A Biochemistry Special

Total Page:16

File Type:pdf, Size:1020Kb

A Biochemistry Special PROTEIN CHEMISTRY STRUCTURAL BIOLOGY YEARS OF ‘DESIGNING’ BRAND AT THE UK’S LARGEST BIOCHEMICAL NEW PROTEINS PARTICLE ACCELERATOR 50 BREAKTHROUGHS : A BIOCHEMISTRY SPECIAL THE MAGAZINE OF THE ROYAL SOCIETY OF BIOLOGY ⁄www.rsb.org.uk Vol 62 No 5 supplement • Oct/Nov 2015 FLUORO SCIENCE Nobel Prize winner Roger Tsien on the discovery and development of the green fluorescent protein Foreword About David Baulcombe Contents this issue Volume 62 No 5 Oct/Nov 2015 Produced in partnership with the Biochemical Society, this mini special issue aims to showcase the fascinating and important work that biochemists do. Biochemistry has created the tools, techniques and knowledge on which modern bioscience depends. It is at the very core of how all life on Earth works Welcome and its output underpins many other areas of the life sciences ROYAL SOCIETY OF BIOLOGY Charles Darwin House, including medicine, pharmaceuticals, agriscience and 12 Roger Street, London WC1N 2JU biotechnology. Our content here is focused towards the iochemistry is sometimes compared to cookery. Tel: 020 7685 2550 exciting chemistry of proteins, just one of many different types Chefs and biochemists both mix ingredients and Fax: 020 3514 3204 of macromolecule studied by biochemists. We can never do wait with excited expectation for the result – either a [email protected] justice to such a remarkable field in just 16 pages, but we delicious new dish or an experimental outcome. They www.rsb.org.uk hope this one-off biochemistry special whets your both follow recipes, although biochemists refer appetite to find out more. to theirs as ‘experimental protocols’. Continuing this Managing editor Tom Ireland MRSB metaphor, I am reminded of the famous recipe for @Tom_J_Ireland Bjugged hare that is said to [email protected] start with “first catch Tom Ireland, managing editor, your hare”. Royal Society of Biology Biochemists do not normally race around the countryside chasing furry BIOCHEMICAL SOCIETY animals, but until recently Charles Darwin House, there was a parallel 12 Roger Street, London WC1N 2JU preliminary step in our Tel: 020 7685 2400 protocols. We had to process Fax: 020 7685 2467 litres of culture or extract [email protected] www.biochemistry.org kilograms of tissue before we could start work with Science editor, The Biochemist milligrams of the molecule Frederica Theodoulou of interest. freddie.theodoulou@ We now operate on a micro rothamsted.ac.uk scale way beyond the tiniest We are ‘bio’ chemists Community and press editor, amuse bouche in a nouvelle Biochemical Society cuisine restaurant. We can and our ultimate goal Helen Albert start with tiny amounts of [email protected] The Biochemist tissue and get information is to understand how This is an exciting time to be a biochemist as new tools and technologies are about thousands of living systems are offering unprecedented insights into the molecular workings of life. It has been a molecules, rather than just one as in the past. more than the sum of The Biologist and its supplements pleasure to help to develop this special issue for The Biologist and share a small are produced on behalf of With genomics and their parts, for the the Royal Society of Biology by sample of what biochemistry has to offer with a wider audience. If you like what molecular biology, we can Think Publishing Ltd you see in this taster issue, please do take a look atThe Biochemist, to explore isolate genes affecting benefit of humankind Capital House processes that were the wonderful world of molecular biosciences. 25 Chapel Street Roger Tsien on the previously inaccessible to the London NW1 5DH Professor Frederica Theodoulou, science editor, The Biochemist development of the biochemist. From the genes www.thinkpublishing.co.uk 020 3771 7200 green fluorescent protein we see the proteins, and from the proteins we find other Art director Matthew Ball PAGE 6 Designer Dominic Scott components of the Production editor Sian Campbell Breakthroughs in biochemical circuitry in the Professor David Baulcombe, Sub editor Kirsty Fortune IN THIS SUPPLEMENT biochemistry at the cell or organism. president of the Biochemical Society Publisher John Innes Diamond Light Source Metaphors normally break [email protected] 02 50 YEARS OF INNOVATION chemistry will help us down under close inspection and this one is no exception. Few people Views expressed in this magazine are not PAGE 12 necessarily those of the Biochemical Society Seven biochemists make hardier crops would compare modern molecular genetics to mere cookery (and or the Royal Society of Biology. pick their favourite 12 DIAMOND LIGHT biochemists certainly do not ‘cook’ their results…). There is, however, © 2015 Royal Society of Biology breakthroughs Lessons in structural one element of the cookery metaphor that still applies: slow food. (Registered charity no. 277981) 06 INTERVIEW biology from Slow food enthusiasts would relish catching the hare, and they may The Society permits single copying of Roger Tsien