Operating Systems 2

Total Page:16

File Type:pdf, Size:1020Kb

Operating Systems 2 GENERAL I ARTICLE Operating Systems 2. Functions, Protection and Security Mechanisms M Suresh Babu The objectives and stages of operating systems introduced in Part 1 are continued here. Four major components - process management, input-output (I/O) device manage­ ment, memory management, file management and protec­ tion are discussed. M Suresh Babu is Introduction currently a fourth year undergraduate student in The process concept and concurrency are at the heart of modern the Department of operating systems (OS). A process is the unit of work in a Computer Science and Engineering, Narayana computer system. A process must be in main memory during Engineering College, execution. To improve the utilization of central processing unit Nellore, Andhra Pradesh. (CPU) as well as the speed of its response to its users, the He would like to work in computer must keep several processes in memory. Many differ­ operating systems, computer networks and ent memory-management schemes are discussed. also in Internet security concepts. The role of the OS in a computer I/O subsystem is to provide the simplest interface possible to the rest of the system. Protection is an internal problem. Security must consider both the com­ puter system and the environment within which the system is used. Both the above concepts are also discussed. Process Management Part 1. Objectives and Evolution, Resonance, VoL7, A process can be thought of as a program in execution. A process No.3, pp .18-24, 2002. will need a number of resources such as CPU time, memory, files and I/O devices to accomplish its tasks. These resources are allocated to the process either when it is created or while it is executing. The OS is responsible for the following activities in process management: the creation and deletion of both users' Keywords Memory management, process and system processes; the scheduling of processes; and the management, I/O device man­ provision of mechanisms for synchronization, communication agement, file management. and deadlock handling for processes. -60-------------------------------~~------------R-E-S-O-N-A-N-C-E--I-A-p-ri-I-2-0-0-2 GENERAL I ARTICLE New: The process is being created. Running: Instructions are being executed. Waiting: The process is waiting for some event to occur. Ready: The process is waiting to be assigned to a processor. Terminated: The process has finished execution. Present-day computer systems allow multiple programs to Figure 1. be loaded into memory and to be executed concurrently. This evolution requires firmer control and more compart­ mentalization of the programs. This has led to the notion of a process which is more than the program code. We emphasize that a program itself is not a process; a program is a passive (static) entity, such as the contents of a file stored on disk, whereas a process is an active (dy­ namic) entity, with a program counter specifying the next instruction to execute and a set of associated resources. As a process executes, it changes state. The state of a process is defined in part by the current activity of that process as shown in Figure 1. The objective of time sharing is to allow fast interaction of users with their respective programs by rapidly switching their processes running in the CPU. Whenever the CPU becomes idle, the OS must select one of the processes in the Whenever the CPU ready queue to be executed. This selection process is becomes idle, the OS carried out by CPU scheduler by implementing scheduling must select one of the algorithms like First Come-First Serve, Shortest-Job-First, processes in the ready Priority, Round-Robin, Multilevel Queue Scheduling de­ queue to be executed. pending on the objective and the system. A cooperating CPU scheduler carries process is one that can affect or be affected by the other out this selection processes executing in the system. Cooperating .processes process. -R-ES-O-N-A-N--CE--I--AP-r-il--2-00-?--------------~-------------------------------61 GENERAL I ARTICLE The role of the as may either directly share a logical address space, or be allowed to in computer I/O share data only through files. The former case is achieved subsystem is to through threads or lightweight processes and later by using provide the synchronization techniques like Bounded-Buffer, Readers and simplest interface Writer, Dining Philosopher Problems. (See [1]). possible to the rest INPUT/OUTPUT Device Management of the system. Perhaps the messiest aspect of OS design is input/output [I/O]. The devices attached to a computer vary in multiple dimen­ sions. Devices transfer a character or a block of characters at a time. They can be accessed sequentially or randomly. They transfer data synchronously or asynchronously. They are dedi­ cated or shared. They can be read-only or read-write. They also vary greatly in speed. Because of all these device variations, the OS needs to provide a wide range of functionality to applications, to allow them to control all aspects of the devices. The role of the OS in computer I/O is to manage and controlI/O operations and I/O devices. One key goal of an OS's I/O subsystem is to provide the simplest interface possible to the rest of the system. Because devices are a performance bottleneck, another key is to optimize I/O for maximum concurrency. The basic hardware elements involved in I/O are buses, device controllers and the devices themselves. The work of moving data between devices and main memory is performed by CPU as programmed I/O, or is offloaded to a DMA controller. The kernel's I/O subsystem provides numerous services. Among these are I/O scheduling, buffering, spooling, error handling and device reservation. Another service is name translation, to make the connection between hardware devices and the symbolic