerance (worst-case impact of node or switch failure) l … 17 18 3 SIMD computing Instruction-Level Parallelism (2): e.g., vector supercomputers VLIW and Superscalar with Pipelined Vector Units Cray (1970s, 1980s), Fujitsu, … n Multiple functional units in parallel n 2 main paradigms: l VLIW (very large instruction word) architecture ^ 4Parallelism is explicit, progr./compiler-managed (hard) l Superscalar architecture à 4Sequential instruction stream 4Hardware-managed dispatch 4power + area overhead n ILP in applications is limited l typ. < 3...4 instructions can be issued simultaneously l Due to control and data dependences in applications 19 n Solution: Multithread the 20application and the processor Hardware Multithreading SIMD Instructions ”vector register” n “Single Instruction stream, Multiple Data streams” l single thread of control flow op SIMD unit l restricted form of data parallelism 4apply the same primitive operation (a single instruction) in parallel to multiple data elements stored contiguously l SIMD units use long “vector registers” 4each holding multiple data elements n Common today E.g., l data MMX, SSE, SSE2, SSE3,… dependence l Altivec, VMX, SPU, … n Performance boost for operations on shorter data types n Area- and energy-efficient n Code to be rewritten (SIMDized) by programmer or compiler n Does not help (much) for memory bandwidth P P 21 P P 22 The Memory Wall Moore’s Law (since 1965) n Performance gap CPU – Memory Exponential increase in transistor density n Memory hierarchy n Increasing cache sizes shows diminishing returns l Costs power and chip area 4 GPUs spend the area instead on many simple cores with little memory l Relies on good data locality in the application n What if there is no / little data locality? l Irregular applications, e.g. sorting, searching, optimization... n Solution: Spread out / overlap memory access delay l Programmer/Compiler: Prefetching, on-chip pipelining, SW-managed on-chip buffers l Generally: Hardware multithreading, again! Data from Kunle Olukotun, Lance Hammond, Herb Sutter, 23 24Burton Smith, Chris Batten, and Krste Asanoviç 4 The Power Issue Moore’s Law vs. Clock Frequency n Power = Static (leakage) power + Dynamic (switching) power n Dynamic power ~ Voltage2 * Clock frequency where Clock frequency approx. ~ voltage • #Transistors / mm2 still 3 growing exponentially à Dynamic power ~ Frequency according to Moore’s Law n Total power ~ #processors ~3GHz • Clock speed flattening out 2003 More transistors + Limited frequency Þ More cores 25 26 Solution for CPU Design: Multicore + Multithreading Main features of a multicore system n There are multiple computational cores on the same chip. n Single-thread performance does not improve any more since ca. 2003 l Homogeneous multicore (same core type) l ILP wall l Heterogeneous multicore (different core types) l Memory wall n The cores might have (small) private on-chip memory l Power wall (end of “Dennard Scaling”) modules and/or access to on-chip memory shared by several cores. n but thanks to Moore’s Law we could still put more cores on a n The cores have access to a common off-chip main memory chip n There is a way by which these cores communicate with each l And hardware-multithread the cores to hide memory other and/or with the environment. latency l All major chip manufacturers produce multicore CPUs today 27 28 Standard CPU Multicore Designs Some early dual-core CPUs (2004/2005) n Standard desktop/server CPUs have a few cores with shared off-chip main memory
Recommended publications
  • 2.5 Classification of Parallel Computers
    52 // Architectures 2.5 Classification of Parallel Computers 2.5 Classification of Parallel Computers 2.5.1 Granularity In parallel computing, granularity means the amount of computation in relation to communication or synchronisation Periods of computation are typically separated from periods of communication by synchronization events. • fine level (same operations with different data) ◦ vector processors ◦ instruction level parallelism ◦ fine-grain parallelism: – Relatively small amounts of computational work are done between communication events – Low computation to communication ratio – Facilitates load balancing 53 // Architectures 2.5 Classification of Parallel Computers – Implies high communication overhead and less opportunity for per- formance enhancement – If granularity is too fine it is possible that the overhead required for communications and synchronization between tasks takes longer than the computation. • operation level (different operations simultaneously) • problem level (independent subtasks) ◦ coarse-grain parallelism: – Relatively large amounts of computational work are done between communication/synchronization events – High computation to communication ratio – Implies more opportunity for performance increase – Harder to load balance efficiently 54 // Architectures 2.5 Classification of Parallel Computers 2.5.2 Hardware: Pipelining (was used in supercomputers, e.g. Cray-1) In N elements in pipeline and for 8 element L clock cycles =) for calculation it would take L + N cycles; without pipeline L ∗ N cycles Example of good code for pipelineing: §doi =1 ,k ¤ z ( i ) =x ( i ) +y ( i ) end do ¦ 55 // Architectures 2.5 Classification of Parallel Computers Vector processors, fast vector operations (operations on arrays). Previous example good also for vector processor (vector addition) , but, e.g. recursion – hard to optimise for vector processors Example: IntelMMX – simple vector processor.
