US5198189.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

US5198189.Pdf |||||||||||| USOO598 89A United States Patent (19) 11 Patent Number: 5,198,189 Booth et al. r (45) Date of Patent: Mar. 30, 1993 54) LIQUID METAL MATRIXTHERMAL PASTE FOREIGN PATENT DOCUMENTS (75) Inventors: Richard B. Booth, Wappingers Falls; 0009605 4/1980 European Pat. Off. Gary W. Grube, Washingtonville; 332981 4/1972 U.S.S.R. ............................. 420/.555 Peter A. Gruber, Mohegan Lake; Igor Y. Khandros, Peekskill; Arthur OTHER PUBLICATIONS R. Zingher, White Plains, all of N.Y. Patent Abstracts of Japan, vol. 12, No. 342 (E-658), 73 Assignee: International Business Machines Sep. 14th, 1988; JP-A-63 102 345 (Fujitsu Ltd) May 7, 1988. Corporation, Armonk, N.Y. Patent Abstracts of Japan, vol. 8, No. 236 (C-249), Oct. 21 Appl. No.: 870,152 30th, 1984; and JP-A-59 16 357 (Hitachi Seisakusho K.K.) Jul. 5, 1984. (22 Filed: Apr. 13, 1992 Patent Abstracts of Japan, vol. 7, No. 218 (E-200), Sep. 28th, 1983; and JP-A-58 111 354 (Hitachi Seisakusho Related U.S. Application Data K.K.) Jul. 2, 1983. a Patent Abstracts of Japan, vol. 11, No. 3 (C-395), Jan. 63 Continuation of Ser. No. 389,131, Aug. 3, 1989. 7th, 1987; and JP-A-61 179 844 (Tokuriki Honten Co., 51) Int. C. .............................................. C22C 28/00 Ltd) Aug. 12, 1986. 52 U.S. Cl. ..................................... 420/555; 252/387 Primary Examiner-Peter D. Rosenberg 58 Field of Search ..................... 420/555; 228/1802; Attorney, Agent, or Firm-Philip J. Feig 252/38 7 57 ABSTRACT (56) References Cited A liquid metal matrix thermal paste comprises a disper U.S. PATENT DOCUMENTS sion of non-reacting thermally conductive particles in a 3,150,901 9/1964 Esten et all 308/241 low melting temperature liquid metal matrix. The parti 3,169,859 2/1965 Treaftis et al........ 75/134 cles preferably are silicon, molybdenum, tungsten or 3,175,893 3/1965 Meretsky et al. ... .25/19, other materials which do not react with gallium at ten 3,209,450 10/1965 Klein et al. .......... 29/492 peratures below approximately 100° C. The preferred 3,839,780 10/1974 Freedman et al. ... 29/50 liquid metals are gallium and indium eutectic, gallium 4,092,697 5/1976 Spaight ... - - - - - - 361/386 and tin eutectic and gallium, indium and tin ternary 4,233,103 11/1980 Shaheen ... a > 0 a 56/33 eutectic. The particles may be coated with a noble metal 4,239,534 12/1980 Taketoshi ................. 75/13T to minimize surface oxidation and enhance wettability 4,323,914 4/1982 Berndlmaier et al. ... a 357/82 of the particles. The liquid metal matrix thermal paste is 4,398,975 8/1983 Ohsawa et al. .......... 4,659,384 4/1987 Daigo et al. ......... 1. used aS a high thermally conducting paste in cooling 5,012,858 5/1991 Natori et al. ..... .420/$55 high power dissipation components in conjunction with 5,024,264 6/1991 Natori et al. ..... .420/555 a conventional fluid cooling system. 5,053,195 10/1991 MacKay ....... ... 420/.555 5,056,706 10/1991 Dolbear et al. - - - - - - - - - 228/80.2 20 Claims, 3 Drawing Sheets U.S. Patent Mar. 30, 1993 Sheet 1 of 3 5,198,189 F G. 2A FIG. 2B U.S. Patent Mar. 30, 1993 Sheet 2 of 3 5,198,189 F. G. 3 ATOMIC PERCENT TN O 40 20 30 40 50 6O 70 80 90 00 300 250 200 50 400 50 LOUD + T IN 20.50C O (a Sn) 00 GO Sn 65 wt % Sn U.S. Patent Mar. 30, 1993 Sheet 3 of 3 5,198,189 5, 198,189 1. 2 scopic filling of liquid metal. Also, U.S. Pat. No. LIQUID METAL MATRIXTHERMAL PASTE 4,323,914 teaches the coating of the entire chip with a parylene film coating and then adding a macroscopic This application is a continuation of application Ser. metal joint to the cooling cap. Both of these patents No. 07/389,131 filed Aug. 3, 1989. 5 degrade the thermal conductivity of the joint by includ BACKGROUND OF THE INVENTION ing a poor thermal conductivity plastic film. The present invention relates to thermal paste and SUMMARY OF THE INVENTION particularly relates to a liquid metal matrix thermal The present invention provides a liquid metal matrix paste containing fine thermally conducting particles O thermal paste containing fine thermally conductive dispersed in a low melting temperature liquid metal particles dispersed in a low melting temperature liquid matrix and having high overall thermal conductivity. metal matrix. Preferably, the particles are metal or con The thermal paste is used to form a thermal joint be ductive non-metals selected to be non-reactive with the tween an electronic component, such as a chip, and a liquid metal matrix at low temperature in order to pro cooling system. 