file names used by applications. It involves several levels of mapping that translate from a character string name to a specific device driver and device address, and then to physical addresses of I/O ports or bus controllers. This mapping may occur within the file-system --------~-------- 62 RESONANCE I April 2002 GENERAL I ARTICLE name space, as it does in UNIX, or in a separate device name . Effective memory space, as it does in MS-DOS. management is vital in a Memory Management multi programmed In a uniprogramming system, main memory is divided into two system. If only a parts: one part for the operating system (resident monitor, few processes are kernel) and the other for the program currently being executed. in memory, then In a multiprogrammed system, the 'user' part of memory must for much of the be further sub-divided to accommodate multiple processes. The time all the task of sub-dividing is carried out dynamically by the OS and is processes will be known as memory management. v waiting for I/O and the processor will Effective memory management is vital in a multiprogrammed be idle. system. If only a few processes are in memory, then for much of the time all the processes will be waiting for I/O and the proces­ sor will be idle. Thus, memory needs to be allocated efficiently to pack as many processes into memory as possible. While surveying the various mechanisms and policies associated with memory management, it is good to keep in mind the require­ ment that memory management is intended to satisfy. The five requirements are: relocation, protection, sharing, logical orga­ nization and physical organization. The core task of any memory management system is to bring programs into main memory for execution by the processor. In almost all-modern multiprogrammed systems, this task involves a sophisticated scheme known as virtual memory. Virtual memory is in turn based on the use of one or both of two basic techniques: segmentation and paging. There are several memory management techniques of OS pro­ vided for this concept (see Table 1 and [4]). File Management In most applications, the file is the central element. Whatever the objective of the application, it involves the generation and use of data files. The input to applications is a file, and in virtu- -R-ES-O-N-A-N--CE--I-A-p-r-il--2-00-2--------------~-------------------------------6-3 GENERAL I ARTICLE Table 1. Comparison of memory management systems. Technique Description Strength Weakness Fixed partitioning. Main memory is divided into a Simple to Inefficient use of number of static partitions at implement; little memory due to system generation time. A OS overhead. internal process may be loaded into a fragmentation. partition site equal to or greater Numbers of active than the process site. processes are fixed. Dynamic Partitions are created No internal Inefficient use of partitioning. dynamically, so that each fragmentation; processor due to process is loaded into a partition more efficient the need for of exactly the same size as that use of main compaction to process. memory. counter external fragmentation. Simple paging Main memory is divided into a No external A small amount of number of equal size frames. fragmentation. internal Each process is divided into a fragmentation. number of equal size pages of the same length. Simple Each process is divided into a No internal Need for segmentation. number of segments. A process fragmentation. compaction. is loaded by loading all of its segments into dynamic partitions that need not be contiguous. Virtual memory As with simple paging, except No external Overhead of paging. that it is not necessary to load all fragmentation; complex memory processes in main memory. higher degree of management. Non-resident pages that are multiprogrammi needed are brought in later ng, large virtual automatically from disk.
Recommended publications
  • DECIPHER: Harnessing Local Sequence Context to Improve Protein Multiple Sequence Alignment Erik S
    Wright BMC Bioinformatics (2015) 16:322 DOI 10.1186/s12859-015-0749-z RESEARCH ARTICLE Open Access DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment Erik S. Wright1,2 Abstract Background: Alignment of large and diverse sequence sets is a common task in biological investigations, yet there remains considerable room for improvement in alignment quality. Multiple sequence alignment programs tend to reach maximal accuracy when aligning only a few sequences, and then diminish steadily as more sequences are added. This drop in accuracy can be partly attributed to a build-up of error and ambiguity as more sequences are aligned. Most high-throughput sequence alignment algorithms do not use contextual information under the assumption that sites are independent. This study examines the extent to which local sequence context can be exploited to improve the quality of large multiple sequence alignments. Results: Two predictors based on local sequence context were assessed: (i) single sequence secondary structure predictions, and (ii) modulation of gap costs according to the surrounding residues. The results indicate that context-based predictors have appreciable information content that can be utilized to create more accurate alignments. Furthermore, local context becomes more informative as the number of sequences increases, enabling more accurate protein alignments of large empirical benchmarks. These discoveries became the basis for DECIPHER, a new context-aware program for sequence alignment, which outperformed other programs on largesequencesets. Conclusions: Predicting secondary structure based on local sequence context is an efficient means of breaking the independence assumption in alignment. Since secondary structure is more conserved than primary sequence, it can be leveraged to improve the alignment of distantly related proteins.