    [Show full text]
  • Massively Parallel Computing with CUDA
    Massively Parallel Computing with CUDA Antonino Tumeo Politecnico di Milano 1 GPUs have evolved to the point where many real world applications are easily implemented on them and run significantly faster than on multi-core systems. Future computing architectures will be hybrid systems with parallel-core GPUs working in tandem with multi-core CPUs. Jack Dongarra Professor, University of Tennessee; Author of “Linpack” Why Use the GPU? • The GPU has evolved into a very flexible and powerful processor: • It’s programmable using high-level languages • It supports 32-bit and 64-bit floating point IEEE-754 precision • It offers lots of GFLOPS: • GPU in every PC and workstation What is behind such an Evolution? • The GPU is specialized for compute-intensive, highly parallel computation (exactly what graphics rendering is about) • So, more transistors can be devoted to data processing rather than data caching and flow control ALU ALU Control ALU ALU Cache DRAM DRAM CPU GPU • The fast-growing video game industry exerts strong economic pressure that forces constant innovation GPUs • Each NVIDIA GPU has 240 parallel cores NVIDIA GPU • Within each core 1.4 Billion Transistors • Floating point unit • Logic unit (add, sub, mul, madd) • Move, compare unit • Branch unit • Cores managed by thread manager • Thread manager can spawn and manage 12,000+ threads per core 1 Teraflop of processing power • Zero overhead thread switching Heterogeneous Computing Domains Graphics Massive Data GPU Parallelism (Parallel Computing) Instruction CPU Level (Sequential
    [Show full text]
  • Parallel Computer Architecture
    Parallel Computer Architecture Introduction to Parallel Computing CIS 410/510 Department of Computer and Information Science Lecture 2 – Parallel Architecture Outline q Parallel architecture types q Instruction-level parallelism q Vector processing q SIMD q Shared memory ❍ Memory organization: UMA, NUMA ❍ Coherency: CC-UMA, CC-NUMA q Interconnection networks q Distributed memory q Clusters q Clusters of SMPs q Heterogeneous clusters of SMPs Introduction to Parallel Computing, University of Oregon, IPCC Lecture 2 – Parallel Architecture 2 Parallel Architecture Types • Uniprocessor • Shared Memory – Scalar processor Multiprocessor (SMP) processor – Shared memory address space – Bus-based memory system memory processor … processor – Vector processor bus processor vector memory memory – Interconnection network – Single Instruction Multiple processor … processor Data (SIMD) network processor … … memory memory Introduction to Parallel Computing, University of Oregon, IPCC Lecture 2 – Parallel Architecture 3 Parallel Architecture Types (2) • Distributed Memory • Cluster of SMPs Multiprocessor – Shared memory addressing – Message passing within SMP node between nodes – Message passing between SMP memory memory nodes … M M processor processor … … P … P P P interconnec2on network network interface interconnec2on network processor processor … P … P P … P memory memory … M M – Massively Parallel Processor (MPP) – Can also be regarded as MPP if • Many, many processors processor number is large Introduction to Parallel Computing, University of Oregon,
    [Show full text]
  • Reducing Cache Coherence Traffic with a NUMA-Aware Runtime Approach
    This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE Transactions on Parallel and Distributed Systems IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 1 Reducing Cache Coherence Traffic with a NUMA-Aware Runtime Approach Paul Caheny, Lluc Alvarez, Said Derradji, Mateo Valero, Fellow, IEEE, Miquel Moreto,´ Marc Casas Abstract—Cache Coherent NUMA (ccNUMA) architectures are a widespread paradigm due to the benefits they provide for scaling core count and memory capacity. Also, the flat memory address space they offer considerably improves programmability. However, ccNUMA architectures require sophisticated and expensive cache coherence protocols to enforce correctness during parallel executions, which trigger a significant amount of on- and off-chip traffic in the system. This paper analyses how coherence traffic may be best constrained in a large, real ccNUMA platform comprising 288 cores through the use of a joint hardware/software approach. For several benchmarks, we study coherence traffic in detail under the influence of an added hierarchical cache layer in the directory protocol combined with runtime managed NUMA-aware scheduling and data allocation techniques to make most efficient use of the added hardware. The effectiveness of this joint approach is demonstrated by speedups of 3.14x to 9.97x and coherence traffic reductions of up to 99% in comparison to NUMA-oblivious scheduling and data allocation. Index Terms—Cache Coherence, NUMA, Task-based programming models F 1 INTRODUCTION HE ccNUMA approach to memory system architecture the data is allocated within the NUMA regions of the system T has become a ubiquitous choice in the design-space [10], [28].