on his most the UK’s largest embrace new technology, but they do not wish to lose sight of the whole individual articles for private study or research, irrespective of where the copying is famous work, the green particle accelerator food chain. Biochemists need to remember this slow food movement as done. Multiple copying of individual articles fluorescent protein 14 DESIGNER PROTEINS we bury ourselves in the enormous amounts of data pouring out of our for teaching purposes is also permitted without specific permission. For copying or 10 PLANT POWER How biochemists are mass spectrometers, imaging devices and next generation sequencers. reproduction for any other purpose, written Joseph Jez on why making new proteins for permission must be sought from the Society. We are ‘bio’ chemists and our ultimate goal is to understand how Exceptions to the above are those institutions understanding plant medicine and research living systems are more than the sum of their parts, for the benefit and non-publishing organisations that have an agreement or licence with the UK of humankind. We should not lose sight of the biological hare that Copyright Licensing Agency or the US Facebook “f” Logo RGB / .ai Facebook “f” Logo RGB / .ai is our raison d’être. Are we succeeding? I believe we are. Readers Copyright Clearance Center. Access to the TWITTER FACEBOOK WEBSITE magazine is available online; please see the twitter.com/ www.facebook.com/ www.biochemistry.org of The Biologist can judge for themselves by reading this special Society’s website for further details. BiochemSoc biochemicalsociety issue on the field. Biochemistry Supplement / The Biologist / 1 History History Seminal discoveries Seminal discoveries The cell cycle Multiple checkpoints in the eukaryotic cell cycle ensure that cells only divide after sufficient growth and faithful DNA replication – a process essential to preventing cell division going awry. Of the many proteins involved in cell cycle control, cyclin-dependent kinases (CDKs) are among the most important, modifying other chemicals involved in the cell’s progression towards division. I remember as a PhD student back in the intricate and exquisite details of how 1980s making a brief visit to Jim Maller’s the cell cycle is regulated: cyclin- laboratory in Denver, en route to a dependent protein kinase (CDK1), meeting in Colorado. Maller’s group had encoded by the cdc2 gene in yeast, and discovered a protein from Xenopus together with cyclin B, forms a protein oocytes that had a key role in controlling kinase complex known as MPF – the very cell division. At the time, this seemed a one that had previously been isolated in million miles away from my own project – Xenopus oocytes. working on a protein involved in Tim Hunt and Paul Nurse, together with regulating lipid metabolism in rat liver – Lee Hartwell, shared the Nobel Prize in but the significance of the work was not Physiology or Medicine in 2001 for their lost on me. discovery. Hindsight is a wonderful thing, 50 Shortly afterwards, I heard about work and looking back it is easy to see how all from Tim Hunt’s group at the Imperial the pieces slotted together, but at the Cancer Research Fund’s Clare Hall time this was far from the reality. This laboratories. A small family of proteins simply reflects the nature of most had been detected in sea urchin eggs scientific discoveries – very rarely are YEARS whose levels went up and down things crystal clear in the heat of the synchronously with each cell cycle – moment, and cut and dried results tend OF BIOCHEMISTRY proteins that would later be called cyclins. to be the exception rather than the rule. Sometime later, as a postdoc in Nonetheless, the discovery of the Seven leading biochemists pick the most important Dundee, I heard a talk from Paul Nurse in fundamental mechanisms regulating the which he described the identification of a cell cycle is a beautiful example of the European breakthroughs of the past five decades* protein from yeast that was regulated by elegance of nature itself. binding to cyclins, and which was DNA sequencing amazing thing about the Sanger required for cell division. Of course, 25 Professor David Carling, method is that it was so elegant, so years on, we now know many of the Imperial College London, UK In this method of DNA sequencing, robust and so simple to use. Of course, chemically altered nucleotides in time it became automated, which LIBRARY PHOTO ISM/SCIENCE DELARUE, MICHEL terminate newly synthesised DNA led to the human genome project. fragments at specific bases – Sanger’s method remained the understanding of membrane protein either A, C, G or T. These universally adopted and undisputed The chemiosmotic theory structure was still more than 20 years away fragments are then ranked by best way to sequence DNA for nearly Peter Mitchell’s chemiosmotic theory illustrated how the movement of ions through – they were known to associate with lipid size, and the DNA sequence 25 years, and it’s only in the past biological membranes could provide useful energy to catalyse biological processes.