    [Show full text]
  • Analysis the Structure of SAM and Cracking Password Base on Windows Operating System
    International Journal of Future Computer and Communication, Vol. 5, No. 2, April 2016 Analysis the Structure of SAM and Cracking Password Base on Windows Operating System Jiang Du and Jiwei Li latest Windows 10, the registry contains information that Abstract—Cracking Windows account password is critical to Windows continually references during operation, such as the forensic analyst. The general methods of decipher password profiles for each user, the applications installed on the include clean the password, guess by social engineering, computer and the types of documents, property sheet settings mathematical analyzing, exhaustive attacking, dictionary attacking and rainbow tables algorithm. This paper provides the of folders and application icons, what hardware exists on the details about the Security Account Manager(SAM) database system, and the ports that are being used [3]. On disk, the and describes how to get the user information from SAM and Windows registry is not only a large file but a set of discrete cracks account password of Windows 10 that the latest files called hives. Each hive is a hierarchical tree which operating system of Microsoft. identified by a root key to provide access to all sub-keys in the tree up to 512 levels deep. Index Terms—SAM, decipher password, crack password, Windows 10. III. SECURITY ACCOUNT MANAGER (SAM) I. INTRODUCTION Security Account Manager (SAM) is a database used to In the process of computer forensic the analyst need to store user account information, including password, account enter the Windows operating system by cracking windows groups, access rights, and special privileges in Windows account password to collect evidence at times.
    [Show full text]
  • Decipher Prostate Cancer Classifier
    Lab Management Guidelines v2.0.2019 Decipher Prostate Cancer Classifier MOL.TS.294.A v2.0.2019 Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline Decipher Prostate Cancer Classifier 81479 What are gene expression profiling tests for prostate cancer Definition Prostate cancer (PC) is the most common cancer and a leading cause of cancer- related deaths worldwide. It is considered a heterogeneous disease with highly variable prognosis.1 High-risk prostate cancer (PC) patients treated with radical prostatectomy (RP) undergo risk assessment to assess future disease prognosis and determine optimal treatment strategies. Post-RP pathology findings, such as disease stage, baseline Gleason score, time of biochemical recurrence (BCR) after RP, and PSA doubling- time, are considered strong predictors of disease-associated metastasis and mortality. Following RP, up to 50% of patients have pathology or clinical features that are considered at high risk of recurrence and these patients usually undergo post-RP treatments, including adjuvant or salvage therapy or radiation therapy, which can have serious risks and complications. According to clinical practice guideline recommendations, high risk patients should undergo 6 to 8 weeks of radiation therapy (RT) following RP. However, approximately 90% of high-risk patients
    [Show full text]
  • Comparing Tools for Non-Coding RNA Multiple Sequence Alignment Based On
    Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press ES Wright 1 1 TITLE 2 RNAconTest: Comparing tools for non-coding RNA multiple sequence alignment based on 3 structural consistency 4 Running title: RNAconTest: benchmarking comparative RNA programs 5 Author: Erik S. Wright1,* 6 1 Department of Biomedical Informatics, University of Pittsburgh (Pittsburgh, PA) 7 * Corresponding author: Erik S. Wright ([email protected]) 8 Keywords: Multiple sequence alignment, Secondary structure prediction, Benchmark, non- 9 coding RNA, Consensus secondary structure 10 Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press ES Wright 2 11 ABSTRACT 12 The importance of non-coding RNA sequences has become increasingly clear over the past 13 decade. New RNA families are often detected and analyzed using comparative methods based on 14 multiple sequence alignments. Accordingly, a number of programs have been developed for 15 aligning and deriving secondary structures from sets of RNA sequences. Yet, the best tools for 16 these tasks remain unclear because existing benchmarks contain too few sequences belonging to 17 only a small number of RNA families. RNAconTest (RNA consistency test) is a new 18 benchmarking approach relying on the observation that secondary structure is often conserved 19 across highly divergent RNA sequences from the same family. RNAconTest scores multiple 20 sequence alignments based on the level of consistency among known secondary structures 21 belonging to reference sequences in their output alignment. Similarly, consensus secondary 22 structure predictions are scored according to their agreement with one or more known structures 23 in a family.
