Experimenting and Simulating Thermoelectric Cooling of an LED Module

Total Page:16

File Type:pdf, Size:1020Kb

Experimenting and Simulating Thermoelectric Cooling of an LED Module PAPER EXPERIMENTING AND SIMULATING THERMOELECTRIC COOLING OF AN LED MODULE Experimenting and Simulating Thermoelectric Cooling of an LED Module http://dx.doi.org/10.3991/ijoe.v11i4.4692 Mika Maaspuro Aalto University, Aalto, Finland Abstract — Use of a thermoelectric component (TEC) for an mounted on the hot side. TEC is a small size and a LED module cooling will be studied. The issue will be relative inexpensive component. Therefore TECs are approached by revealing the operation of a thermoelectric widely used in many applications. component known also as Peltier element, and the main equations describing its behaviour. An experimental setup TEC has some significant drawbacks. It does not fit well including an LED module, a TEC, an heatsink and a fan will be build. Heat dissipation and the electrical performance in high efficiency devices. Efficiency is related to figure- measurements of the hole experimental setup will be of-merit ZT, which for present day TEC is close to 1 [2]. conducted. The benefits and the limitations of TEC used in Efficiency is the highest at negligible output power level cooling, will be revealed. Cooling effect versus used but reduces at higher levels [3]. TEC generates Joule electrical power will be studied. 3D thermal simulations for heating according to its ohmic resistance and the electric the experimental setup using a FEM simulation software current which flows through it. This heat must be will be presented. Alternatively, a standard circuit simulator removed also by the HS or the HSF mounted on the TEC. will be used. A spice model, which imports TEC's Use of TEC as an active cooling device for LEDs has parameters from the data sheet, will be developed. The spice been studied by authors [4-6]. In those studies, TEC is simulation results are compared with the experimental results. used with passive cooling devices. Compared with passive cooling alone, the addition of TEC makes it Index Terms — FEM-simulations, LED thermal manage- possible to reach much lower LED junction temperature. ment, thermoelectric cooling. Using TEC as part of a cooling system can be a practical solution in some specific applications of LED lighting. Applications were the lighting device should remain at I. INTRODUCTION very low temperature. Applications where extremely Thermal management is important for maintaining a stable light levels and fast lighting control are requested. stable light production and lifetime of an LED. Reduction Applications where long operation life and maintenance in the LED junction temperature increases the light free operation are requested. The most common production and extends the lifetime. Proper thermal application of TEC in LED lighting might be a light management requires the use of heat dissipation device. source for microscopy use where both the light intensity These can be either passive or active devices. The active and the wavelength stability are requested. heat dissipation devices, practically cooling devices, are fans, microchannel coolers, heat exchangers and thermoelectric components (TEC). Usually active heat II. THERMOELECTRIC COMPONENT dissipation requires the use of some passive cooling devices, most often heatsinks. A heat pipe is a very TEC is able to generate temperature difference !T efficient cooling device. Using a heat pipe with TEC has between its cold and hot side. While the electric current been studied by [1]. A heatsink (HS) as a single cooling flows through the component, the cold side gets cooler device is widely used as well. Heatsink with a fan (HSF) and the hot side warmer. By reversing the direction of the is a widely used cooling arrangement. This study focus electric current, reverse the cold and sides as well. Just a on the cooling arrangements which use either HS, HSF or few equations are needed to describe the operation of TEC with HSF. TEC. The equations for the heat flow through the cold qc and the hot side qh are: TEC has some good characteristics. The cooling effect is fast. Without moving parts, TEC provides silent and maintenance-free operation. TEC can cool LED even !T 1 2 qc = + #m T c I ! I Rm (1) below the ambient temperature. This is not possible by " m 2 using HS or HSF. TEC is a solid state device of high reliability having MTBF higher than 100 000 hours. Its !T 1 2 q = + # T I + I R (2) MTBF is in the same range as LED's. TEC features high h m h m " m 2 stability and it is accurately controlled by the electric current which flows through it. The effective use of TEC While an electric current I flows through the component, requires HS, HSF, or some other heat convection device a voltage V will be measured over it. iJOE ‒ Volume 11, Issue 4, 2015 47 PAPER EXPERIMENTING AND SIMULATING THERMOELECTRIC COOLING OF AN LED MODULE reached at low air speed and therefore the fan is operated V = #m T h !