5 vide a semi-liquid fully compliant structure for an indef Modern very high performance electronic systems inite period of time. The particles are preferably tung often require a high density of chips having many high sten, molybdenum, silicon or other metals or high ther power gates. These electronic systems require cooling a mal conductivity materials which have a very low inter high power density through a limited temperature drop action rate with gallium, tin and indium at low tempera from a device junction to a cooling system. In order to 20 achieve the cooling requirement, the thermal joint from ture, i.e. at temperatures below approximately 100° C. the chip to the cooling system must possess a high ther The particles can also be non-metals having high ther mal conductivity. The thermal paste described hereinaf mal conductivity, such as diamonds. The particles can ter provides the highest available thermal conductivity be coated to enhance wettability. The preferred liquid thermal joint between a chip or component and the 25 metal matrix are gallium and indium eutectic alloys, cooling system obtained to date. gallium and tin eutectic alloys, and gallium, indium and In practical applications, the joint, in addition to pro tinternary eutectic alloys. viding high thermal conductivity, must compensate for The liquid metal matrix thermal paste is formulated as certain manufacturing tolerances inherent in any elec described below as a gallium-metal paste which perma tronic assembly. For instance, when assembling chips 30 nently and indefinitely retains its semi-liquid state under using the so-called controlled collapse circuit connector normal operating conditions and environment to serve technique (hereinafter referred to as C4), as a result of as a compliant thermal interface. The resultant paste variations in the size and shape of the solder ball arrays acts as a high thermal conductive medium which is used to connect the chip to a printed circuit board, there formed into a desired shape to enhance thermal transfer. are significant variations in chip height and tilt relative 35 By retaining its semi-liquid state under normal operat to the printed circuit board. The electrical connections, ing conditions without solidifying, the enhanced ther the C4 solder balls, are very fragile and the thermal mal transfer via the paste is sustained during many on joint must permit a certain amount of differential mo off power cycles when the components of the cooling tion of the individual chips forming an electrical system system expand and contract. The differential expansion assembly. Also, manufacturing tolerances cause varia of the various components results in significant thermal tions of the gap between the chip and the cooling sys stresses, which are particularly damaging at the compo tem. The combination of geometric variations and toler nent interfaces. A paste which solidifies over time, and ances conflict with the goal of achieving good thermal therefore, does not provide a compliant interface, will conduction by causing a very thin paste layer to be eventually crack after repeated expansion and contrac manifest between certain of the chips and the cooling 45 tion and cease to function as a good thermal transfer system. Despite the difficulty encountered, good ther medium. mal conduction is still achievable by using a paste hav A principal object of the present invention is, there ing high bulk thermal conductivity properties. fore, the provision of liquid metal matrix thermal paste Using known conventional thermal paste has pro having a high thermal conductivity while remaining in vided moderately good heat transfer plus moderate SO a semi-liquid state for an indefinite period of time. compliance. A commonly used paste contains a mixture Another object of the invention is the provision of a of zinc oxide in mineral oil. Such pastes have an upper liquid metal matrix thermal paste having high thermal limit of thermal conductivity. Also, the liquid and parti conductivity and adjustable viscosity. cles tend to phase separate after many power on-off A further object of the invention is the provision of a cycles. The conventional pastes rely upon the percula 55 liquid metal matrix thermal paste having high thermal tion of oxide particles