    [Show full text]
  • Getting Started Deciphering
    Getting Started DECIPHERing Erik S. Wright May 19, 2021 Contents 1 About DECIPHER 1 2 Design Philosophy 2 2.1 Curators Protect the Originals . 2 2.2 Don't Reinvent the Wheel . 2 2.3 That Which is the Most Difficult, Make Fastest . 2 2.4 Stay Organized . 2 3 Functionality 3 4 Installation 5 4.1 Typical Installation (recommended) . 5 4.2 Manual Installation . 5 4.2.1 All platforms . 5 4.2.2 MacOSX........................................... 6 4.2.3 Linux ............................................. 6 4.2.4 Windows ........................................... 6 5 Example Workflow 6 6 Session Information 11 1 About DECIPHER DECIPHER is a software toolset that can be used for deciphering and managing biological sequences efficiently using the R statistical programming language. The program features tools falling into five categories: Sequence databases: import, maintain, view, and export a massive number of sequences. Sequence alignment: accurately align thousands of DNA, RNA, or amino acid sequences. Quickly find and align the syntenic regions of multiple genomes. Oligo design: test oligos in silico, or create new primer and probe sequences optimized for a variety of objectives. Manipulate sequences: trim low quality regions, correct frameshifts, reorient nucleotides, determine consensus, or digest with restriction enzymes. Analyze sequences: find chimeras, classify into a taxonomy of organisms or functions, detect repeats, predict secondary structure, create phylogenetic trees, and reconstruct ancestral states. 1 Gene finding: predict coding and non-coding genes in a genome, extract them from the genome, and export them to a file. DECIPHER is available under the terms of the GNU Public License version 3. 2 Design Philosophy 2.1 Curators Protect the Originals One of the core principles of DECIPHER is the idea of the non-destructive workflow.
    [Show full text]
  • Basics of UNIX
    Basics of UNIX August 23, 2012 By UNIX, I mean any UNIX-like operating system, including Linux and Mac OS X. On the Mac you can access a UNIX terminal window with the Terminal application (under Applica- tions/Utilities). Most modern scientific computing is done on UNIX-based machines, often by remotely logging in to a UNIX-based server. 1 Connecting to a UNIX machine from {UNIX, Mac, Windows} See the file on bspace on connecting remotely to SCF. In addition, this SCF help page has infor- mation on logging in to remote machines via ssh without having to type your password every time. This can save a lot of time. 2 Getting help from SCF More generally, the department computing FAQs is the place to go for answers to questions about SCF. For questions not answered there, the SCF requests: “please report any problems regarding equipment or system software to the SCF staff by sending mail to ’trouble’ or by reporting the prob- lem directly to room 498/499. For information/questions on the use of application packages (e.g., R, SAS, Matlab), programming languages and libraries send mail to ’consult’. Questions/problems regarding accounts should be sent to ’manager’.” Note that for the purpose of this class, questions about application packages, languages, li- braries, etc. can be directed to me. 1 3 Files and directories 1. Files are stored in directories (aka folders) that are in a (inverted) directory tree, with “/” as the root of the tree 2. Where am I? > pwd 3. What’s in a directory? > ls > ls -a > ls -al 4.
    [Show full text]
  • Comparing Tools for Noncoding RNA Multiple Sequence Alignment Based on Structural Consistency
    Downloaded from rnajournal.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press BIOINFORMATICS RNAconTest: comparing tools for noncoding RNA multiple sequence alignment based on structural consistency ERIK S. WRIGHT Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA ABSTRACT The importance of noncoding RNA sequences has become increasingly clear over the past decade. New RNA families are often detected and analyzed using comparative methods based on multiple sequence alignments. Accordingly, a number of programs have been developed for aligning and deriving secondary structures from sets of RNA sequences. Yet, the best tools for these tasks remain unclear because existing benchmarks contain too few sequences belonging to only a small number of RNA families. RNAconTest (RNA consistency test) is a new benchmarking approach relying on the obser- vation that secondary structure is often conserved across highly divergent RNA sequences from the same family. RNAconTest scores multiple sequence alignments based on the level of consistency among known secondary structures belonging to reference sequences in their output alignment. Similarly, consensus secondary structure predictions are scored according to their agreement with one or more known structures in a family. Comparing the performance of 10 popular alignment programs using RNAconTest revealed that DAFS, DECIPHER, LocARNA, and MAFFT created the most structurally consistent alignments. The best consensus secondary structure predictions were generated by DAFS and LocARNA (via RNAalifold). Many of the methods specific to noncoding RNAs exhibited poor scalability as the number or length of input sequences increased, and several programs displayed substantial declines in score as more sequences were aligned.