#m T c =#m !T (3) at 0.5W. The hole setup stands on bars which are thermally isolated from the setup and from the -1 Where "m is the Seebeck coefficient, #m the thermal environment. For temperature measurements, there are resistance of the element and Rm is the electrical fixtures for type K thermo-couples on each aluminium resistance of the element. TEC is made of N pellets, plate and on the heatsink. Resolution in the temperature which are made of suitable semiconductor material, most measurements is ± 1 °C, but accuracy is better than this. often bismuth telluride. These pellets are arranged by pairs, each of them has one n-type and one p-type The setup uses an LED driver, which is controlled by component. All the pellets are connected electrically in computer software via DALI, Digital Addressable series and thermally in parallel. This means the total "m' = Lighting Interface. The benefit of DALI control in this N$"m, Rm' = N$Rm and #m' = #m/N. Equations (1-3) are experiment is that power settings can be done and able to explain the basic operation of TEC. Normally, repeated accurately. The maximum electrical power the some other equations are presented to better qualify the driver can source for the LED module is 15.2 W. TEC. The general quality of TEC is the figure-of-merit, Measurements have been done at four input electrical ZT which is defined as power levels. # " ZT = m m (4) Rm High ZT is desired. For a high value of ZT, both the Seebeck coefficient and thermal resistance should be maximized and at the same time Rm should be minimized. Another measure for the quality of TEC is the coefficient of performance COP. This is defined as qc Figure 1. The LED module, the aluminium plates, the TEC, the COP = 2 (5) heatsink, the fan, and the thermocouples. The system is standing on a m I!T+ I Rm thermally isolated bars. It can be seen from Equ. 5 that Joule heating generated by the electrical resistance Rm is the major reason which reduces COP. COP gives a measure of how much heat can be absorbed on the cool side at certain temperature difference !T and electric current I. Material characteristics are temperature dependent [7]. The review study of bismuth telluride [2] shows that maximum ZT can be even 1.5 for p-type and 1.2 for n-type material, and the maximum is reached at elevated temperatures. III. EXPERIMENTAL WORK For the experimental work, a setup shown in Fig. 1. has been manufactured. It has an LED module mounted on a thick aluminium plate. The LED module is type Xlamp CXA2011 (Cree). The aluminium plates serve as a heat spreaders and they are made wide enough that temperature sensors can easily be mounted on it. The TEC module can be mounted on the aluminium plate. The TEC module is type TEC1-12706 (Hebei I.T Co. Ltd. Shanghai). It has dimensions of 40 mm x 40 mm x 3.9 mm and its Qmax is specified to 57 W. Above the Figure 2. The measured setups. a) LED, aluminium plate and heatsink. TEC, there is another aluminium plate. A finned heatsink b) LED, aluminium plate and fan. c) LED, two aluminium plates, TEC, heatsink and fan. TIM is used between the LED and the plates and is mounted on the aluminium plate. The heatsink has between the plates and the TEC and between the plate and the heatsink. dimensions of 60 mm x 60 mm x 35 mm. Small amount The heatsink has size of 60 mm x 60 mm x 35 mm. The aluminium of thermal interface material (TIM) is used between the plates have size of 50 mm x 50 mm x 5 mm. surfaces. Standard silicone based cream has been used. Top of the heatsink is a fan. The maximum electrical power of the fan is 2 W. An efficient cooling effect can be 48 http://www.i-joe.org PAPER EXPERIMENTING AND SIMULATING THERMOELECTRIC COOLING OF AN LED MODULE (TIM). Fig. 5 shows how the junction temperature changes versus the electric current of the TEC with four LED power levels. At all power levels, the minimum junction temperature will be reached at electric current between 2 and 2.5 A. In Fig.6, these results are compared with the case where only the heatsink and the fan are used. Fig. 6 shows the benefit the TEC provides. It can be seen that due to the added aluminium plate, the TEC and the additional TIM layer in case c, some cooling effect of TEC is needed to reach the same cooling effect of case b. By using the optimal TEC electric current the junction temperature can be reduced at every power level of the LED.
