FERF Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

FERF Newsletter No. 4 January 2018 NEWSLETTER of the Fuel & Energy Research Forum EDITOR’S NOTES: A Happy New Year to all our readers, old and new from our committee. The new venture of the FERF is now beginning to find its feet and interest in what we are doing seems to justify our change of direction. This newsletter contains a detailed report on the UKCCSRC Autumn Biennial conference held in Sheffield on 11th and 12th September. As the event ran parallel sessions even those who attended would not have been able to attend every session. Hopefully this report, with some project background, may be easier to follow for the ‘lay’ reader of this newsletter. Preparations continue for the FERF biennial conference, still badged as ECCRIA now up to ECCRIA 12. Please watch out for further information and those wishing to submit abstracts have until 26 th January 2018 to do so. For further information regarding the conference visit our website at http://www.eccria- conferences.org/ Contact Details: Secretary Newsletter Editor & Treasurer Dr David McCaffrey Dr Alan Thompson The Fuel and Energy Research Forum The Fuel and Energy Research Forum Tel: 01242-236973 Tel: 01332-514768 E-mail: [email protected] E-mail: [email protected] Website: http://www.tferf.org Student Bursaries for 2017-2018 Travel and subsistence bursaries of up to £300 are on offer to bona-fide full-time students who wish to attend appropriate National and International fuel and energy related conferences, (for example, the 12th ECCRIA Conference, please see the Calendar of Fuel and Energy Research Events for details of future conferences), and whose supervisor is a member of the Fuel and Energy Research Forum. To apply, please send the abstract submitted to the conference with a brief supporting letter from your supervisor together with details of the expected expenditure and other sources of funding applied for, to: Professor J.W. Patrick, Dept. of Chemical and Environmental Engineering, Faculty of Engineering, The University of Nottingham, Energy Technologies Building, Innovation Park, Triumph Road, Nottingham NG7 2TU The requirements for eligibility for award of a bursary are that the recipient will submit a short report about his or her impressions of the conference to the Newsletter Editor for inclusion in the next edition. In addition, this report will provide some brief details of the beneficiary, their topic of study and the reasons for wishing to attend the conference. Potential applicants should see the template for these reports on the FERF website, http://www.tferf.org where such reports must comply with these requirements. Please note that these bursaries are only for travel and subsistence to attend the conference, (i.e. not for conference or other fees). In addition, priority will be given to applicants who will be attending the whole of a conference rather than one day of a multi-day event and will be using the conference accommodation provided should this be required. It may not be possible to fund all applications for bursaries or meet the request in full as this will depend on the funds available at the time. Notes of joint UKCCSRC Biannual meeting and the Inaugural Meeting of the FERF’s Carbon Capture and Storage Interest Group 11th and 12th September 2017 University of Sheffield This prestigious meeting was held at the University of Sheffield and attracted more than 100 attendees from all over the world. It was an ambitious programme with three streams each having three parallel sessions of oral presentations. A total of 30 presentations were given of which 26 have been made available and can be viewed on the FERF website. The main themes were “Transport and Storage” and “Capture”, each of which comprised three sessions. Other topics of which there were single sessions were on Biomass, Greenhouse Gas Removal (GGR), Crosscutting projects and a Plenary Session. TRANSPORT AND STORAGE 1 This topic was opened by Anatoliy Vorobov of the University of Southampton whose paper was entitled “Thermo- and Hydrodynamics of Slowly Miscible Interfaces”. Anatoliy described his work on the theoretical modelling of miscible interfaces both gas/liquid and liquid/liquid. The model would take account of interfacial diffusion, variations in interface shape, dynamic surface tension, and hydrodynamic flows induced by concentration gradients. To illustrate the nature of his study he showed as an example the dissolution of a droplet of honey in a cup of tea or the absorption of a carbon dioxide bubble by crude oil. The derivation of a valid model would have applications in enhance oil recovery (EOR), CO2 sequestration, enhanced aquifer remediation and the chemical extraction of vegetable and essential oils. The second paper was entitled “Migration of CO2 through North Sea Geological Carbon Storage Sites: Impact of Faults, Geological Heterogeneities and Dissolution” and was given by Jerome