in a low conductivity oil matrix conductivity for use as a thermal joint between an elec for thermal conductivity. The use of a low conductivity trical component, such as a chip, and a cooling system, oil matrix is the primary limiting factor in achieving or between successive parts of a cooling system. high thermal conductivity. The present invention pro A still further object of the invention is the provision vides for a high thermal conductivity of both the liquid of a liquid metal matrix thermal paste containing fine matrix and the dispersed particles. thermally conducting particles dispersed in a low tem There have been many proposals to use liquid metal perature liquid metal matrix which is stable for an indef thermal joints, particularly mercury, which may be inite period of time.
Recommended publications
  • UNIVERSITY of CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION of MICROSCALE THERMOELECTRIC EFFECTS a Dissert
    UNIVERSITY OF CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION OF MICROSCALE THERMOELECTRIC EFFECTS A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL ENGINEERING by Tela Favaloro September 2014 The Dissertation of Tela Favaloro is approved: Professor Ali Shakouri, Chair Professor Joel Kubby Professor Nobuhiko Kobayashi Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Tela Favaloro 2014 This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License Table of Contents List of Figures ............................................................................................................................ vi List of Tables ........................................................................................................................... xiv Nomenclature .......................................................................................................................... xv Abstract ................................................................................................................................. xviii Acknowledgements and Collaborations ................................................................................. xxi Chapter 1 Introduction .......................................................................................................... 1 1.1 Applications of thermoelectric devices for energy conversion ................................... 1
    [Show full text]
  • Thermal Interface Material Catalog
    Thermal Interface Materials One Company, Many Solutions www.boydcorp.com BC012021 Thermal Interface Materials TABLE OF CONTENTS Title Page Introduction . 2 Gap Fillers . 3 Gap Rubber Pads . 12 Graphite . 16 Phase Change Materials . 18 Tapes . 21 Thermal Epoxy. 24 Thermal Grease . 25 Lorem ipsum 1 BC012021 Thermal Interface Materials INTRODUCTION Thermal Interface Materials (TIMs) are a critical portion to any effective thermal management system as they transfer heat between solid surfaces. Boyd provides a full array of thermal interface materials, from soft materials like gap fillers, phase change materials, and thermal grease to less compliant materials like thermal rubber pads, films, and thermally conductive hardware. Our broad portfolio contains many options that include electrical isolating properties, adhesives, reinforcements, carriers, and a variety of hardnesses to meet varying application requirements. Boyd's engineering team is well-equipped to help you determine the best material to meet your project’s needs. We leverage our relationships with suppliers and our TIM expertise, developed from decades of tests and projects, to pick the material best suited for your application. Boyd’s precision converting and assembly expertise can custom fabricate and pre-apply Thermal Interface Materials on Aavid’s thermal management solutions like liquid cold plates or heat sinks. By providing complete, ready-to-install thermal Lorem ipsum management solutions, we help customers reduce assembly time and costs with a complete and integrated thermal solution. 2 BC012021 TECHNICAL DATASHEET Transtherm® Thermally Conductive Gap Filler TRANSTHERM® THERMALLY CONDUCTIVE GAP FILLERS Transtherm® Thermally Conductive Gap Fillers are soft, malleable interface materials with high thermal conductivity. Gap fillers are ideal for applications with significant distances between the heat source and cooling surface, varying component heights, high tolerance stack up variability, and uneven or rough surfaces.