    [Show full text]
  • Thread-Level Parallelism – Part 1
    Chapter 5: Thread-Level Parallelism – Part 1 Introduction What is a parallel or multiprocessor system? Why parallel architecture? Performance potential Flynn classification Communication models Architectures Centralized shared-memory Distributed shared-memory Parallel programming Synchronization Memory consistency models What is a parallel or multiprocessor system? Multiple processor units working together to solve the same problem Key architectural issue: Communication model Why parallel architectures? Absolute performance Technology and architecture trends Dennard scaling, ILP wall, Moore’s law Multicore chips Connect multicore together for even more parallelism Performance Potential Amdahl's Law is pessimistic Let s be the serial part Let p be the part that can be parallelized n ways Serial: SSPPPPPP 6 processors: SSP P P P P P Speedup = 8/3 = 2.67 1 T(n) = s+p/n As n → , T(n) → 1 s Pessimistic Performance Potential (Cont.) Gustafson's Corollary Amdahl's law holds if run same problem size on larger machines But in practice, we run larger problems and ''wait'' the same time Performance Potential (Cont.) Gustafson's Corollary (Cont.) Assume for larger problem sizes Serial time fixed (at s) Parallel time proportional to problem size (truth more complicated) Old Serial: SSPPPPPP 6 processors: SSPPPPPP PPPPPP PPPPPP PPPPPP PPPPPP PPPPPP Hypothetical Serial: SSPPPPPP PPPPPP PPPPPP PPPPPP PPPPPP PPPPPP Speedup = (8+5*6)/8 = 4.75 T'(n) = s + n*p; T'() → !!!! How does your algorithm ''scale up''? Flynn classification Single-Instruction Single-Data
    [Show full text]
  • A Review of Multicore Processors with Parallel Programming
    International Journal of Engineering Technology, Management and Applied Sciences www.ijetmas.com September 2015, Volume 3, Issue 9, ISSN 2349-4476 A Review of Multicore Processors with Parallel Programming Anchal Thakur Ravinder Thakur Research Scholar, CSE Department Assistant Professor, CSE L.R Institute of Engineering and Department Technology, Solan , India. L.R Institute of Engineering and Technology, Solan, India ABSTRACT When the computers first introduced in the market, they came with single processors which limited the performance and efficiency of the computers. The classic way of overcoming the performance issue was to use bigger processors for executing the data with higher speed. Big processor did improve the performance to certain extent but these processors consumed a lot of power which started over heating the internal circuits. To achieve the efficiency and the speed simultaneously the CPU architectures developed multicore processors units in which two or more processors were used to execute the task. The multicore technology offered better response-time while running big applications, better power management and faster execution time. Multicore processors also gave developer an opportunity to parallel programming to execute the task in parallel. These days parallel programming is used to execute a task by distributing it in smaller instructions and executing them on different cores. By using parallel programming the complex tasks that are carried out in a multicore environment can be executed with higher efficiency and performance. Keywords: Multicore Processing, Multicore Utilization, Parallel Processing. INTRODUCTION From the day computers have been invented a great importance has been given to its efficiency for executing the task.