Neufeld. No slides were provided after the presentation. Haroun Magherefteh of University College London gave a presentation entitled “The Development and Demonstration of Best Practice Guidelines for the Safe Start-up Injection of CO2 into Depleted Gas Fields”. Highly-depleted gas fields such as Hamilton and Viking A represent prime potential targets for large-scale storage of CO2. They have excellent storage efficiency (utilising between 70% to 80% of the available pore space), but do require careful operational management because of their very low pressure and relatively shallow depth. In the case of the Hamilton gas field, for instance, its shallow depth and low pressure means that the injected liquid or dense phase CO2 during start up injection will expand into the vapour phase. This results in a reduction in the storage capacity and the accompanying expansion- induced cooling of the CO2 also poses significant safety and operational risks. One potential solution is to pre-heat the CO2 on the platform until the liquid CO2 can be injected without crossing the liquid to vapour transition at any time during the injection process. However, this is expensive and is regarded as being ‘hit and miss’. The aim of this project was to develop a rigorous CO2 Injection Model, accounting for all the important processes governing the fate of CO2 in terms of its variation in pressure, temperature and hence the fluid phase along the well during the injection process. The objective was to demonstrate the efficacy of the model as a powerful optimal injection process control tool by simulating a real case study involving various ramp-up CO2 injection rates and starting temperatures and pressures. Results presented showed that using the model the simulated temperature and pressure profiles at any time and location along the may be used to determine optimum injection conditions for CO2 including the maximum allowable injection rate, ramping up duration, feed temperature and pressure, and if required, any preheating. The injection simulation model developed in this work provides such capability. The results presented are site specific and must not be generalised. Shallower reservoirs might exhibit lower pressure, exaggerating the above risks. TRANSPORT AND STRORAGE 2 This session was opened by Andy Chadwick from the UK GeoEnergy Observatories who talked about “UK GEOS”. As background Andy explained that the Natural Environment Research Council (NERC) and the British Geological Survey (BGS) are two of the UK’s leading scientific organisations who have planned the creation of an ‘underground observatory’ in the Ince Marshes area of north Cheshire. It will be a world-class research site, bringing together leading scientists and engineers considering new energy technologies. The observatory will enable the project team to study how gases and fluids flow within different rock types and between different layers of rock over the next 15 years. Creating this site would involve the drilling of several observation boreholes. The data collected will be accessible to all. It will deliver a long-term environmental evidence base to inform future decisions about the use of the subsurface in the UK and the rest of the world. The Permo-Triassic Collyhurst Sandstone of the region was used in this study as it is analogous to that of the East Irish Sea. The aim of the work was to provide a better understanding of the key processes in the UK storage reservoirs. Work done to date includes a review and costing of well designs and the negotiation of land access. The next step is a critique by the project science advisory group and an external panel of CO2/well bore technology experts. The site will be characterised by drilling and core sample analysis. The CCS injection well will be located within the groundwater monitoring and seismic arrays. The risks are several and include the business risk of the cost and value for money obtained. The geological risks are that the fault geometry is uncertain and whether the Manchester marl would be able to act as an effective seal. Other engineering risks remain associated with the Extended Leak Off Test and there clearly needs to be access granted to the sites by the landowners. The project raises questions for the CCS community; for example, what is the future research programme of this well for the next 10 to 20 years? It also highlights the need to focus future research on the geology and reservoir processes to ensure ultimately that the expected value is achieved. Michael Kendell of the Bristol CO2 Group then spoke of the groups work on “The need for passive seismic monitoring on CO2 storage sites”. Geological issues with CO2 storage can result in leakage. These can be from either abandoned or active wells and can take the form of a loss of caprock either by geo-chemical dissolution, geo-mechanical deformation or fault reactivation. Seismic monitoring is by controlled 4-D (four-dimensional) surveying.