    [Show full text]
  • Noncuring Graphene Thermal Interface Materials for Advanced Electronics
    FULL PAPER www.advelectronicmat.de Noncuring Graphene Thermal Interface Materials for Advanced Electronics Sahar Naghibi, Fariborz Kargar,* Dylan Wright, Chun Yu Tammy Huang, Amirmahdi Mohammadzadeh, Zahra Barani, Ruben Salgado, and Alexander A. Balandin* development of next generation of compact Development of next-generation thermal interface materials (TIMs) with high and flexible electronics.[1] The increase in thermal conductivity is important for thermal management and packaging computer usage and ever-growing depend- ence on cloud systems require better of electronic devices. The synthesis and thermal conductivity measurements methods for dissipating heat away from of noncuring thermal paste, i.e., grease, based on mineral oil with a mixture electronic components. The important of graphene and few-layer graphene flakes as the fillers, is reported. The ingredients of thermal management are the graphene thermal paste exhibits a distinctive thermal percolation threshold thermal interface materials (TIMs). Various with the thermal conductivity revealing a sublinear dependence on the filler TIMs interface two uneven solid surfaces loading. This behavior contrasts with the thermal conductivity of curing where air would be a poor conductor of heat, and aid in heat transfer from one medium graphene TIMs, based on epoxy, where superlinear dependence on the filler into another. Two important classes of TIMs loading is observed. The performance of the thermal paste is benchmarked include curing and noncuring composites. against top-of-the-line commercial thermal pastes. The obtained results show Both of them consist of a base, i.e., matrix that noncuring graphene TIMs outperforms the best commercial pastes in materials, and thermally conducting fillers. terms of thermal conductivity, at substantially lower filler concentration of Commonly, the studies of new fillers for the use in TIMs start with the curing epoxy- ϕ = 27 vol%.
    [Show full text]
  • Classifying TIM Materials for Power LED Applications
    Classifying and Understanding Thermal Interface Materials for Power LED Applications David L. Saums, Principal DS&A LLC Amesbury MA USA www.dsa-thermal.com IMAPS France 7th European Advanced Technology Workshop on Thermal Management and Micropackaging La Rochelle, France 1-2 February 2012 © Copyright 2012 DS&A LLC Selection of Thermal Interface Materials • Large number of different types of TIMs available from more than 100 vendors. • Many competing and similar materials • Reasons: . Very large number of different types of applications . Used in categories of electronic components and electronic systems today . Very widely different requirements for: • Performance: thermal, EOL reliability, gap-filling, compliancy, temperature tolerance • Application process needs • Function: electrically-conducting, electrically non-conducting, sealing, adhesion or fastening hardware required, other . Very different cost tolerance for different applications . Dielectric materials for electrically-live semiconductors – a less-common requirement . Very different manufacturing process requirements, given the wide range of types of application requirements . Extended product life and reliability requirements for critical applications IMAPS France 7th European ATW on Thermal Classifying and Understanding Thermal Interface Materials for Page 2 © Copyright 2012 DS&A LLC Management and Micropackaging Power LED Applications 1-2 February 2012 Selection of Thermal Interface Materials • Maximum performance is not the solitary method of selection for the “best” TIM. • Performance by what measure? . The answer to this question is driven by the application requirements. Choices: thermal, electrical, dielectric, gap-filling, dispensable, EOL reliability, more… • What are the primary drivers for TIM material thermal performance as a very generalized statement? 1. Clamping force applied: How much force is applied to a compliant form of TIM, to achieve the thinnest possible layer and maximum metal-to-metal contact.