Recommended publications
  • UNIVERSITY of CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION of MICROSCALE THERMOELECTRIC EFFECTS a Dissert
    UNIVERSITY OF CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION OF MICROSCALE THERMOELECTRIC EFFECTS A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL ENGINEERING by Tela Favaloro September 2014 The Dissertation of Tela Favaloro is approved: Professor Ali Shakouri, Chair Professor Joel Kubby Professor Nobuhiko Kobayashi Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Tela Favaloro 2014 This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License Table of Contents List of Figures ............................................................................................................................ vi List of Tables ........................................................................................................................... xiv Nomenclature .......................................................................................................................... xv Abstract ................................................................................................................................. xviii Acknowledgements and Collaborations ................................................................................. xxi Chapter 1 Introduction .......................................................................................................... 1 1.1 Applications of thermoelectric devices for energy conversion ................................... 1
    [Show full text]
  • Thermal Interface Material Catalog
    Thermal Interface Materials One Company, Many Solutions www.boydcorp.com BC012021 Thermal Interface Materials TABLE OF CONTENTS Title Page Introduction . 2 Gap Fillers . 3 Gap Rubber Pads . 12 Graphite . 16 Phase Change Materials . 18 Tapes . 21 Thermal Epoxy. 24 Thermal Grease . 25 Lorem ipsum 1 BC012021 Thermal Interface Materials INTRODUCTION Thermal Interface Materials (TIMs) are a critical portion to any effective thermal management system as they transfer heat between solid surfaces. Boyd provides a full array of thermal interface materials, from soft materials like gap fillers, phase change materials, and thermal grease to less compliant materials like thermal rubber pads, films, and thermally conductive hardware. Our broad portfolio contains many options that include electrical isolating properties, adhesives, reinforcements, carriers, and a variety of hardnesses to meet varying application requirements. Boyd's engineering team is well-equipped to help you determine the best material to meet your project’s needs. We leverage our relationships with suppliers and our TIM expertise, developed from decades of tests and projects, to pick the material best suited for your application. Boyd’s precision converting and assembly expertise can custom fabricate and pre-apply Thermal Interface Materials on Aavid’s thermal management solutions like liquid cold plates or heat sinks. By providing complete, ready-to-install thermal Lorem ipsum management solutions, we help customers reduce assembly time and costs with a complete and integrated thermal solution. 2 BC012021 TECHNICAL DATASHEET Transtherm® Thermally Conductive Gap Filler TRANSTHERM® THERMALLY CONDUCTIVE GAP FILLERS Transtherm® Thermally Conductive Gap Fillers are soft, malleable interface materials with high thermal conductivity. Gap fillers are ideal for applications with significant distances between the heat source and cooling surface, varying component heights, high tolerance stack up variability, and uneven or rough surfaces.
    [Show full text]
  • Noncuring Graphene Thermal Interface Materials for Advanced Electronics
    FULL PAPER www.advelectronicmat.de Noncuring Graphene Thermal Interface Materials for Advanced Electronics Sahar Naghibi, Fariborz Kargar,* Dylan Wright, Chun Yu Tammy Huang, Amirmahdi Mohammadzadeh, Zahra Barani, Ruben Salgado, and Alexander A. Balandin* development of next generation of compact Development of next-generation thermal interface materials (TIMs) with high and flexible electronics.[1] The increase in thermal conductivity is important for thermal management and packaging computer usage and ever-growing depend- ence on cloud systems require better of electronic devices. The synthesis and thermal conductivity measurements methods for dissipating heat away from of noncuring thermal paste, i.e., grease, based on mineral oil with a mixture electronic components. The important of graphene and few-layer graphene flakes as the fillers, is reported. The ingredients of thermal management are the graphene thermal paste exhibits a distinctive thermal percolation threshold thermal interface materials (TIMs). Various with the thermal conductivity revealing a sublinear dependence on the filler TIMs interface two uneven solid surfaces loading. This behavior contrasts with the thermal conductivity of curing where air would be a poor conductor of heat, and aid in heat transfer from one medium graphene TIMs, based on epoxy, where superlinear dependence on the filler into another. Two important classes of TIMs loading is observed. The performance of the thermal paste is benchmarked include curing and noncuring composites. against top-of-the-line commercial thermal pastes. The obtained results show Both of them consist of a base, i.e., matrix that noncuring graphene TIMs outperforms the best commercial pastes in materials, and thermally conducting fillers. terms of thermal conductivity, at substantially lower filler concentration of Commonly, the studies of new fillers for the use in TIMs start with the curing epoxy- ϕ = 27 vol%.