Recommended publications
  • 2016 Green Gown Awards Finalists' Brochure and Guest Directory
    FINALISTS’ BROCHURE AND GUEST DIRECTORY UK AND IRELAND Supported by Media Partner Supporting the dissemination Supporting the Delivered by of the Awards Awards Ceremony FOREWORD Green Gown Awards UK and Ireland CATEGORY SUPPORTERS 115 finalists over 15 categories, representing a combined population of over 1.5 million students CARBON and 240,000 staff REDUCTION Now in their 12th year, the Green Gown Awards in the UK and Ireland powerfully demonstrate that education and sustainability are at the heart of a better future for us all. This year’s finalists show that FOOD AND initiatives of this kind can be a catalyst to help an institution achieve high quality student experiences, DRINK improve efficiency and access and provide students with invaluable employability skills. The value that tertiary education generates is huge and the Green Gown Awards both celebrate that value and drive its RESEARCH AND replication across the sector. DEVELOPMENT Global presence The Green Gown Awards are further enhanced by their growing international presence with the Awards STUDENT now delivered in Australasia, French speaking Europe and Canada. Supported this year by the United ENGAGEMENT Nations Environment Programme (UNEP), the Awards have gone global through the GUPES Green Gown Awards, with Award regions in Africa; Asia and the Pacific; Europe; Latin America and the Caribbean; North SUSTAINABILITY America and West Asia. The category winners of each region in Community, Continuous Improvement: REPORTING Institutional Change and Student Engagement categories go head to head for the coveted International Green Gown Awards. INDIVIDUAL AWARDS Sharing best practice and dissemination of Green Gown Award initiatives We work hard with the many partners of the Awards to ensure the good practices shown from our SUSTAINABILITY Finalists are disseminated far and wide.
    [Show full text]
  • The Global Governance of Climate Change Global Governance Institute, University College London by Liam O’Flaherty, GGI Research Assistant August 2015
    The Global Governance of Climate Change Global Governance Institute, University College London By Liam O’Flaherty, GGI Research Assistant August 2015 Subject: Can the Paris COP in December 2015 deliver on its promise? Significance: With just four months until the 21st gathering of the Conference of the Parties (COP 21) kicks off in Paris, this GGI policy brief takes stock of what is likely to be the global governance challenge of the century. As the deadline fast approaches, we are witnessing a flurry of climate activity. The G7 recently called for decarbonisation by the end of the century, pledging to cut greenhouse gas emissions by 40-70 per cent by 2050; Pope Francis has issued an encyclical making the Catholic case for urgent action on climate change; six major European oil and gas companies have – pragmatically – called for a carbon tax; and a court in the Netherlands has ordered the Dutch government to more aggressively cut its emissions over the next five years. All this points, some say, to a surge in support for climate action and an irrepressible momentum that will culminate in a historic deal in Paris. And historic it may well be, but will it be enough? And if it is not, how else might we solve the problem of anthropogenic global warming? This policy brief breaks down the science and politics of this complex global challenge to address these questions. ANALYSIS Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment Report in late 2014: we now know “beyond doubt” that human activity is the primary cause of global warming.