    [Show full text]
  • Vector Vs. Scalar Processors: a Performance Comparison Using a Set of Computational Science Benchmarks
    Vector vs. Scalar Processors: A Performance Comparison Using a Set of Computational Science Benchmarks Mike Ashworth, Ian J. Bush and Martyn F. Guest, Computational Science & Engineering Department, CCLRC Daresbury Laboratory ABSTRACT: Despite a significant decline in their popularity in the last decade vector processors are still with us, and manufacturers such as Cray and NEC are bringing new products to market. We have carried out a performance comparison of three full-scale applications, the first, SBLI, a Direct Numerical Simulation code from Computational Fluid Dynamics, the second, DL_POLY, a molecular dynamics code and the third, POLCOMS, a coastal-ocean model. Comparing the performance of the Cray X1 vector system with two massively parallel (MPP) micro-processor-based systems we find three rather different results. The SBLI PCHAN benchmark performs excellently on the Cray X1 with no code modification, showing 100% vectorisation and significantly outperforming the MPP systems. The performance of DL_POLY was initially poor, but we were able to make significant improvements through a few simple optimisations. The POLCOMS code has been substantially restructured for cache-based MPP systems and now does not vectorise at all well on the Cray X1 leading to poor performance. We conclude that both vector and MPP systems can deliver high performance levels but that, depending on the algorithm, careful software design may be necessary if the same code is to achieve high performance on different architectures. KEYWORDS: vector processor, scalar processor, benchmarking, parallel computing, CFD, molecular dynamics, coastal ocean modelling All of the key computational science groups in the 1. Introduction UK made use of vector supercomputers during their halcyon days of the 1970s, 1980s and into the early 1990s Vector computers entered the scene at a very early [1]-[3].
    [Show full text]
  • Parallel Processing! 1! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 2! Suggested Readings! •! Readings! –! H&P: Chapter 7! •! (Over Next 2 Weeks)!
    CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 1! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 2! Suggested Readings! •! Readings! –! H&P: Chapter 7! •! (Over next 2 weeks)! Lecture 23" Introduction to Parallel Processing! University of Notre Dame! University of Notre Dame! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 3! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 4! Processor components! Multicore processors and programming! Processor comparison! vs.! Goal: Explain and articulate why modern microprocessors now have more than one core andCSE how software 30321 must! adapt to accommodate the now prevalent multi- core approach to computing. " Introduction and Overview! Writing more ! efficient code! The right HW for the HLL code translation! right application! University of Notre Dame! University of Notre Dame! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! 6! Pipelining and “Parallelism”! ! Load! Mem! Reg! DM! Reg! ALU ! Instruction 1! Mem! Reg! DM! Reg! ALU ! Instruction 2! Mem! Reg! DM! Reg! ALU ! Instruction 3! Mem! Reg! DM! Reg! ALU ! Instruction 4! Mem! Reg! DM! Reg! ALU Time! Instructions execution overlaps (psuedo-parallel)" but instructions in program issued sequentially." University of Notre Dame! University of Notre Dame! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! CSE 30321 – Lecture 23 – Introduction to Parallel Processing! Multiprocessing (Parallel) Machines! Flynn#s
    [Show full text]
  • Challenges for the Message Passing Interface in the Petaflops Era
    Challenges for the Message Passing Interface in the Petaflops Era William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp What this Talk is About The title talks about MPI – Because MPI is the dominant parallel programming model in computational science But the issue is really – What are the needs of the parallel software ecosystem? – How does MPI fit into that ecosystem? – What are the missing parts (not just from MPI)? – How can MPI adapt or be replaced in the parallel software ecosystem? – Short version of this talk: • The problem with MPI is not with what it has but with what it is missing Lets start with some history … Argonne National Laboratory 2 Quotes from “System Software and Tools for High Performance Computing Environments” (1993) “The strongest desire expressed by these users was simply to satisfy the urgent need to get applications codes running on parallel machines as quickly as possible” In a list of enabling technologies for mathematical software, “Parallel prefix for arbitrary user-defined associative operations should be supported. Conflicts between system and library (e.g., in message types) should be automatically avoided.” – Note that MPI-1 provided both Immediate Goals for Computing Environments: – Parallel computer support environment – Standards for same – Standard for parallel I/O – Standard for message passing on distributed memory machines “The single greatest hindrance to significant penetration of MPP technology in scientific computing is the absence of common programming interfaces across various parallel computing systems” Argonne National Laboratory 3 Quotes from “Enabling Technologies for Petaflops Computing” (1995): “The software for the current generation of 100 GF machines is not adequate to be scaled to a TF…” “The Petaflops computer is achievable at reasonable cost with technology available in about 20 years [2014].” – (estimated clock speed in 2004 — 700MHz)* “Software technology for MPP’s must evolve new ways to design software that is portable across a wide variety of computer architectures.