    [Show full text]
  • US5198189.Pdf
    |||||||||||| USOO598 89A United States Patent (19) 11 Patent Number: 5,198,189 Booth et al. r (45) Date of Patent: Mar. 30, 1993 54) LIQUID METAL MATRIXTHERMAL PASTE FOREIGN PATENT DOCUMENTS (75) Inventors: Richard B. Booth, Wappingers Falls; 0009605 4/1980 European Pat. Off. Gary W. Grube, Washingtonville; 332981 4/1972 U.S.S.R. ............................. 420/.555 Peter A. Gruber, Mohegan Lake; Igor Y. Khandros, Peekskill; Arthur OTHER PUBLICATIONS R. Zingher, White Plains, all of N.Y. Patent Abstracts of Japan, vol. 12, No. 342 (E-658), 73 Assignee: International Business Machines Sep. 14th, 1988; JP-A-63 102 345 (Fujitsu Ltd) May 7, 1988. Corporation, Armonk, N.Y. Patent Abstracts of Japan, vol. 8, No. 236 (C-249), Oct. 21 Appl. No.: 870,152 30th, 1984; and JP-A-59 16 357 (Hitachi Seisakusho K.K.) Jul. 5, 1984. (22 Filed: Apr. 13, 1992 Patent Abstracts of Japan, vol. 7, No. 218 (E-200), Sep. 28th, 1983; and JP-A-58 111 354 (Hitachi Seisakusho Related U.S. Application Data K.K.) Jul. 2, 1983. a Patent Abstracts of Japan, vol. 11, No. 3 (C-395), Jan. 63 Continuation of Ser. No. 389,131, Aug. 3, 1989. 7th, 1987; and JP-A-61 179 844 (Tokuriki Honten Co., 51) Int. C. .............................................. C22C 28/00 Ltd) Aug. 12, 1986. 52 U.S. Cl. ..................................... 420/555; 252/387 Primary Examiner-Peter D. Rosenberg 58 Field of Search ..................... 420/555; 228/1802; Attorney, Agent, or Firm-Philip J. Feig 252/38 7 57 ABSTRACT (56) References Cited A liquid metal matrix thermal paste comprises a disper U.S.
    [Show full text]
  • Classifying TIM Materials for Power LED Applications
    Classifying and Understanding Thermal Interface Materials for Power LED Applications David L. Saums, Principal DS&A LLC Amesbury MA USA www.dsa-thermal.com IMAPS France 7th European Advanced Technology Workshop on Thermal Management and Micropackaging La Rochelle, France 1-2 February 2012 © Copyright 2012 DS&A LLC Selection of Thermal Interface Materials • Large number of different types of TIMs available from more than 100 vendors. • Many competing and similar materials • Reasons: . Very large number of different types of applications . Used in categories of electronic components and electronic systems today . Very widely different requirements for: • Performance: thermal, EOL reliability, gap-filling, compliancy, temperature tolerance • Application process needs • Function: electrically-conducting, electrically non-conducting, sealing, adhesion or fastening hardware required, other . Very different cost tolerance for different applications . Dielectric materials for electrically-live semiconductors – a less-common requirement . Very different manufacturing process requirements, given the wide range of types of application requirements . Extended product life and reliability requirements for critical applications IMAPS France 7th European ATW on Thermal Classifying and Understanding Thermal Interface Materials for Page 2 © Copyright 2012 DS&A LLC Management and Micropackaging Power LED Applications 1-2 February 2012 Selection of Thermal Interface Materials • Maximum performance is not the solitary method of selection for the “best” TIM. • Performance by what measure? . The answer to this question is driven by the application requirements. Choices: thermal, electrical, dielectric, gap-filling, dispensable, EOL reliability, more… • What are the primary drivers for TIM material thermal performance as a very generalized statement? 1. Clamping force applied: How much force is applied to a compliant form of TIM, to achieve the thinnest possible layer and maximum metal-to-metal contact.
    [Show full text]
  • Electrolube Thermal Management Solutions
    Thermal Management Solutions Created to perform when the heat is on Thermal Management Solutions • Silicone & Non-Silicone Pastes • RTVs and Bonding Products • Phase Change Materials • Encapsulation Resins • Silicone & Non-Silicone Gap Pads • 0.9 to 5.5W/m.K During use, some electronic components can generate significant amounts of heat. Failure to effectively dissipate this heat away from the component and the device can lead to reliability concerns and reduced operational lifetimes. Newton’s law of cooling states that the rate of loss Heat sinks have proven to be very effective over the of heat is proportional to the temperature difference years however in order to ensure full contact and between the body and its surroundings. Therefore, therefore maximum efficiency, thermal management as the temperature of the component increases and products are used alongside. reaches its equilibrium temperature, the rate of heat loss Metal surfaces, even when polished to a fine degree, per second will equate to the heat produced per second have a certain amount of roughness. It can therefore within the component. This temperature may be high be deduced that when two metal surfaces are placed enough to significantly shorten the life of the component together contact is not 100% and there will always or even cause the device to fail. It is in such cases that be an air gap between the two surfaces. The use of thermal management measures need to be taken. a thermal interface material (TIM) between such gaps The same considerations can be applied to a complete ensures complete contact between the two surfaces circuit or device which incorporates heat producing and in turn more efficient heat conductance.