    [Show full text]
  • SEIZING the GLOBAL OPPORTUNITY PARTNERSHIPS for BETTER GROWTH and a BETTER CLIMATE the 2015 New Climate Economy Report
    SEIZING THE GLOBAL OPPORTUNITY PARTNERSHIPS FOR BETTER GROWTH AND A BETTER CLIMATE The 2015 New Climate Economy Report THE GLOBAL COMMISSION ON THE ECONOMY AND CLIMATE PARTNERS Managing Partner July 2015 Top photo credit: Flickr: DFID Bottom left photo credit: Asian Development Bank. Bottom right photo credit: GuoZhongHua / Shutterstock.com New Climate Economy New Climate Economy c/o World Resources Institute c/o Overseas Development Institute www.newclimateeconomy.report www.newclimateeconomy.net 10 G St NE 203 Blackfriars Road Suite 800 London, SE1 8NJ, UK Washington, DC 20002, USA +44 (0) 20 7922 0300 +1 (202) 729-7600 ISBN: 978-0-9906845-9-6 Photo Credit: Flickr: Mariana Gil/EMBARQ Brasil SEIZING THE GLOBAL OPPORTUNITY PARTNERSHIPS FOR BETTER GROWTH AND A BETTER CLIMATE The 2015 New Climate Economy Report Photo credit: Laborant / Shutterstock.com The New Climate Economy The Global Commission on the Economy and Climate, and its flagship project The New Climate Economy, were set up to help governments, businesses and society make better-informed decisions on how to achieve economic prosperity and development while also addressing climate change. The New Climate Economy was commissioned in 2013 by the governments of seven countries: Colombia, Ethiopia, Indonesia, Norway, South Korea, Sweden and the United Kingdom. The Commission has operated as an independent body and, while benefiting from the support of the seven governments, has been given full freedom to reach its own conclusions. In September 2014, the Commission published Better Growth, Better Climate: The New Climate Economy Report. Since then, the project has released a series of country reports on the United States, China, India and Ethiopia, and sector reports on cities, land use, energy and finance.
    [Show full text]
  • Smart Grids Innovation Challenge 37
    Downloaded from orbit.dtu.dk on: Oct 11, 2021 Disctrict heating and cooling systems innovation challenge Münster, Marie; Werner, Sven; Svendsen, Svend ; Furbo, Simon; Elmegaard, Brian Published in: Accelerating the clean energy revolution - perspectives on innovation challenges Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Münster, M., Werner, S., Svendsen, S., Furbo, S., & Elmegaard, B. (2018). Disctrict heating and cooling systems innovation challenge. In Accelerating the clean energy revolution - perspectives on innovation challenges: DTU International Energy Report 2018 (pp. 89-97). Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DTU International Energy Report 2014 DTU International Energy Report 2018 Report Energy International DTU Page 3 – SmartDTUDTU Grids Innovation International EnergyEnergy Report 20182014 WindAccelerating energy the— drivers Clean andEnergy barriers Revolution for higher shares– Perspectives of wind onin theInnovation global power Challenges generation mix Edited by Birte Holst Jørgensen and Katrine Krogh Andersen, Technical University of Denmark Elizabeth J.
    [Show full text]
  • Electrical Energy Storage for Mitigating Climate Change DR SHERIDAN FEW, OLIVER SCHMIDT and AJAY GAMBHIR
    Grantham Institute Briefing paper No 20 July 2016 Electrical energy storage for mitigating climate change DR SHERIDAN FEW, OLIVER SCHMIDT AND AJAY GAMBHIR Headlines Contents • Academic and industrial experts agree that effective electrical energy storage Introduction ............................ 2 will play a crucial role in moving to a world powered by low-carbon electricity. What benefits does storage • Irrespective of the need to meet climate change targets, electrical energy bring to electricity systems? ........... 3 storage technologies are essential to further enable the current rapid growth in renewable energy technologies, alongside other technologies to balance What electrical energy storage supply and demand. technologies are available? ............ 4 • The electrical energy storage technologies that will be in use on a large scale What are the alternatives within 5-15 years are likely to have already been invented, unless innovation to electrical energy storage? .......... 4 and commercialisation radically speeds up over historical rates. What improvements in electrical • Such technologies include: pumped hydropower, compressed air, thermal energy storage technologies are storage, electrolysis, aqueous batteries (e.g. lead-acid), non-aqueous anticipated in the next 5-15 years? .... 5 batteries (e.g. lithium-ion, sodium-ion and lithium-sulphur), flow batteries (e.g vanadium redox flow, zinc bromide redox flow), power-to-gas, Is it possible to provide a reliable supercapacitors and flywheels. electricity supply at an acceptable cost using electrical energy storage coupled • On many small islands and in remote communities, renewable electricity with intermittent renewables? ......... 6 coupled with electrical energy storage is already the lowest cost option for electricity supply. How do the environmental impacts • Reliable clean electricity can be produced at a competitive cost through a grid of electrical energy storage technologies powered by a high proportion of renewable energy coupled with electrical compare with their alternatives? .....