    [Show full text]
  • Efficient Synchronization Mechanisms for Scalable GPU Architectures
    Efficient Synchronization Mechanisms for Scalable GPU Architectures by Xiaowei Ren M.Sc., Xi’an Jiaotong University, 2015 B.Sc., Xi’an Jiaotong University, 2012 a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the faculty of graduate and postdoctoral studies (Electrical and Computer Engineering) The University of British Columbia (Vancouver) October 2020 © Xiaowei Ren, 2020 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: Efficient Synchronization Mechanisms for Scalable GPU Architectures submitted by Xiaowei Ren in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering. Examining Committee: Mieszko Lis, Electrical and Computer Engineering Supervisor Steve Wilton, Electrical and Computer Engineering Supervisory Committee Member Konrad Walus, Electrical and Computer Engineering University Examiner Ivan Beschastnikh, Computer Science University Examiner Vijay Nagarajan, School of Informatics, University of Edinburgh External Examiner Additional Supervisory Committee Members: Tor Aamodt, Electrical and Computer Engineering Supervisory Committee Member ii Abstract The Graphics Processing Unit (GPU) has become a mainstream computing platform for a wide range of applications. Unlike latency-critical Central Processing Units (CPUs), throughput-oriented GPUs provide high performance by exploiting massive application parallelism.
    [Show full text]
  • A Survey on Parallel Multicore Computing: Performance & Improvement
    Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 152-160 (2018) ASTESJ www.astesj.com ISSN: 2415-6698 A Survey on Parallel Multicore Computing: Performance & Improvement Ola Surakhi*, Mohammad Khanafseh, Sami Sarhan University of Jordan, King Abdullah II School for Information Technology, Computer Science Department, 11942, Jordan A R T I C L E I N F O A B S T R A C T Article history: Multicore processor combines two or more independent cores onto one integrated circuit. Received: 18 May, 2018 Although it offers a good performance in terms of the execution time, there are still many Accepted: 11 June, 2018 metrics such as number of cores, power, memory and more that effect on multicore Online: 26 June, 2018 performance and reduce it. This paper gives an overview about the evolution of the Keywords: multicore architecture with a comparison between single, Dual and Quad. Then we Distributed System summarized some of the recent related works implemented using multicore architecture and Dual core show the factors that have an effect on the performance of multicore parallel architecture Multicore based on their results. Finally, we covered some of the distributed parallel system concepts Quad core and present a comparison between them and the multiprocessor system characteristics. 1. Introduction [6]. The heterogenous cores have more than one type of cores, they are not identical, each core can handle different application. Multicore is one of the parallel computing architectures which The later has better performance in terms of less power consists of two or more individual units (cores) that read and write consumption as will be shown later [2].
    [Show full text]
  • Analysis of Multithreaded Architectures for Parallel Computing
    Analysis of Multithreaded Architectures for Parallel Computing Rafael H. Saavedra-Barrera David E. Culler Thorsten von Eicken Computer Science Division University of California Berkeley, California 94720 Abstract The latency avoidance strategy embodied in caches is Multithreading has been proposed as an architectural stra- attractive for multiprocessors because local copies of shared data tegy for tolerating latency in multiprocessors and, through lim- are produced on demand. However, this replication leads to a ited empirical studies, shown to offer promise. This paper thorny problem of maintaining a coherent image of the memory develops an analytical model of multithreaded processor [Good83, Arga88]. Concrete solutions exist for small bus-based behavior based on a small set of architectural and program multiprocessors, but even these involve considerable complexity parameters. The model gives rise to a large Markov chain, and observed miss rates on shared data are fairly high [Egge88]. which is solved to obtain a formula for processor efficiency in Approaches that do not provide automatic replication can be terms of the number of threads per processor, the remote refer- expected to make a larger number of long-latency requests. ence rate, the latency, and the cost of switching between threads. Several recent architectures adopt the alternative strategy It is shown that a multithreaded processor exhibits three operat- of tolerating latency. These can be loosely classified as mul- ing regimes: linear (efficiency is proportional to the number of tithreaded architectures, because each processor supports several threads), transition, and saturation (efficiency depends only on active threads of computation. While some threads are the remote reference rate and switch cost).
    [Show full text]