    [Show full text]
  • A Process, Structure, and Property Study of Gallium-Based Room Temperature Metallic Alloys Courtney Lyn Titus University of North Florida
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2019 A Process, Structure, and Property Study of Gallium-based Room Temperature Metallic Alloys Courtney Lyn Titus University of North Florida Suggested Citation Titus, Courtney Lyn, "A Process, Structure, and Property Study of Gallium-based Room Temperature Metallic Alloys" (2019). UNF Graduate Theses and Dissertations. 871. https://digitalcommons.unf.edu/etd/871 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2019 All Rights Reserved A Process, Structure, and Property Study of Gallium-based Room Temperature Metallic Alloys By Courtney Titus A thesis submitted to the School of Engineering in partial fulfillment of the requirements for the degree of Master’s of Science in Mechanical Engineering University of North Florida College of Computing, Engineering, and Construction April 2019 Unpublished work © Courtney Titus This Thesis titled A Process, Structure, and Property Study of Gallium-based Room Temperature Metallic Alloys is approved: Approved by the thesis committee: Date ____________________________ __________________ Dr. Stephen Stagon Thesis Advisor and Committee Chairperson ____________________________ __________________ Dr. Paul Eason ____________________________ __________________ Dr. Grant Bevill Accepted for the School of Engineering: ____________________________ __________________ Dr. Osama Jadaan Director of the School of Engineering Accepted for the College of Computing, Engineering, and Construction: ____________________________ __________________ Dr. William Klostermeyer Dean of the College Accepted for the University: ____________________________ __________________ Dr. John Kantner Dean of the Graduate School iii ACKNOWLEDGMENTS I would like to thank my advisor and committee chair, Dr.
    [Show full text]
  • Thermal Compound Selection Guide Silicone-Free Thermal Interface Material
    Thermal Compound Selection Guide Silicone-Free Thermal Interface Material Thermal Interface Material (TIM) is any material used to enhance thermal coupling between two parts. TIM may be known by any number of names including thermal compound, thermal grease, thermal gel, heat sink compound, CPU grease, gap filler, and thermal paste. Each is formulated to provide an advantage in specific use conditions. Depending on the materials used, unit price varies from inexpensive to quite high for premium performance. When two surfaces are placed in contact, surface imperfections cause contact to occur at discrete points, with a relatively low percentage of the nominal area making contact. Thermal compounds are intended to conform to surfaces, filling in the space between discrete contact points. This creates an uninterrupted, thermally- conductive path between surfaces, delivering far better heat- carrying capacity than contact points alone. Mechanics of Heat Transfer Choosing the best thermal compound requires some understanding of the mechanics of heat transfer and how the thickness of the thermal compound layer, the bond line thickness, influences product choice. Bond line can be divided into three categories: • Low, at less than 75 μm • Medium, from 75 to 250 μm Thermal compound can be packaged in any size Nordson EFD syringe barrel or cartridge along with 6 oz jars and 1 and 5 gallon pails. • High, at greater than 250 μm There are two critical thermal performance characteristics: Thermal Conductivity (TC) and Thermal Resistance (TR). In low bond line applications, thermal resistance dominates performance. In high bond line applications, thermal conductivity dominates performance. In medium bond line there is a blended influence.
    [Show full text]
  • Electrolube Thermal Management Solutions
    Thermal Management Solutions Created to perform when the heat is on Thermal Management Solutions • Non-Silicone Pastes • Encapsulation Resins • Silicone Pastes • 0.9 to 3.4W/m.K • RTVs and Bonding Products During use, some electronic components can generate significant amounts of heat. Failure to effectively dissipate this heat away from the component and the device can lead to reliability concerns and reduced operational lifetimes. Newton’s law of cooling states that the rate of loss Heat sinks have proven to be very effective over the of heat is proportional to the temperature difference years however in order to ensure full contact and between the body and its surroundings. Therefore, therefore maximum efficiency, thermal management as the temperature of the component increases and products are used alongside. reaches its equilibrium temperature, the rate of heat loss Metal surfaces, even when polished to a fine degree, per second will equate to the heat produced per second have a certain amount of roughness. It can therefore within the component. This temperature may be high be deduced that when two metal surfaces are placed enough to significantly shorten the life of the component together contact is not 100% and there will always or even cause the device to fail. It is in such cases that be an air gap between the two surfaces. The use of a thermal management measures need to be taken. thermal interface material between such gaps ensures The same considerations can be applied to a complete complete contact between the two surfaces and in turn circuit or device which incorporates heat producing more efficient heat conductance.