    [Show full text]
  • FUEL CELL POWER Generating Electricity, Heat and Hydrogen, Cleanly ,Quietly and Efficiently
    No. 56 SUMMER 2015 www.fuelcellpower.org.uk FUEL CELL POWER Generating electricity, heat and hydrogen, cleanly ,quietly and efficiently HEADLINE NEWS CONTENTS Following upon higher than expected sales in Toyota enables free use of patents p.2 Japan, production of the Toyota Mirai is being Intelligent Energy welcomes motor increased, ready for the launches in Europe industry moving towards fuel cells p.3 and the USA this year. Sales plans are being Bloom Energy fuel cells for global formulated taking into consideration each interconnection and data p.6 region’s level of hydrogen infrastructure, en- Delivering Hydrogen and Fuel Cells ergy policies, consumer demand, purchasing to market p.8 subsidies and environmental regulations. Doosan meeting business demands for sustainable, flexible electricity p.14 Honda has announced commercial produc- Global Apollo programme tackling tion of its fuel cell vehicles in the USA in 2016. climate change p.16 Their plan is to offer sales of battery, fuel cell ITM Power installing UK hydrogen and hybrid powered systems, in order to refuelling stations p.18 achieve volume markets for the introduction Fuel cells cut water demand p.25 of electric vehicles. FuelCell Energy proposed 63 MW Hyundai is extending sales of its hydrogen fuel Fuel cell park at Beacon Falls p.26 cell production vehicle from Korea and the Clean power from wastewater p.27 USA. Six of their Hyundai ix35 models are to be NEWS p.15, p.20, p.28 operated in London. EVENTS p.28 TOYOTA OPENS ITS FUEL CELL VEHICLE PATENTS FOR FREE USE As part of efforts to popularize fuel cell vehi- and fuel cell system control technology cles (FCVs), Toyota Motor Corporation will (approx.
    [Show full text]
  • May Research and Policy Summary
    Monthly Report on Policy Developments - Energy and Climate Change May 2015 Purpose: This document provides a summary of recent key developments in policy and research relating to energy and climate change. It has been prepared by the ClimateXChange1 Secretariat and is intended to keep Scottish Policymakers informed of issues relevant to the Scottish Government’s Energy and Climate Change policy portfolio. Climate Policy Global Apollo Programme for carbon free energy launched The London School of Economics this week launched the Global Apollo Programme to Combat Climate Change. The programme aims to establish a major publicly-funded research initiative, on a similar scale to the 1960s US Apollo Programme. It hopes to attract around 0.02% of global GDP (around US$15bn per year) to develop renewables, smart grids and energy storage, with the ultimate objective of making zero-carbon baseload electricity cheaper than coal within 10 years. The Programme has received the support of a number of high profile proponents and is expected to be on the agenda at the G7 meeting on June 7th. However, some commentators have raised questions about the programme’s ability to displace existing fossil fuels and its exclusion of carbon capture and storage, nuclear energy and energy efficiency technologies. Fossil fuels subsidised by US$10m per minute: IMF The International Monetary Fund has revealed that more than US$5 trillion is spent annually on subsidising the fossil fuel industry. An IMF report calculates this cost by considering energy supply costs, as well as costs to people and the environment, including climate change, the health effects of air pollution, traffic road congestion, traffic accidents and road damage.