Recommended publications
  • Itcontents 9..22
    INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY Volume F CRYSTALLOGRAPHY OF BIOLOGICAL MACROMOLECULES Edited by MICHAEL G. ROSSMANN AND EDDY ARNOLD Advisors and Advisory Board Advisors: J. Drenth, A. Liljas. Advisory Board: U. W. Arndt, E. N. Baker, S. C. Harrison, W. G. J. Hol, K. C. Holmes, L. N. Johnson, H. M. Berman, T. L. Blundell, M. Bolognesi, A. T. Brunger, C. E. Bugg, K. K. Kannan, S.-H. Kim, A. Klug, D. Moras, R. J. Read, R. Chandrasekaran, P. M. Colman, D. R. Davies, J. Deisenhofer, T. J. Richmond, G. E. Schulz, P. B. Sigler,² D. I. Stuart, T. Tsukihara, R. E. Dickerson, G. G. Dodson, H. Eklund, R. GiegeÂ,J.P.Glusker, M. Vijayan, A. Yonath. Contributing authors E. E. Abola: The Department of Molecular Biology, The Scripps Research W. Chiu: Verna and Marrs McLean Department of Biochemistry and Molecular Institute, La Jolla, CA 92037, USA. [24.1] Biology, Baylor College of Medicine, Houston, Texas 77030, USA. [19.2] P. D. Adams: The Howard Hughes Medical Institute and Department of Molecular J. C. Cole: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA. CB2 1EZ, England. [22.4] [18.2, 25.2.3] M. L. Connolly: 1259 El Camino Real #184, Menlo Park, CA 94025, USA. F. H. Allen: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge [22.1.2] CB2 1EZ, England. [22.4, 24.3] K. D. Cowtan: Department of Chemistry, University of York, York YO1 5DD, U. W. Arndt: Laboratory of Molecular Biology, Medical Research Council, Hills England.
    [Show full text]
  • CRISPR-Cas9 a New Tool for Genome Editing.Pdf
    CRICRICRISSPSPEPERERRCCCaasas9s99 AA ANe Ne Neww wT To Toool olf olf orf orGe rGe Gennonomomem eE eEd Editdiitinitngingg ByB JyBen Jyen Jneninferinfer iDofer Do uDodunduand,a nK, aeK,v eKivnei nvDi noD xoDzxoezxnez,n ea,n a,d na dMn dMa rMatirnati rnJti nJie nJkienkek A AK eAKy eK yEe xEyp xEepxrepimreimenriment enpt rpto rpdorudocudecudec dbe ydb Tyb hTye hT eEh xeEp xElpoxlrpoelrore’srre ’Gsr ’uGs iuGdieud ietdo et oB t ioBo ilBooilgooylgoygy 2 The Explorer’s Guide to Biology https://explorebiology.org/ CRISPR-Cas9 A New Tool for Genome Editing Jennifer Doudna, Kevin Doxzen, and Martin Jinek Jennifer Doudna Jennifer Doudna is a professor in the Departments of Molecular and Cell Biology and the Chemistry and Chemical Engineering at the University of California, Berkeley. For her studies on CRISPR-Cas9, Dr. Doudna has received several awards including the Breakthrough Prize in the Life Sciences, the Japan Prize, and the Canada Gairdner Award. She has been leading efforts to discuss ethical uses of genome editing technologies. Doudna teaches in Bio 1A, an introductory biology class at UC Berkeley. Kevin Doxzen Kevin Doxzen, a former graduate student with Jennifer Doudna, is a sci- ence communications specialist at the Innovative Genomics Institute, which is advancing genome engineering using CRISPR technologies. 3 Martin Jinek Martin Jinek, born in Czechoslovakia and a former postdoctoral fellow with Jennifer Doudna, is now an associate professor in the Department of Biochemistry at the University of Zurich. Jinek received the EMBL John Kendrew Young Scientist Award and the Friedrich Miescher Award of the Swiss Society for Molecular and Cellular Biosciences.