    [Show full text]
  • Thermal Interface Materials (TIM) for a Wide Product Range
    Technical Explanation Revision: 03 Thermal Interface Issue date: 2019-09-25 Prepared by: Stefan Hopfe Materials Approved by: A.Wintrich Keyword: Thermal Interface Material, Thermal Paste, Grease, TIM, Phase Change Material 1. Introduction ............................................................................................................................... 1 Advantages .................................................................................................................................. 1 2. Technical Details ........................................................................................................................ 2 2.1 TIM Materials ........................................................................................................................ 2 2.2 Print pattern tolerances .......................................................................................................... 3 2.3 Surface specification for the heat sink ...................................................................................... 3 3. Qualification Tests ...................................................................................................................... 4 3.1 Typical qualification tests for shelf life of pre-printed modules inside blister .................................. 4 3.2 Typical qualification tests for reliability (module mounted on heat sink) ....................................... 4 3.3 Conclusion ...........................................................................................................................
    [Show full text]
  • Comparison of Carbon Nanofiller-Based Polymer Composite Adhesives and Pastes for Thermal Interface Applications
    This is a repository copy of Comparison of carbon nanofiller-based polymer composite adhesives and pastes for thermal interface applications. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/87916/ Version: Accepted Version Article: Raza, MA, Westwood, AVK and Stirling, C (2015) Comparison of carbon nanofiller-based polymer composite adhesives and pastes for thermal interface applications. Materials and Design, 85. 67 - 75. ISSN 0264-1275 https://doi.org/10.1016/j.matdes.2015.07.008 © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/
    [Show full text]
  • Heat Transfer Compound
    Page 1 HTC Heat Transfer Compound HTC is a non-curing heat transfer paste, designed for use as a thermal interface material. It is recommended where the efficient and reliable thermal coupling of electronic components or heat dissipation between any surfaces are required. HTC is a non-silicone paste, suitable for applications where silicones are prohibited, thus avoiding issues with silicone and low molecular weight siloxane migration. • General purpose thermal management paste; cost effective heat dissipation • Based on a non-silicone oil; avoids issues with silicone and LMW siloxane migration • Good thermal conductivity; designed for use as a thermal interface material • Non-curing paste; allows simple and efficient rework of components if required Approvals RoHS-2 Compliant (2011/65/EU): Yes NATO Stock No. – EHTC10S: 6850-99-775-5881 NATO Stock No. – EHTC20S: 5835-99-775-5881 NATO Stock No. – EHTC35S: 5975-99-512-1473 Typical Properties Colour: White Base: Blend of synthetic fluids Thermo-conductive Component: Powdered metal oxides Density @ 20°C (g/ml): 2.04 Cone Penetration @ 20°C: 300 Viscosity @ 1rpm (Pa s): 202-205 Thermal Conductivity (Guarded Hot Plate): 0.9 W/m.K Thermal Conductivity (Heat Flow): 0.7 W/m.K (calculated) Temperature Range: -50°C to +130°C Weight Loss after 96 hours @ 100°C: <1.0% Permittivity @ 1 GHz: 4.2 Specific Resistance: 1 x 1014 Ohms/cm Dielectric Strength: 42 kV/mm Description Packing Order Code Shelf Life 2 ml Syringe HTC02S 48 months Heat Transfer Compound 10 ml Syringe HTC10S 48 months 20 ml Syringe HTC20S 48 months 35 ml Luer Lock Syringe HTC35SL 48 months 700 gram cartridge HTC700G 72 months 1 Kg Bulk HTC01K 72 months 12.5kg Bulk HTC12.5K 72 months 25 Kg Bulk HTC25K 72 months Page 2 Directions for Use Thermal pastes can be applied to the base and mounting studs of diodes, transistors, thyristors, heat sinks, silicone rectifiers and semi-conductors, thermostats, power resistors and radiators, to name but a few.
    [Show full text]