    [Show full text]
  • Monthly Anaerobic Digestion Newsletter June 2015 Compilation & Overview
    Monthly Anaerobic Digestion Newsletter June 2015 Compilation & Overview Energy & Climate Change: The Start of Climate Litigation June 25, 2015. Climate change is a “medical emergency” according to new global health report by Climate Council. “A major new Commission published in prestigious British medical journal The Lancet has found that climate change is a “medical emergency” with threats to human health so great that it could reverse the last 50 years of gains in development and global health. According to the report, the direct health effects of climate change come from the increasing frequency and intensity of extreme weather events such heat waves, floods, droughts and storms. Indirect health impacts come from changes in the spread of disease, air pollution, food insecurity and malnutrition, involuntary migration, displacement and conflicts. However, the study also found that while the “unacceptably high and potentially catastrophic” human health risks posed by climate change have been underestimated, global efforts to tackle climate change represent one of the greatest opportunities to improve global health this century. The report found that climate change action can bring immediate health gains – such as reduced respiratory diseases from burning fewer fossil fuels; reduced pollution, road traffic accidents, obesity, diabetes, coronary heart disease and stroke from increased walking and cycling; as well as an improved diet which could arise from eating less red meat. The Commission concludes that while the technology and finances required to tackle the health risks posed by climate change are available, global political will to implement them is lacking, and an emergency international response is required. You can access the full report from The Lancet here.” June 24, 2015.
    [Show full text]
  • New Concept Cars for Campus Commuter, Golf Cart, Water Fronter, Etc
    次世代自動車シンポ@仙台、10/27-29/15 A new concept car for Fun and Health to drive ! as campus commuter, golf cart, land-water cruiser , etc. Hideomi Koinuma Niche, Tohoku University Questions posed to cars 1, Can we live without car ? 2, What are main problems in currently used cars ? 3, Why is car prevailing in the world and what will be coming as a result ? Answers to the above questions and possible solutions will be presented and discussed. Fun and Health to drive ! New concept cars for campus commuter, golf cart, water fronter, etc. Questions posed to cars 1, Can we live without car ? 2, What are main problems in currently used cars ? 3, Why is car prevailing in the world and what will be coming as a result ? Answers and solutions: 1) Yes, but not easy 2) Energy and environment--> Fuel cell car or PHEV or else ?, Safety for drivers and walkers--> Airbag, Autodrive --> Fun to drive ? 3) Free, convenient, status; Driving is not healthy, Global warming, Shortage of parts: Battery materials, Rare earth, Rare metals, Rubber SSERC to make SSB dream come true by cooperation with Asia and Arab ・ Not just equipment supply but promotion of science, technology,human resourses ・ Research in SSERC: Production of pure silica and SOG-Si Realization of solar breeder concept Utilization of solar PV power Feasibility study on long distance dc transmission by HTSC cable Education and training of graduate students and young engineers ・ Initial sites : USTO, Sahara Saida Univ. Solar CDER Breeder Adrar) Model Vist USTO、(2009.5) Learning Commons (1F) & Engineering Commons (2F) in the center 302 106 160 180 104 190 102 170 130 202 142 112 114 116 102 140 120 140 110 150 150 Multi-brid300 EV for campus commuter The Complex of Turkmenistan Academy of Sciences Technology Center (Completed in June, 2014) The University of Engineering and Technology of Turkmenistan 4 (Designed by the cooperation of AST, JTSTC, and FAIS.