    [Show full text]
  • Using DECIPHER V2.0 to Analyze Big Biological Sequence Data in R by Erik S
    CONTRIBUTED RESEARCH ARTICLES 352 Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R by Erik S. Wright Abstract In recent years, the cost of DNA sequencing has decreased at a rate that has outpaced improvements in memory capacity. It is now common to collect or have access to many gigabytes of biological sequences. This has created an urgent need for approaches that analyze sequences in subsets without requiring all of the sequences to be loaded into memory at one time. It has also opened opportunities to improve the organization and accessibility of information acquired in sequencing projects. The DECIPHER package offers solutions to these problems by assisting in the curation of large sets of biological sequences stored in compressed format inside a database. This approach has many practical advantages over standard bioinformatics workflows, and enables large analyses that would otherwise be prohibitively time consuming. Introduction With the advent of next-generation sequencing technologies, the cost of sequencing DNA has plum- meted, facilitating a deluge of biological sequences (Hayden, 2014). Since the cost of computer storage space has not kept pace with biologists’ ability to generate data, multiple compression methods have been developed for compactly storing nucleotide sequences (Deorowicz and Grabowski, 2013). These methods are critical for efficiently transmitting and preserving the outputs of next-generation sequencing machines. However, far less emphasis has been placed on the organization and usability of the massive amounts of biological sequences that are now routine in bioinformatics work. It is still commonplace to decompress large files and load them entirely into memory before analyses are performed.
    [Show full text]
  • Trend Micro Apex One™ (Mac) 2019 Administrator's Guide
    Trend Micro Incorporated reserves the right to make changes to this document and to the product described herein without notice. Before installing and using the product, review the readme files, release notes, and/or the latest version of the applicable documentation, which are available from the Trend Micro website at: http://docs.trendmicro.com/en-us/enterprise/apex-one-(mac).aspx Trend Micro, the Trend Micro t-ball logo, Trend Micro Apex One, Worry-Free, and TrendLabs are trademarks or registered trademarks of Trend Micro Incorporated. All other product or company names may be trademarks or registered trademarks of their owners. Copyright © 2019. Trend Micro Incorporated. All rights reserved. Document Part No.: APEM08506/181016 Release Date: March 2019 Protected by U.S. Patent No.: Patents pending. This documentation introduces the main features of the product and/or provides installation instructions for a production environment. Read through the documentation before installing or using the product. Detailed information about how to use specific features within the product may be available at the Trend Micro Online Help Center and/or the Trend Micro Knowledge Base. Trend Micro always seeks to improve its documentation. If you have questions, comments, or suggestions about this or any Trend Micro document, please contact us at [email protected]. Evaluate this documentation on the following site: http://www.trendmicro.com/download/documentation/rating.asp Privacy and Personal Data Collection Disclosure Certain features available in Trend Micro products collect and send feedback regarding product usage and detection information to Trend Micro. Some of this data is considered personal in certain jurisdictions and under certain regulations.
    [Show full text]
  • Getting Started Deciphering
    Getting Started DECIPHERing Erik S. Wright October 29, 2020 Contents 1 About DECIPHER 1 2 Design Philosophy 2 2.1 Curators Protect the Originals . 2 2.2 Don't Reinvent the Wheel . 2 2.3 That Which is the Most Difficult, Make Fastest . 2 2.4 Stay Organized . 2 3 Functionality 3 4 Installation 5 4.1 Typical Installation (recommended) . 5 4.2 Manual Installation . 5 4.2.1 All platforms . 5 4.2.2 MacOSX........................................... 5 4.2.3 Linux ............................................. 6 4.2.4 Windows ........................................... 6 5 Example Workflow 6 6 Session Information 11 1 About DECIPHER DECIPHER is a software toolset that can be used for deciphering and managing biological sequences efficiently using the R statistical programming language. The program features tools falling into five categories: Sequence databases: import, maintain, view, and export a massive number of sequences. Sequence alignment: accurately align thousands of DNA, RNA, or amino acid sequences. Quickly find and align the syntenic regions of multiple genomes. Oligo design: test oligos in silico, or create new primer and probe sequences optimized for a variety of objectives. Manipulate sequences: trim low quality regions, correct frameshifts, reorient nucleotides, determine consensus, or digest with restriction enzymes. Analyze sequences: find chimeras, classify into a taxonomy of organisms or functions, predict secondary structure, create phylogenetic trees, and reconstruct ancestral states. 1 Gene finding: predict genes in a genome, extract them from the genome, and export them to a file. DECIPHER is available under the terms of the GNU Public License version 3. 2 Design Philosophy 2.1 Curators Protect the Originals One of the core principles of DECIPHER is the idea of the non-destructive workflow.