    [Show full text]
  • Electrolube Thermal Management Solutions
    Thermal Management Solutions Created to perform when the heat is on Thermal Management Solutions • Silicone & Non-Silicone Pastes • RTVs and Bonding Products • Phase Change Materials • Encapsulation Resins • Silicone & Non-Silicone Gap Pads • 0.9 to 5.5W/m.K During use, some electronic components can generate significant amounts of heat. Failure to effectively dissipate this heat away from the component and the device can lead to reliability concerns and reduced operational lifetimes. Newton’s law of cooling states that the rate of loss Heat sinks have proven to be very effective over the of heat is proportional to the temperature difference years however in order to ensure full contact and between the body and its surroundings. Therefore, therefore maximum efficiency, thermal management as the temperature of the component increases and products are used alongside. reaches its equilibrium temperature, the rate of heat loss Metal surfaces, even when polished to a fine degree, per second will equate to the heat produced per second have a certain amount of roughness. It can therefore within the component. This temperature may be high be deduced that when two metal surfaces are placed enough to significantly shorten the life of the component together contact is not 100% and there will always or even cause the device to fail. It is in such cases that be an air gap between the two surfaces. The use of thermal management measures need to be taken. a thermal interface material (TIM) between such gaps The same considerations can be applied to a complete ensures complete contact between the two surfaces circuit or device which incorporates heat producing and in turn more efficient heat conductance.
    [Show full text]
  • A Process, Structure, and Property Study of Gallium-Based Room Temperature Metallic Alloys Courtney Lyn Titus University of North Florida
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2019 A Process, Structure, and Property Study of Gallium-based Room Temperature Metallic Alloys Courtney Lyn Titus University of North Florida Suggested Citation Titus, Courtney Lyn, "A Process, Structure, and Property Study of Gallium-based Room Temperature Metallic Alloys" (2019). UNF Graduate Theses and Dissertations. 871. https://digitalcommons.unf.edu/etd/871 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2019 All Rights Reserved A Process, Structure, and Property Study of Gallium-based Room Temperature Metallic Alloys By Courtney Titus A thesis submitted to the School of Engineering in partial fulfillment of the requirements for the degree of Master’s of Science in Mechanical Engineering University of North Florida College of Computing, Engineering, and Construction April 2019 Unpublished work © Courtney Titus This Thesis titled A Process, Structure, and Property Study of Gallium-based Room Temperature Metallic Alloys is approved: Approved by the thesis committee: Date ____________________________ __________________ Dr. Stephen Stagon Thesis Advisor and Committee Chairperson ____________________________ __________________ Dr. Paul Eason ____________________________ __________________ Dr. Grant Bevill Accepted for the School of Engineering: ____________________________ __________________ Dr. Osama Jadaan Director of the School of Engineering Accepted for the College of Computing, Engineering, and Construction: ____________________________ __________________ Dr. William Klostermeyer Dean of the College Accepted for the University: ____________________________ __________________ Dr. John Kantner Dean of the Graduate School iii ACKNOWLEDGMENTS I would like to thank my advisor and committee chair, Dr.