    [Show full text]
  • Download This Issue As A
    MICHAEL GERRARD ‘72 COLLEGE HONORS FIVE IS THE GURU OF DISTINGUISHED ALUMNI CLIMATE CHANGE LAW WITH JOHN JAY AWARDS Page 26 Page 18 Columbia College May/June 2011 TODAY Nobel Prize-winner Martin Chalfie works with College students in his laboratory. APassion for Science Members of the College’s science community discuss their groundbreaking research ’ll meet you for a I drink at the club...” Meet. Dine. Play. Take a seat at the newly renovated bar grill or fine dining room. See how membership in the Columbia Club could fit into your life. For more information or to apply, visit www.columbiaclub.org or call (212) 719-0380. The Columbia University Club of New York 15 West 43 St. New York, N Y 10036 Columbia’s SocialIntellectualCulturalRecreationalProfessional Resource in Midtown. Columbia College Today Contents 26 20 30 18 73 16 COVER STORY ALUMNI NEWS DEPARTMENTS 2 20 A PA SSION FOR SCIENCE 38 B OOKSHELF LETTERS TO THE Members of the College’s scientific community share Featured: N.C. Christopher EDITOR Couch ’76 takes a serious look their groundbreaking work; also, a look at “Frontiers at The Joker and his creator in 3 WITHIN THE FA MILY of Science,” the Core’s newest component. Jerry Robinson: Ambassador of By Ethan Rouen ’04J, ’11 Business Comics. 4 AROUND THE QU A DS 4 Reunion, Dean’s FEATURES 40 O BITU A RIES Day 2011 6 Class Day, 43 C L A SS NOTES JOHN JA Y AW A RDS DINNER FETES FIVE Commencement 2011 18 The College honored five alumni for their distinguished A LUMNI PROFILES 8 Senate Votes on ROTC professional achievements at a gala dinner in March.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • The Nobel Foundation Annual Review 2018
    THE NOBEL FOUNDATION ANNUAL REVIEW • 2018 THE NOBEL FOUNDATION · ANNUAL REVIEW 2018 1 1901 WILHELM CONRAD RÖNTGEN The first Nobel Prize in Physics was awarded to Wilhelm Conrad Röntgen for his discovery of X-radiation. The X-ray tube pictured on the cover is on display at the Nobel Prize Museum. Photo: Alexander Mahmoud 2018 BERNICE A. KING “I wish to commend the Nobel Museum for (…) this new exhibition. I believe that my parents’ message of social justice and equality is as important today as ever before.” The exhibition A Right to Freedom - Martin Luther King, Jr. was inaugurated by King’s daughter Bernice A. King at the Nobel Prize Museum on 28 September 2018. Photo: Alexander Mahmoud 2 THE NOBEL FOUNDATION · ANNUAL REVIEW 2018 THE NOBEL FOUNDATION · ANNUAL REVIEW 2018 3 For the greatest beneft to humankind ALFRED NOBEL 4 THE NOBEL FOUNDATION · ANNUAL REVIEW 2018 “I can tell you how. It is very easy. The first thing you must do is to have great teachers.” Paul A. Samuelson, 1970 Laureate in Economic Sciences, on how to earn a Nobel Prize. obel Laureates often Luther King, Jr., and with a Nobel Prize attest to how crucial Teacher Summit on the theme Teach their teachers have been. Love and Understanding, with 350 Teachers, researchers and teachers from 15 countries attending. others who contribute Al Gore, the 2007 Peace Prize Lars Heikensten, Executive Director Nto increased knowledge are the heroes Laureate, addressed How to Solve the of the Nobel Foundation since 2011. and heroines of our age. When the very Climate Crisis when he spoke at the 2018 Photo: Kari Kohvakka idea of science is being questioned, our Nobel Peace Prize Forum in Oslo.
    [Show full text]
  • The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008
    Journal of Visualized Experiments www.jove.com Video Article The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008 Roger Y. Tsien1 1 URL: https://www.jove.com/video/1575 DOI: doi:10.3791/1575 Keywords: Cellular Biology, Issue 35, GFP, Green Fluorescent Protein, IFPs, jellyfish, PKA, Calmodulin Date Published: 1/13/2010 Citation: Tsien, R.Y. The 2009 Lindau Nobel Laureate Meeting: Roger Y. Tsien, Chemistry 2008. J. Vis. Exp. (35), e1575, doi:10.3791/1575 (2010). Abstract American biochemist Roger Tsien shared the 2008 Nobel Prize in Chemistry with Martin Chalfie and Osamu Shimomura for their discovery and development of the Green Fluorescent Protein (GFP). Tsien, who was born in New York in 1952 and grew up in Livingston New Jersey, began to experiment in the basement of the family home at a young age. From growing silica gardens of colorful crystallized metal salts to attempting to synthesize aspirin, these early experiments fueled what would become Tsien's lifelong interest in chemistry and colors. Tsien's first official laboratory experience was an NSF-supported summer research program in which he used infrared spectroscopy to examine how metals bind to thiocyanate, for which he was awarded a $10,000 scholarship in the Westinghouse Science Talent Search. Following graduation from Harvard in 1972, Tsien attended Cambridge University in England under a Marshall Scholarship. There he learned organic chemistry --a subject he'd hated as an undergraduate-- and looked for a way to synthesize dyes for imaging neuronal activity, generating BAPTA based optical calcium indicator dyes. Following the completion of his postdoctoral training at Cambridge in 1982, Tsien accepted a faculty position at the University of California, Berkeley.