    [Show full text]
  • Eeiiiiiiimanual Supplement Strategies for Direct
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press EEIIIIIIIManual Supplement The amplification of target DNA by PCR (1) followed by direct sequencing of Strategies amplified DNA(2~ has emerged as a powerful strategy for rapid molecular for Direct genetic analysis. Using this strategy, the time-consuming cloning steps can be bypassed completely, and the sequence of the target DNA can be determined Sequencing of directly from a crude biological sample. The crude sample can be cultured PCR-amplified cells, bacteria, or a viral preparation. Furthermore, the copy number of target DNA in the sample can be as low as one to a few molecules of genomic DNA DNA among a vast excess of contaminating nontarget DNA. (3'4) This review de- scribes two sequencing strategies. These would allow generation of DNA se- quence from almost any PCR-amplified DNA template. In addition, factors Venigalla B. Rao that influence the sequencing reactions that would allow manipulation of these strategies for specific sequencing needs are discussed. For a more com- Department of Biology, Institute prehensive analysis of the direct sequencing strategy, the reader is referred to for Biomolecular Studies, The reviews by Gyllesten (2) and Rao. (s) Catholic University of America, Washington, D.C. 20064 SEQUENASE STRATEGY This strategy consists of three steps. (6~ In the first step, the double-stranded PCR-amplified DNA is denatured to single strands, and the sequencing primer is annealed to the complementary sequence on one of the template strands. In the second step, the annealed primer is extended by DNA polymerase by 20-80 nucleotides, incorporating multiple radioactive labels into the newly synthesized DNA.
    [Show full text]
  • DECIPHER.Pdf
    Package ‘DECIPHER’ September 28, 2021 Type Package Title Tools for curating, analyzing, and manipulating biological sequences Version 2.21.0 Date 2021-05-18 Author Erik Wright Maintainer Erik Wright <[email protected]> biocViews Clustering, Genetics, Sequencing, DataImport, Visualization, Microarray, QualityControl, qPCR, Alignment, WholeGenome, Microbiome, ImmunoOncology, GenePrediction Description A toolset for deciphering and managing biological sequences. Depends R (>= 3.5.0), Biostrings (>= 2.59.1), RSQLite (>= 1.1), stats, parallel Imports methods, DBI, S4Vectors, IRanges, XVector LinkingTo Biostrings, S4Vectors, IRanges, XVector License GPL-3 ByteCompile true git_url https://git.bioconductor.org/packages/DECIPHER git_branch master git_last_commit 7cad0ab git_last_commit_date 2021-05-19 Date/Publication 2021-09-28 R topics documented: DECIPHER-package . .3 AA_REDUCED . .6 Add2DB . .7 AdjustAlignment . .8 AlignDB . 10 1 2 R topics documented: AlignProfiles . 13 AlignSeqs . 17 AlignSynteny . 20 AlignTranslation . 21 AmplifyDNA . 23 Array2Matrix . 26 BrowseDB . 27 BrowseSeqs . 28 CalculateEfficiencyArray . 32 CalculateEfficiencyFISH . 34 CalculateEfficiencyPCR . 36 Codec . 38 ConsensusSequence . 39 Cophenetic . 42 CorrectFrameshifts . 43 CreateChimeras . 46 DB2Seqs . 48 deltaGrules . 50 deltaHrules . 51 deltaHrulesRNA . 52 deltaSrules . 53 deltaSrulesRNA . 54 DesignArray . 55 DesignPrimers . 57 DesignProbes . 61 DesignSignatures . 64 DetectRepeats . 68 DigestDNA . 71 Disambiguate . 72 DistanceMatrix . 73 ExtractGenes . 76 FindChimeras
    [Show full text]