    [Show full text]
  • Experimenting and Simulating Thermoelectric Cooling of an LED Module
    PAPER EXPERIMENTING AND SIMULATING THERMOELECTRIC COOLING OF AN LED MODULE Experimenting and Simulating Thermoelectric Cooling of an LED Module http://dx.doi.org/10.3991/ijoe.v11i4.4692 Mika Maaspuro Aalto University, Aalto, Finland Abstract — Use of a thermoelectric component (TEC) for an mounted on the hot side. TEC is a small size and a LED module cooling will be studied. The issue will be relative inexpensive component. Therefore TECs are approached by revealing the operation of a thermoelectric widely used in many applications. component known also as Peltier element, and the main equations describing its behaviour. An experimental setup TEC has some significant drawbacks. It does not fit well including an LED module, a TEC, an heatsink and a fan will be build. Heat dissipation and the electrical performance in high efficiency devices. Efficiency is related to figure- measurements of the hole experimental setup will be of-merit ZT, which for present day TEC is close to 1 [2]. conducted. The benefits and the limitations of TEC used in Efficiency is the highest at negligible output power level cooling, will be revealed. Cooling effect versus used but reduces at higher levels [3]. TEC generates Joule electrical power will be studied. 3D thermal simulations for heating according to its ohmic resistance and the electric the experimental setup using a FEM simulation software current which flows through it. This heat must be will be presented. Alternatively, a standard circuit simulator removed also by the HS or the HSF mounted on the TEC. will be used. A spice model, which imports TEC's Use of TEC as an active cooling device for LEDs has parameters from the data sheet, will be developed.
    [Show full text]
  • Thermal Compound Selection Guide Silicone-Free Thermal Interface Material
    Thermal Compound Selection Guide Silicone-Free Thermal Interface Material Thermal Interface Material (TIM) is any material used to enhance thermal coupling between two parts. TIM may be known by any number of names including thermal compound, thermal grease, thermal gel, heat sink compound, CPU grease, gap filler, and thermal paste. Each is formulated to provide an advantage in specific use conditions. Depending on the materials used, unit price varies from inexpensive to quite high for premium performance. When two surfaces are placed in contact, surface imperfections cause contact to occur at discrete points, with a relatively low percentage of the nominal area making contact. Thermal compounds are intended to conform to surfaces, filling in the space between discrete contact points. This creates an uninterrupted, thermally- conductive path between surfaces, delivering far better heat- carrying capacity than contact points alone. Mechanics of Heat Transfer Choosing the best thermal compound requires some understanding of the mechanics of heat transfer and how the thickness of the thermal compound layer, the bond line thickness, influences product choice. Bond line can be divided into three categories: • Low, at less than 75 μm • Medium, from 75 to 250 μm Thermal compound can be packaged in any size Nordson EFD syringe barrel or cartridge along with 6 oz jars and 1 and 5 gallon pails. • High, at greater than 250 μm There are two critical thermal performance characteristics: Thermal Conductivity (TC) and Thermal Resistance (TR). In low bond line applications, thermal resistance dominates performance. In high bond line applications, thermal conductivity dominates performance. In medium bond line there is a blended influence.
    [Show full text]
  • Electrolube Thermal Management Solutions
    Thermal Management Solutions Created to perform when the heat is on Thermal Management Solutions • Non-Silicone Pastes • Encapsulation Resins • Silicone Pastes • 0.9 to 3.4W/m.K • RTVs and Bonding Products During use, some electronic components can generate significant amounts of heat. Failure to effectively dissipate this heat away from the component and the device can lead to reliability concerns and reduced operational lifetimes. Newton’s law of cooling states that the rate of loss Heat sinks have proven to be very effective over the of heat is proportional to the temperature difference years however in order to ensure full contact and between the body and its surroundings. Therefore, therefore maximum efficiency, thermal management as the temperature of the component increases and products are used alongside. reaches its equilibrium temperature, the rate of heat loss Metal surfaces, even when polished to a fine degree, per second will equate to the heat produced per second have a certain amount of roughness. It can therefore within the component. This temperature may be high be deduced that when two metal surfaces are placed enough to significantly shorten the life of the component together contact is not 100% and there will always or even cause the device to fail. It is in such cases that be an air gap between the two surfaces. The use of a thermal management measures need to be taken. thermal interface material between such gaps ensures The same considerations can be applied to a complete complete contact between the two surfaces and in turn circuit or device which incorporates heat producing more efficient heat conductance.