    [Show full text]
  • Download Ps Nobel Prizes for Site BEE 11.18.16 Revised 11.30.17.Pdf
    Nobel Laureates at the College of Physicians and Surgeons For years, College of Physicians and Surgeons alumni, faculty, and researchers have led groundbreaking clinical and basic scientific studies that have transformed our understanding of human biology and advanced the practice of medicine. On many occasions, this work has been honored with the Nobel Prize. The scope of research led by P&S Nobel laureates is tremendous. Although most of our prizewinners were honored for work in physiology or medicine, a few also received the prize for chemistry. Their research has fundamentally shaped the course of numerous fields, including cardiology, neuroscience, genetics, pharmaceutical development, and more. Our Nobel laureates include: André Cournand and Dickinson Richards (P&S’23), whose work at P&S on cardiac catheterization—a method of inserting a tiny tube into the heart—provided the basis for open-heart surgery and interventional cardiology Baruch Blumberg (P&S’51), who discovered the hepatitis B virus and helped develop a test and a vaccine for the virus Joshua Lederberg, a Columbia College and P&S graduate student who showed that bacteria can exchange genes when they reproduce, creating a way to model and study genetics in higher organisms Harold Varmus (P&S’66), who demonstrated how genes in normal human and animal cells can mutate to cause cancer, leading to a new generation of research on the genetic origins of cancer Eric Kandel, current University Professor, who showed how memories are stored in nerve cells, greatly enhancing
    [Show full text]
  • Max Ferdinand Perutz 1914–2002
    OBITUARY Max Ferdinand Perutz 1914–2002 Max Ferdinand Perutz, who died on in the MRC Laboratory of Molecular 6 February, will be remembered as Biology, which has grown to house one of the 20th century’s scientific over 400 people. He published over giants. Often referred to as the ‘fa- 100 papers and articles during his re- ther of molecular biology’, his work tirement. Once asked why he didn’t re- remains one of the foundations on tire at 65 he replied that he was tied up which science is being built today. in some very interesting research at Born in Vienna in 1914, Max was the time. Until the Friday before educated in the Theresianum, a Christmas, he was active in the lab al- grammar school originating from most every day, submitting his last an earlier Officers’ academy. His paper just a few days before then. parents suggested that he study law Max’s scientific interests ranged far to prepare for entering the family beyond medical research. As a sideline, business, but he chose to study he also worked on glaciers in his chemistry at the University of youth. He studied the transformation Vienna. of snowflakes that fall on glaciers into In 1936, with financial support the huge single ice crystals that make from his father, he began a PhD at the Cavendish up its bulk, and the relationship between the mechanical Laboratory in Cambridge. Using X-ray crystallography he properties of ice measured in the laboratory and the mecha- aimed to determine the structure of hemoglobin. But the nism of glacier flow.
    [Show full text]
  • Guides to the Royal Institution of Great Britain: 1 HISTORY
    Guides to the Royal Institution of Great Britain: 1 HISTORY Theo James presenting a bouquet to HM The Queen on the occasion of her bicentenary visit, 7 December 1999. by Frank A.J.L. James The Director, Susan Greenfield, looks on Front page: Façade of the Royal Institution added in 1837. Watercolour by T.H. Shepherd or more than two hundred years the Royal Institution of Great The Royal Institution was founded at a meeting on 7 March 1799 at FBritain has been at the centre of scientific research and the the Soho Square house of the President of the Royal Society, Joseph popularisation of science in this country. Within its walls some of the Banks (1743-1820). A list of fifty-eight names was read of gentlemen major scientific discoveries of the last two centuries have been made. who had agreed to contribute fifty guineas each to be a Proprietor of Chemists and physicists - such as Humphry Davy, Michael Faraday, a new John Tyndall, James Dewar, Lord Rayleigh, William Henry Bragg, INSTITUTION FOR DIFFUSING THE KNOWLEDGE, AND FACILITATING Henry Dale, Eric Rideal, William Lawrence Bragg and George Porter THE GENERAL INTRODUCTION, OF USEFUL MECHANICAL - carried out much of their major research here. The technological INVENTIONS AND IMPROVEMENTS; AND FOR TEACHING, BY COURSES applications of some of this research has transformed the way we OF PHILOSOPHICAL LECTURES AND EXPERIMENTS, THE APPLICATION live. Furthermore, most of these scientists were first rate OF SCIENCE TO THE COMMON PURPOSES OF LIFE. communicators who were able to inspire their audiences with an appreciation of science.