    [Show full text]
  • Market Design for a High-Renewables European Electricity System
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Market design for a high-renewables European electricity system David Newberya, Michael G. Pollitta, Robert A. Ritza,*, Wadim Strielkowskia a Energy Policy Research Group (EPRG), Judge Business School & Faculty of Economics, University of Cambridge, Trumpington Street, Cambridge CB2 1AG, United Kingdom This version: April 2018 Abstract This paper presents a set of policy recommendations for the market design of a future European electricity system characterized by a dominant share of renewable energy supply (RES), in line with the stated targets of European governments. We discuss the market failures that need to be addressed to accommodate RES in liberalized electricity markets, review the evolution of the EU’s RES policy mechanisms, and summarize the key market impacts of variable RES to date. We then set out economic principles for wholesale market design and use these to develop our policy recommendations. Our analysis covers the value of interconnection and market integration, electricity storage, the design of RES support mechanisms, distributed generation and network tariffs, the pricing of electricity and flexibility as well as long-term contracting and risk management. Keywords: Electricity markets, wholesale market design, renewable energy, interconnection, electricity storage, long-term contracts, capacity markets JEL Classifications: H23, L94, Q28, Q48 *Corresponding author. E-mail addresses: [email protected] (D. Newbery), [email protected]
    [Show full text]
  • Delivering Our Purpose 2016 Full Report
    Delivering our purpose update on our progress in 2015/16 Broadening and deepening our customer relationships Follow BT on Twitter @BTGroup Delivering our purpose – update on our progress 2015/16 2 earthquake. The Supporters Club funded nine sports charities and community sports foundations Introduction from this year (four in the UK), through the donations of BT Sport customers. our Chairman and With EE now part of the BT family, we are excited about the future. Our combined strength will create unprecedented new opportunities to use the power of Chief Executive communications to make a better world. Our purpose is to use the power of communications to make a better world. Our strategy is to do this by broadening and deepening our customer relationships. Sir Michael Rake Gavin Patterson Sir Michael Rake Chairman Chief Executive Chairman We believe that BT makes a positive impact on the embrace its impact in shaping society. Our ambition world. And that this helps us realise our business goal – is to improve the tech literacy of 5 million children to deliver sustainable profitable revenue growth. by 2020. In our first year, we have already reached Gavin Patterson 340,000 children. Chief Executive Our brands touch millions of customers from the smallest companies right through to multinationals Working with Unicef UK, we have now reached 8,000 19 May 2016 and the public sector. We provide UK consumers teachers, parents and children through The Right Click with fixed voice, broadband, TV, BT Sport and mobile programme, teaching them how to keep safe online. services. And we’re also Europe’s largest telecoms services wholesaler by revenue.
    [Show full text]
  • SEIZING the GLOBAL OPPORTUNITY PARTNERSHIPS for BETTER GROWTH and a BETTER CLIMATE the 2015 New Climate Economy Report
    SEIZING THE GLOBAL OPPORTUNITY PARTNERSHIPS FOR BETTER GROWTH AND A BETTER CLIMATE The 2015 New Climate Economy Report THE GLOBAL COMMISSION ON THE ECONOMY AND CLIMATE PARTNERS Managing Partner July 2015 Top photo credit: Flickr: DFID Bottom left photo credit: Asian Development Bank. Bottom right photo credit: GuoZhongHua / Shutterstock.com New Climate Economy New Climate Economy c/o World Resources Institute c/o Overseas Development Institute www.newclimateeconomy.report www.newclimateeconomy.net 10 G St NE 203 Blackfriars Road Suite 800 London, SE1 8NJ, UK Washington, DC 20002, USA +44 (0) 20 7922 0300 +1 (202) 729-7600 ISBN: 978-0-9906845-9-6 Photo Credit: Flickr: Mariana Gil/EMBARQ Brasil SEIZING THE GLOBAL OPPORTUNITY PARTNERSHIPS FOR BETTER GROWTH AND A BETTER CLIMATE The 2015 New Climate Economy Report Photo credit: Laborant / Shutterstock.com The New Climate Economy The Global Commission on the Economy and Climate, and its flagship project The New Climate Economy, were set up to help governments, businesses and society make better-informed decisions on how to achieve economic prosperity and development while also addressing climate change. The New Climate Economy was commissioned in 2013 by the governments of seven countries: Colombia, Ethiopia, Indonesia, Norway, South Korea, Sweden and the United Kingdom. The Commission has operated as an independent body and, while benefiting from the support of the seven governments, has been given full freedom to reach its own conclusions. In September 2014, the Commission published Better Growth, Better Climate: The New Climate Economy Report. Since then, the project has released a series of country reports on the United States, China, India and Ethiopia, and sector reports on cities, land use, energy and finance.
    [Show full text]