    [Show full text]
  • Thermal Interface Materials (TIM) for a Wide Product Range
    Technical Explanation Revision: 03 Thermal Interface Issue date: 2019-09-25 Prepared by: Stefan Hopfe Materials Approved by: A.Wintrich Keyword: Thermal Interface Material, Thermal Paste, Grease, TIM, Phase Change Material 1. Introduction ............................................................................................................................... 1 Advantages .................................................................................................................................. 1 2. Technical Details ........................................................................................................................ 2 2.1 TIM Materials ........................................................................................................................ 2 2.2 Print pattern tolerances .......................................................................................................... 3 2.3 Surface specification for the heat sink ...................................................................................... 3 3. Qualification Tests ...................................................................................................................... 4 3.1 Typical qualification tests for shelf life of pre-printed modules inside blister .................................. 4 3.2 Typical qualification tests for reliability (module mounted on heat sink) ....................................... 4 3.3 Conclusion ...........................................................................................................................
    [Show full text]
  • Comparison of Carbon Nanofiller-Based Polymer Composite Adhesives and Pastes for Thermal Interface Applications
    This is a repository copy of Comparison of carbon nanofiller-based polymer composite adhesives and pastes for thermal interface applications. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/87916/ Version: Accepted Version Article: Raza, MA, Westwood, AVK and Stirling, C (2015) Comparison of carbon nanofiller-based polymer composite adhesives and pastes for thermal interface applications. Materials and Design, 85. 67 - 75. ISSN 0264-1275 https://doi.org/10.1016/j.matdes.2015.07.008 © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/
    [Show full text]
  • Heat Transfer Compound
    Page 1 HTC Heat Transfer Compound HTC is a non-curing heat transfer paste, designed for use as a thermal interface material. It is recommended where the efficient and reliable thermal coupling of electronic components or heat dissipation between any surfaces are required. HTC is a non-silicone paste, suitable for applications where silicones are prohibited, thus avoiding issues with silicone and low molecular weight siloxane migration. • General purpose thermal management paste; cost effective heat dissipation • Based on a non-silicone oil; avoids issues with silicone and LMW siloxane migration • Good thermal conductivity; designed for use as a thermal interface material • Non-curing paste; allows simple and efficient rework of components if required Approvals RoHS-2 Compliant (2011/65/EU): Yes NATO Stock No. – EHTC10S: 6850-99-775-5881 NATO Stock No. – EHTC20S: 5835-99-775-5881 NATO Stock No. – EHTC35S: 5975-99-512-1473 Typical Properties Colour: White Base: Blend of synthetic fluids Thermo-conductive Component: Powdered metal oxides Density @ 20°C (g/ml): 2.04 Cone Penetration @ 20°C: 300 Viscosity @ 1rpm (Pa s): 202-205 Thermal Conductivity (Guarded Hot Plate): 0.9 W/m.K Thermal Conductivity (Heat Flow): 0.7 W/m.K (calculated) Temperature Range: -50°C to +130°C Weight Loss after 96 hours @ 100°C: <1.0% Permittivity @ 1 GHz: 4.2 Specific Resistance: 1 x 1014 Ohms/cm Dielectric Strength: 42 kV/mm Description Packing Order Code Shelf Life 2 ml Syringe HTC02S 48 months Heat Transfer Compound 10 ml Syringe HTC10S 48 months 20 ml Syringe HTC20S 48 months 35 ml Luer Lock Syringe HTC35SL 48 months 700 gram cartridge HTC700G 72 months 1 Kg Bulk HTC01K 72 months 12.5kg Bulk HTC12.5K 72 months 25 Kg Bulk HTC25K 72 months Page 2 Directions for Use Thermal pastes can be applied to the base and mounting studs of diodes, transistors, thyristors, heat sinks, silicone rectifiers and semi-conductors, thermostats, power resistors and radiators, to name but a few.
    [Show full text]