    [Show full text]
  • FASC Newsletter December 2018
    FASC Newsletter December 2018 There are a range of initiative by Societies underway aimed at increasing younger chemists’ involvement in the concerns of chemists. Representatives are to be found in Africa who serve on these bodies. Also included in the newsletter is information on the next two young chemists who have been associated with elements in the Periodic Table and come from Africa. Read more below. The December end of year holidays are upon us. On behalf of the FASC Executive I wish you all a good time with friends (celebrating) and that 2019 will be a successful year for all. The next newsletter will be sent out at the end of January. Neil Coville Content Information for the newsletter Advertising in the FASC newsletter FASC member countries FASC 2019 African Nobel Prize winner, Aaron Klug, dies Member Country Society News South Africa i) SACI Convention ii) Interview with Prof Bert Klumperman AAS IUPAC news i) International Younger Chemists Network (IYCN) ii) Periodic Table of Younger Chemists Awards (Edmund Sanganyado, Emmanuel Chukwudalu Ohaekenyem) iii) Opening of the International Year of the Periodic Table African Journal of Chemical Education (AJCE) African Journals of Chemistry Africa Conference on Research in Chemical Education (ACRICE-4 2019) PACN news ACS news RSC news Conferences (Detailed information and adverts follow the listing) AMRS2019 The 10th International Conference of the African Materials Research Society (AMRS2019) Arusha, Tanzania IUPAC FOR AFRICA, Postgraduate Summer School on Green Chemistry, Dar es Salaam, Tanzania. The Second African Light Source Conference (AfLS2) Accra, Ghana, It is concurrent with the Pan African Conference on Crystallography (PCCR2).
    [Show full text]
  • Bridge Linking Engineering and Society
    Winter 2019 FRONTIERS OF ENGINEERING The BRIDGE LINKING ENGINEERING AND SOCIETY Computational Materials for the Design and Qualification of Additively Manufactured Components Christapher G. Lang Robots That Walk: What the Challenge of Locomotion Says About Next-Generation Manufacturing Christian Hubicki The Digital Twin Concept Pamela A. Kobryn Genome Editing with Precision and Accuracy Krishanu Saha Using CRISPR to Combat Human Disease Vectors Omar S. Akbari Microbes and Manufacturing: Moore’s Law Meets Biology Patrick Boyle Empowering Genome Editing Through Standards Samantha Maragh Why Everyone Has It Wrong about the Ethics of Autonomous Vehicles John Basl and Jeff Behrends Influencing Interactions between Human Drivers and Autonomous Vehicles Dorsa Sadigh Cryptocurrencies as Marketplaces Jacob Leshno Higher Education in Engineering: Hands-on Experience and Teaching Factory Jyotirmoy Mazumder The mission of the National Academy of Engineering is to advance the well-being of the nation by promoting a vibrant engineering profession and by marshalling the expertise and insights of eminent engineers to provide independent advice to the federal government on matters involving engineering and technology. The BRIDGE NATIONAL ACADEMY OF ENGINEERING Gordon R. England, Chair John L. Anderson, President Corale L. Brierley, Vice President Julia M. Phillips, Home Secretary James M. Tien, Foreign Secretary Martin B. Sherwin, Treasurer Editor in Chief: Ronald M. Latanision Managing Editor: Cameron H. Fletcher Production Associate: Penelope Gibbs The Bridge (ISSN 0737-6278) is published quarterly by the National Acad emy of Engineering, 2101 Constitution Avenue NW, Washington, DC 20418. Periodicals postage paid at Washington, DC. Vol. 49, No. 4, Winter 2019 Postmaster: Send address changes to The Bridge, 2101 Constitution Avenue NW, Washington, DC 20418.
    [Show full text]